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Stuart Russell and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach, 3rd edition. Prentice Hall.



LLM-Based Agents for Problem-Solving
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Advanced Planning Methods
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Use M to get feedback on its own output Use M to refine its previous output, given its feedback

Aman Madaan et al. 2023. Self-Refine: Iterative Refinement with Self-Feedback. In NeurlPS 2023.



Advanced Planning Methods
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4+6=10 4*6=24
(left: 10) (left: 24)

Shunyu Yao et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS 2023.

(a) Propose Prompt

Thought Generation

{one example}
Input: 491013
Possible next steps:

4+9=13 (lefc 10 1313)
10-4=6(left: 6913)

{..more lines...}

(b) Value Prompt

I Evaluate if given numbers can
reach 24 (sure/likely/impossible)
10 14:10 + 14 = 24. sure

{more examples}

101313

Thought Evaluation

A

(13-10)*13=3*13=39

10 +13 +13 =36 There is no way
to obtain 24 with these big
numbers. impossible




Are Advanced Planning Methods the Solution?

“Models outperform humans in generation but underperform humans in

discrimination.”

THE GENERATIVE Al PARADOX:
“What It Can Create, It May Not Understand”
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Are Advanced Planning Methods the Solution?

“LLMs struggle to self-correct their responses without external feedback.”

THE GENERATIVE Al PARADOX:
“What It Can Create, It May Not Understand”
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Are Advanced Planning Methods the Solution?

We hypothesize that the discriminator may be more important in LLM planning.
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Our Contributions

e Investigation of three planning methods under a unified language agent
framework

e Comprehensive experiments on two real-world tasks, text-to-SQL parsing and
math reasoning

e Empirical analysis of LLMs’ discrimination abilities and their impact on LLM
planning



Unified View of Planning - Re-ranking
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Unified View of Planning - Iterative Correction
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Unified View of Planning - Tree Search
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Research Questions

e RQ1: How does discrimination accuracy affect the performance of language
agents using different planning methods?

e RQ2: Can LLM-based discriminators correctly assess language agents'
actions in practical settings?



Research Questions

e RQ1: How does discrimination accuracy affect the performance of language
agents using different planning methods?



Simulation Experiments with Oracle

e Simulate a perfect discriminator with gold answers

e Control the accuracy with a probability-based threshold
o Sample a random number between 0 and 1
o If the number is smaller than our threshold, we follow the discriminator’s score

o Otherwise, we inverse the score



Simulation Experiments with Oracle
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End-to-end evaluation results (the first row) and average inference time in log scale
(the second row) of our simulation experiments with oracle-based discriminator.



Simulation Experiments with Oracle
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Simulation Experiments with Oracle
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Research Questions

e RQ2: Can LLM-based discriminators correctly assess language agents'
actions in practical settings?



Discrimination Accuracy of LLMs

We improve LLMs’ discrimination accuracy with environmental observations.
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Discrimination accuracy of naive and observation-enhanced LLMs on BIRD-SQL.



End-to-End Evaluation of LLM Planning

LLM-based discriminators cannot help advance planning methods to achieve
significant accuracy improvement yet.
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End-to-End Evaluation of LLM Planning

Observation-enhanced discriminators can largely reduce tree search latency.
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Conclusions

e Advanced planning methods, i.e., iterative correction and tree search,
demand highly accurate discriminators to achieve decent improvements over
the simpler method, re-ranking.

e The discrimination accuracy of LLMs may not yet be sufficient for advanced
planning methods.

e The accuracy-efficiency trade-off can impede the deployment of advanced
planning methods in real-world applications.



Thank you!

Code and Data: https://github.com/OSU-NLP-Group/Auto-SQL-Correction
Email: chen.8336@osu.edu
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