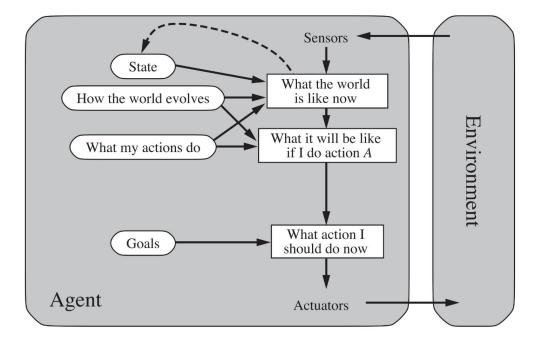


When is Tree Search Useful for LLM Planning? It Depends on the Discriminator

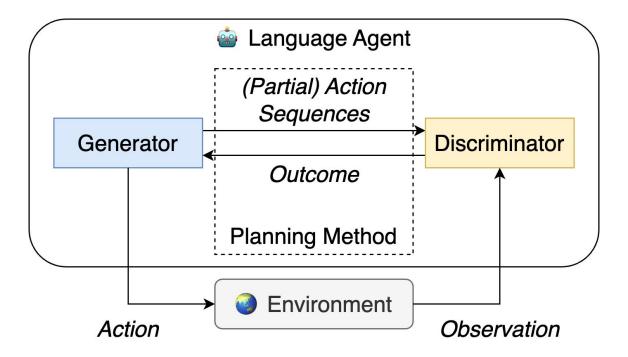
Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, Huan Sun

Al Agents for Problem-Solving

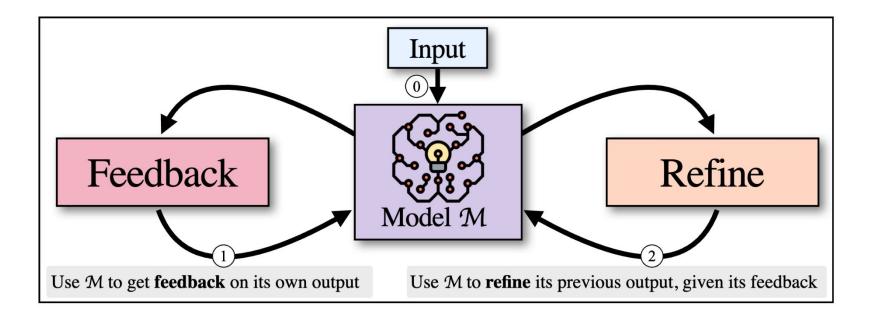


Stuart Russell and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach, 3rd edition. Prentice Hall.

LLM-Based Agents for Problem-Solving

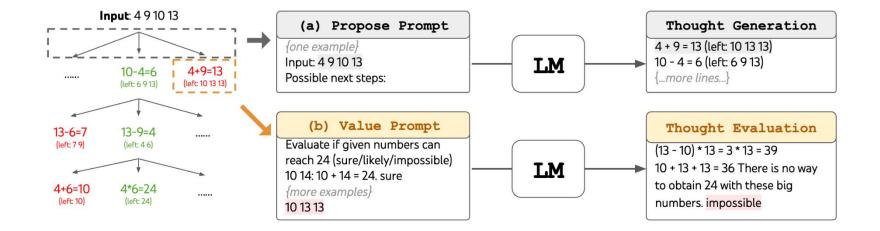


Advanced Planning Methods



Aman Madaan et al. 2023. Self-Refine: Iterative Refinement with Self-Feedback. In NeurIPS 2023.

Advanced Planning Methods



Shunyu Yao et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurIPS 2023.

Are Advanced Planning Methods the Solution?

"Models outperform humans in generation but underperform humans in

discrimination."

THE GENERATIVE AI PARADOX: "What It Can Create, It May Not Understand"

Peter West^{1*} Ximing Lu^{1,2*} Nouha Dziri^{2*} Faeze Brahman^{1,2*} Linjie Li^{1*} Jena D. Hwang² Liwei Jiang^{1,2} Jillian Fisher¹ Abhilasha Ravichander² Khyathi Raghavi Chandu² Benjamin Newman¹ Pang Wei Koh¹ Allyson Ettinger² Yejin Choi^{1,2} ¹University of Washington ²Allen Institute for Artificial Intelligence {pawest,linjli}cs.washington.edu {ximinglu,nouhad,faezeb}allenai.org

Are Advanced Planning Methods the Solution?

"LLMs struggle to self-correct their responses without external feedback."

THE GENERATIVE AI PARADOX: "What It Can Create, It May Not Understand"

Peter West^{1*} Ximing Lu^{1,2*} Noube Dziri^{2*} Faeze Brahman^{1,2*} Liniie Li^{1*} Jena D. Hwang² Liwei Jiang^{1,2} J Khyathi Raghavi Chandu² Benja Pang Wei Koh¹ Allyson Ettinger² REASONING YET

¹University of Washington ²Allen Ir

{pawest,linjli}cs.washing
{ximinglu,nouhad,faezeb}a

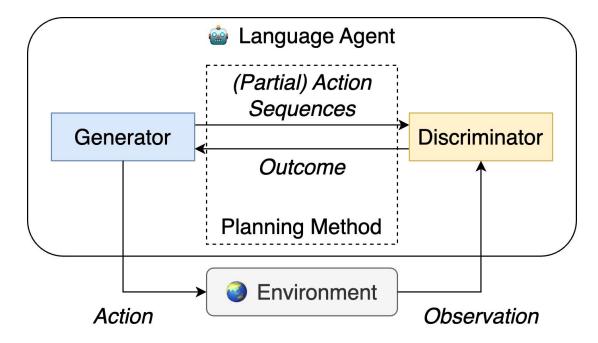
Jie Huang^{1,2*} Xinyun Chen^{1*} Swaroop Mishra¹ Huaixiu Steven Zheng¹ Adams Wei Yu¹ Xinying Song¹ Denny Zhou¹

¹Google DeepMind ²University of Illinois at Urbana-Champaign

jeffhj@illinois.edu, {xinyunchen, dennyzhou}@google.com

Are Advanced Planning Methods the Solution?

We hypothesize that the *discriminator* may be more important in LLM planning.



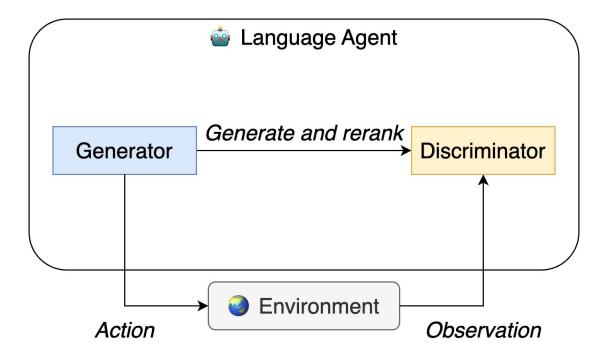
Our Contributions

• Investigation of three planning methods under a unified language agent framework

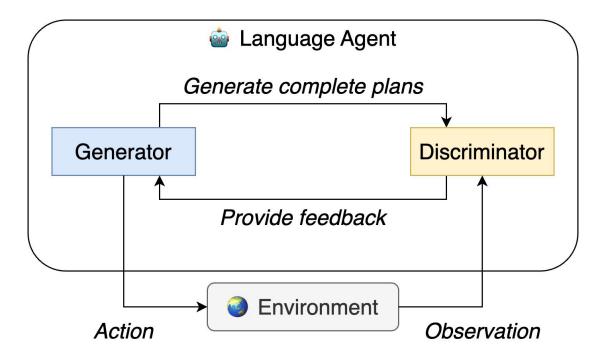
• Comprehensive experiments on two real-world tasks, text-to-SQL parsing and math reasoning

• Empirical analysis of LLMs' discrimination abilities and their impact on LLM planning

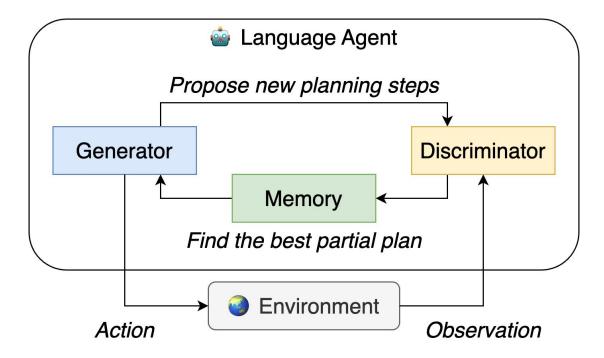
Unified View of Planning - Re-ranking



Unified View of Planning - Iterative Correction



Unified View of Planning - Tree Search



Research Questions

• **RQ1**: How does discrimination accuracy affect the performance of language agents using different planning methods?

• **RQ2**: Can LLM-based discriminators correctly assess language agents' actions in practical settings?

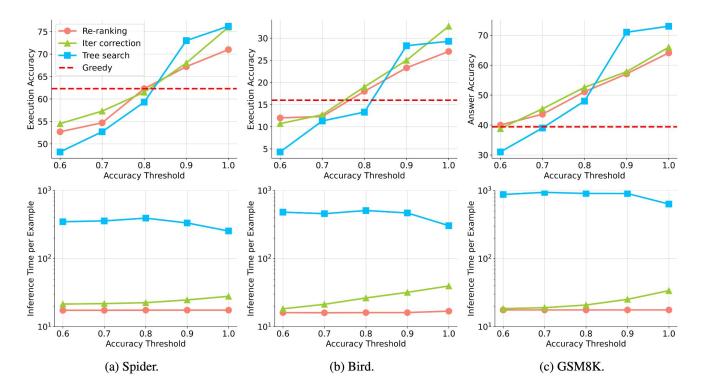
Research Questions

• **RQ1**: How does discrimination accuracy affect the performance of language agents using different planning methods?

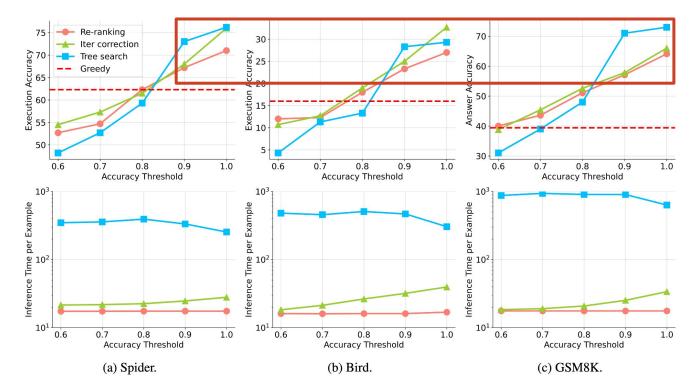
• **RQ2**: Can LLM-based discriminators correctly assess language agents' actions in practical settings?

• Simulate a perfect discriminator with gold answers

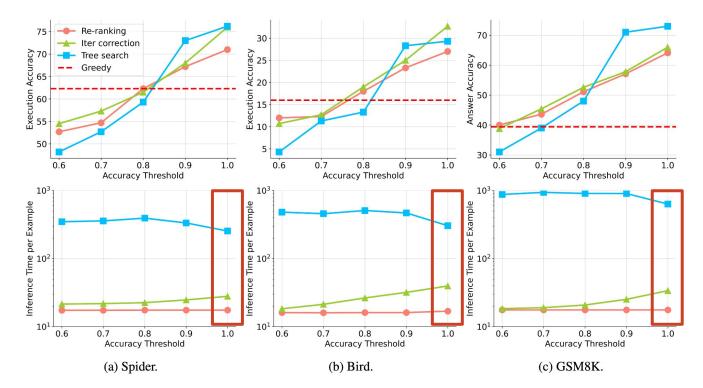
- Control the accuracy with a probability-based threshold
 - Sample a random number between 0 and 1
 - If the number is smaller than our threshold, we follow the discriminator's score
 - Otherwise, we inverse the score



End-to-end evaluation results (the first row) and average inference time in log scale (the second row) of our simulation experiments with oracle-based discriminator.



End-to-end evaluation results (the first row) and average inference time in log scale (the second row) of our simulation experiments with oracle-based discriminator.



End-to-end evaluation results (the first row) and average inference time in log scale (the second row) of our simulation experiments with oracle-based discriminator.

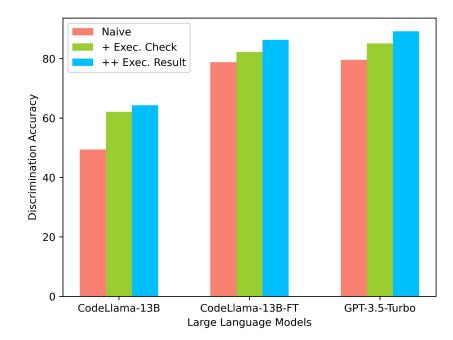
Research Questions

• **RQ1**: How does discrimination accuracy affect the performance of language agents using different planning methods?

• **RQ2**: Can LLM-based discriminators correctly assess language agents' actions in practical settings?

Discrimination Accuracy of LLMs

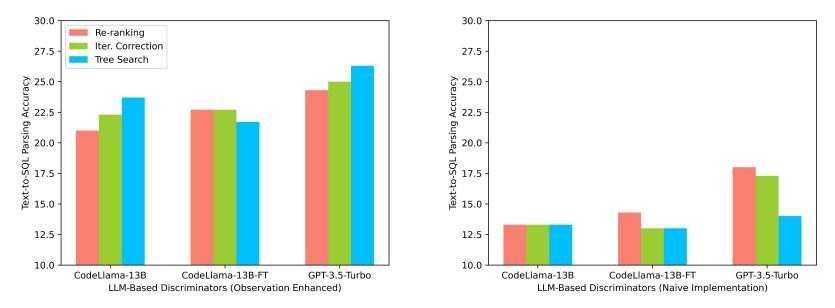
We improve LLMs' discrimination accuracy with environmental observations.



Discrimination accuracy of naive and observation-enhanced LLMs on BIRD-SQL.

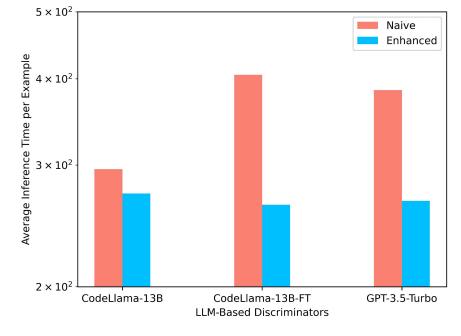
End-to-End Evaluation of LLM Planning

LLM-based discriminators cannot help advance planning methods to achieve significant accuracy improvement yet.



End-to-End Evaluation of LLM Planning

Observation-enhanced discriminators can largely reduce tree search latency.



Average end-to-end inference time (seconds; log scale) per example using tree search on BIRD-SQL.

Conclusions

 Advanced planning methods, i.e., iterative correction and tree search, demand highly accurate discriminators to achieve decent improvements over the simpler method, re-ranking.

• The discrimination accuracy of LLMs may not yet be sufficient for advanced planning methods.

• The accuracy-efficiency trade-off can impede the deployment of advanced planning methods in real-world applications.

Thank you!

Code and Data: https://github.com/OSU-NLP-Group/Auto-SQL-Correction

Email: chen.8336@osu.edu