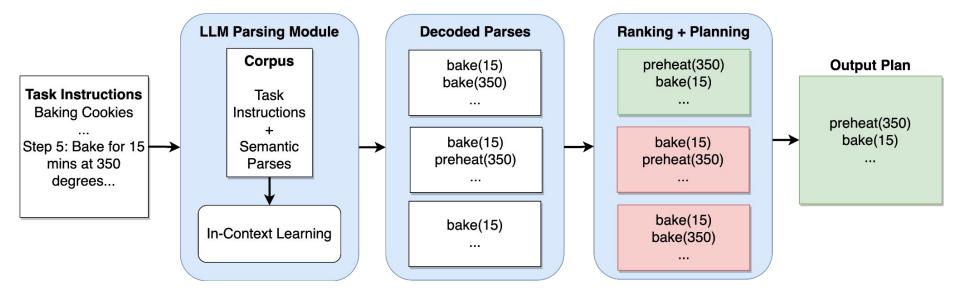
Using Planning to Improve Semantic Parsing of Instructional Texts

Vanya Cohen and Ray Mooney


Introduction

- Few-shot semantic parsing of long-form instructional texts poses unique challenges
 - Long context dependencies and ambiguous, domain-specific language
- Utilize *planning domain information* to improve quality of generated *semantic parses (plans)*
 - Add structured reasoning to LLM-based semantic parsing
- Planning Augmented Semantic Parsing
 - Symbolic-planning-based decoder
 - Ranks and corrects candidate parses
 - Combines strength of LLMs and classical AI planning

Background

- LLM for few-shot semantic parsing (Shin and Van Durme 2021)
 - Davinci Codex
- Datasets: cooking recipes with plans
 - Describe the steps needed to make the recipe
 - Bolllini et al. 2013 and Tasse and Smith 2008
- Recipe parses are composed of actions
 - STRIPs-like operators with preconditions and postconditions
 - Actions are only **executable** if their **preconditions** are satisfied
- Want to output semantic parses which are executable, while capturing recipe semantics

Method

Method

- Few-shot semantic parsing with in-context example selection
 - Cosine similarity with a paragraph embedding model
- Rank candidate parses (ten candidates)
 - Minimize syntax errors (SE), precondition errors (PE)
 - Minimize the number of steps that need to be added to make the parsed plan executable (AS)
 - Maximize the probability of all the plan steps (*In P*,)
- Output the highest scoring plan with added steps to make it executable (if possible)

$$score = \ln(1.0 - \frac{SE + PE + AS}{N} + \epsilon) + \frac{1}{T} \sum_{t=1}^{T} \ln P_t$$

Method

- Few-shot semantic parsing with in-context example selection
 - Cosine similarity with a paragraph embedding model
- Rank candidate parses (ten candidates)
 - Minimize syntax errors (SE), precondition errors (PE)
 - Minimize the number of steps that need to be added to make the parsed plan executable (AS)
 - Maximize the probability of all the plan steps $(In P_t)$
- Output the highest scoring plan with added steps to make it executable (if possible)

$$score = \ln(1.0 - \frac{SE + PE + AS}{N} + \epsilon) + \frac{1}{T} \sum_{t=1}^{T} \ln P_t$$
Maximize the fraction of plan steps with errors, and added steps

Experiments

• Evaluation Metrics

- Longest Common Subsequence (LCS)
- Plan Steps F1: harmonic mean of precision and recall of generated steps
- Precondition Errors (PE) and Syntax Errors (SE)

• Experimental Settings

- Rank (PPL): selects the plan with the lowest perplexity
- Rank: ranks the plans by the scoring function without correcting precondition errors
- Rank + Plan: our full ranking method with planning to correct errors

Results (Bollini et al. 2013)

Models	(Bollini et al., 2013)			
	LCS↑	PE↓	SE↓	F1 ↑
Rank (PPL)				
Davinci Codex, E=1	0.897 ± 0.008	0.962 ± 0.685	0.042 ± 0.008	0.784 ± 0.004
Davinci Codex, E=5	0.949 ± 0.005	0.198 ± 0.009	0.002 ± 0.004	0.863 ± 0.003
Re-Rank				
Davinci Codex, E=1	0.901 ± 0.008	0.382 ± 0.037	0.025 ± 0.008	0.798 ± 0.002
Davinci Codex, E=5	0.952 ± 0.005	0.120 ± 0.015	0.002 ± 0.004	0.868 ± 0.002
Re-Rank + Plan				
Davinci Codex, E=1	0.903 ± 0.008	0.143 ± 0.033	0.025 ± 0.008	0.807 ± 0.002
Davinci Codex, E=5	0.952 ± 0.005	0.033 ± 0.000	0.002 ± 0.004	0.870 ± 0.002

Results (Bollini et al. 2013)

Models	(Bollini et al., 2013)			
	LCS↑	PE↓	SE↓	F1 ↑
Rank (PPL)				
Davinci Codex, E=1	0.897 ± 0.008	0.962 ± 0.685	0.042 ± 0.008	0.784 ± 0.004
Davinci Codex, E=5	0.949 ± 0.005	0.198 ± 0.009	0.002 ± 0.004	0.863 ± 0.003
Re-Rank				
Davinci Codex, E=1	0.901 ± 0.008	0.382 ± 0.037	0.025 ± 0.008	0.798 ± 0.002
Davinci Codex, E=5	0.952 ± 0.005	0.120 ± 0.015	0.002 ± 0.004	0.868 ± 0.002
Re-Rank + Plan				
Davinci Codex, E=1	0.903 ± 0.008	0.143 ± 0.033	0.025 ± 0.008	0.807 ± 0.002
Davinci Codex, E=5	0.952 ± 0.005	$\textbf{0.033} \pm \textbf{0.000}$	0.002 ± 0.004	0.870 ± 0.002

Results (Bollini et al. 2013)

Models	(Bollini et al., 2013)			
	LCS↑	PE↓	SE↓	F1 ↑
Rank (PPL)				
Davinci Codex, E=1	0.897 ± 0.008	0.962 ± 0.685	0.042 ± 0.008	0.784 ± 0.004
Davinci Codex, E=5	0.949 ± 0.005	0.198 ± 0.009	0.002 ± 0.004	0.863 ± 0.003
Re-Rank				
Davinci Codex, E=1	0.901 ± 0.008	0.382 ± 0.037	0.025 ± 0.008	0.798 ± 0.002
Davinci Codex, E=5	0.952 ± 0.005	0.120 ± 0.015	0.002 ± 0.004	$\boldsymbol{0.868 \pm 0.002}$
Re-Rank + Plan				
Davinci Codex, E=1	0.903 ± 0.008	0.143 ± 0.033	0.025 ± 0.008	0.807 ± 0.002
Davinci Codex, E=5	0.952 ± 0.005	$\textbf{0.033} \pm \textbf{0.000}$	0.002 ± 0.004	$\textbf{0.870} \pm \textbf{0.002}$

Results (Tasse and Smith 2008)

Models	(Tasse and Smith, 2008)			
	LCS↑	PE↓	SE↓	F1 ↑
Rank (PPL)				
Davinci Codex, E=1	0.692 ± 0.003	0.827 ± 0.086	0.875 ± 0.199	0.443 ± 0.002
Re-Rank				
Davinci Codex, E=1	0.695 ± 0.004	0.293 ± 0.016	0.226 ± 0.024	0.446 ± 0.001
Re-Rank + Plan				
Davinci Codex, E=1	0.695 ± 0.003	0.000 ± 0.000	0.237 ± 0.018	0.446 ± 0.001

Results (Tasse and Smith 2008)

Models	(Tasse and Smith, 2008)			
	LCS↑	PE↓	SE↓	F1 ↑
Rank (PPL)				
Davinci Codex, E=1	0.692 ± 0.003	0.827 ± 0.086	0.875 ± 0.199	0.443 ± 0.002
Re-Rank				
Davinci Codex, E=1	0.695 ± 0.004	0.293 ± 0.016	0.226 ± 0.024	0.446 ± 0.001
Re-Rank + Plan				
Davinci Codex, E=1	0.695 ± 0.003	$\textbf{0.000} \pm \textbf{0.000}$	$\textbf{0.237} \pm \textbf{0.018}$	0.446 ± 0.001

Results (Tasse and Smith 2008)

Models	(Tasse and Smith, 2008)			
	LCS↑	PE↓	SE↓	F1 ↑
Rank (PPL)				
Davinci Codex, E=1	0.692 ± 0.003	0.827 ± 0.086	0.875 ± 0.199	0.443 ± 0.002
Re-Rank				
Davinci Codex, E=1	0.695 ± 0.004	0.293 ± 0.016	0.226 ± 0.024	0.446 ± 0.001
Re-Rank + Plan				
Davinci Codex, E=1	0.695 ± 0.003	$\textbf{0.000} \pm \textbf{0.000}$	$\textbf{0.237} \pm \textbf{0.018}$	0.446 ± 0.001

Conclusion and Future Work

- Our neuro-symbolic approach generates semantic parses with more valid plans
- Reduces precondition errors while maintaining content similarity to ground-truth plans
- Future work:
 - Automatically generating planning domain definitions
 - Testing in other planning domains (e.g. ALFRED)
 - Use more capable LLMs (GPT-4)