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Natural language is an accessible means 
of specifying tasks for AI agents.
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“Pick up my energy drink and place it by 
my running shoes.”
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Environment

Observations 
and Feedback

Actions

Language Task 
Description 

(Goal)

Produce valid actions to accomplish a task 
specified in natural language.
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Center for Research on Foundation Models 2022

Large Multimodal Models (LMMs)
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How can we evaluate and improve 
action reasoning in LMMs?
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Action Reasoning
1. Relate goals to action sequences.
2. Preconditions: What must the world state be 

for the action to be afforded (executable)?
3. Postconditions: What is the world state after 

executing this action. I.e. World Modeling
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Using Planning to Improve Semantic 
Parsing of Instructional Texts 

Vanya Cohen and Raymond Mooney

ACL 2023: Workshop on Natural Language Reasoning with Structured Explanations 19
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Instructional Texts

Large Pretrained 
Model

(get-ingredient flour)

(get-ingredient sugar)

(get-ingredient butter)

(get-ingredient eggs)

(get-ingredient chips)

(preheat-oven)

(scoop-dough)

(mix-dough)

(bake-cookies)

(cool-cookies)

Executable Plan
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Introduction
• Few-shot semantic parsing1 of long-form 

instructional texts poses unique challenges.
– Long context dependencies.

– Ambiguous, domain-specific language.
• Omitted and implied steps.

1. Richard Shin, Benjamin Van Durme. Few-Shot Semantic Parsing with 

Language Models Trained on Code. NAACL 2022
24



(get-ingredient flour)

(get-ingredient sugar)

(get-ingredient butter)

(get-ingredient eggs)

(get-ingredient chips)

(preheat-oven)

(mix-dough)

(scoop-dough)

(bake-cookies)

(cool-cookies)

Executable Plan

Planner

(define (problem 

make-choc-chip-cookies)

  (:domain cookie-making)

  (:objects)

  (:init

    (needed flour)

    (needed sugar)

    (needed butter)

    (needed eggs)

    (needed chips)

…

(:action preheat-oven

    :parameters ()

    :precondition (and (not 

(preheated)))

    :effect (preheated)

  )

  (:action mix-dough

    :parameters ()

    :precondition (and

…

Problem (Constraints)

Planning Domain

25



Method
• Utilize planning domain information to improve quality of 

generated semantic parses (plans).

• Ensure generated plans are executable: each action has 
satisfied preconditions.
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Method
• Planning-Augmented Semantic Parsing

– Symbolic-planning-based decoder.

– Ranks and corrects candidate parses.

– Combines strength of LLMs and classical AI 
planning.
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Datasets
• Cooking recipes with ground-truth plans

– Describe the steps needed to make the recipe.

– Bollini et al. 2013 and Tasse and Smith 2008.
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Method

29

Pipeline starts with input 
instructions



Method
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Few-shot semantic 
parsing to translate the 
instructions into a 
sequence of operators. 
Produce ten candidates 

OpenAI Davinci Codex 
(Chen et al. 2021) 



Method

31

bake() preconditions not 
met, planning adds a 
preheat step



Method
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Rank by a scoring function 
that prioritizes executable 
plans



Method
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Method
• Rank candidate parses (ten candidates)

– Minimize syntax errors (SE), precondition errors (PE)

– Minimize the number of steps that need to be added 
to make the parsed plan executable (AS)

– Maximize the probability of all the plan steps (ln P
t
)

• Output the highest scoring plan with added steps.
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Experiments
• Evaluation Metrics

– Longest Common Subsequence (LCS)
– Plan Steps F1: harmonic mean of precision and recall of generated steps
– Precondition Errors (PE) and Syntax Errors (SE)

• Experimental Settings
– Rank (PPL): selects the plan with the lowest perplexity
– Rank: ranks the plans by the scoring function without correcting 

precondition errors
– Rank + Plan: our full ranking method with planning to correct errors
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Results (Bollini et al. 2013)
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Results (Bollini et al. 2013)
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Results (Bollini et al. 2013)
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Results (Tasse and Smith 2008)
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Results (Tasse and Smith 2008)
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Results (Tasse and Smith 2008)
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Conclusion
• Neuro-symbolic approach generates semantic 

parses that are valid plans.

• Reduces precondition errors while maintaining 
content similarity to ground-truth plans.
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CAPE: Corrective Actions from Precondition Errors using Large Language Models (ICRA 2024)

Shreyas Sundara Raman, Vanya Cohen, Ifrah Idrees, Eric Rosen, Ray Mooney, Stefanie Tellex, David Paulius.
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Compositional Instruction Following 
with Language Models and 

Reinforcement Learning
Vanya Cohen*, Geraud Nangue Tasse*, Nakul Gopalan, Steven James, 

Matthew Gombolay, Raymond Mooney, Benjamin Rosman

Reinforcement Learning Conference 2025; Transactions on Machine Learning Research 2024 45



Planning

Planning Domain;
Problem Constraints

Planning (Search) Action Sequence
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Reinforcement Learning (RL)

Markov Decision 
Process

RL: Learning by trial 
and error

Policy: Function 
describing what 

actions to take in what 
situations. 
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Reinforcement Learning (RL)

Markov Decision 
Process

RL: Learning by trial 
and error

Policy: Function 
describing what 

actions to take in what 
situations. 
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Low sample efficiency



Reinforcement Learning

Markov Decision 
Process

States: S
Actions: A
Reward(s, a) → scalar
Transition(s, a) → s’

E.g. Policy Gradient1; 
Deep Q Networks2

Policy Function

Value Function

Environment

State 
Observation 
and Reward

Actions
1. Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. 

2018

2. Minh et al. Playing Atari with Deep Reinforcement Learning. 2013 49

Domain RL Algorithm
Policy 

Representation



Language and RL Tasks Share Compositional Structure 

● “Serve breakfast with plain 
toast and ketchup…”
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Language and RL Tasks Share Compositional Structure 

● “Serve breakfast with plain 
toast and ketchup…”

● Compose existing policies to 
perform tasks with minimal 
training.

1. Lake, B. M., & Baroni, M. (2018). Generalization without systematicity: On the compositional skills of 
sequence-to-sequence recurrent networks. Proceedings of the 35th International Conference on Machine Learning.
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Language and RL Tasks Share Compositional Structure 

● “Serve breakfast with plain 
toast and ketchup…”

● Compose existing policies to 
perform tasks with minimal 
training.

● Neural networks struggle to 
generalize compositionally1.

521. Lake, B. M., & Baroni, M. (2018). Generalization without systematicity: On the compositional skills of 
sequence-to-sequence recurrent networks. Proceedings of the 35th International Conference on Machine Learning.



State-Action Value Function

53
1. Nangue Tasse, G., James, S., & Rosman, B. (2020). A Boolean task algebra for reinforcement learning. Advances in Neural Information Processing Systems, 33, 17279–17290.
2. Nangue Tasse, G., James, S., & Rosman, B. (2022, June). World value functions: Knowledge representation for multitask reinforcement learning. Paper presented at the 5th 

Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).

“Go to the top left room.”



State-Action Value Function
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“Go to the top right room.”
1. Nangue Tasse, G., James, S., & Rosman, B. (2020). A Boolean task algebra for reinforcement learning. Advances in Neural Information Processing Systems, 33, 17279–17290.
2. Nangue Tasse, G., James, S., & Rosman, B. (2022, June). World value functions: Knowledge representation for multitask reinforcement learning. Paper presented at the 5th 

Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).



State-Action Value Function

55

“Go to the top right room.”

Learn a new 
value function 
from scratch. 

1. Nangue Tasse, G., James, S., & Rosman, B. (2020). A Boolean task algebra for reinforcement learning. Advances in Neural Information Processing Systems, 33, 17279–17290.
2. Nangue Tasse, G., James, S., & Rosman, B. (2022, June). World value functions: Knowledge representation for multitask reinforcement learning. Paper presented at the 5th 

Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).



World Value Functions (Tasse et al. 2020, 2022)

● Add a goal g to the Q function.
● WVF represents how to achieve 

all goals and their values.
● Learn one WVF for each task in 

the environment we wish to 
compose.
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World Value Functions (Tasse et al. 2020, 2022)

● Add a goal g to the Q function.
● WVF represents how to achieve 

all goals and their values.
● Learn one WVF for each task in 

the environment we wish to 
compose.

● Train by penalizing the agent for 
entering a terminal state for 
another goal.
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1. Nangue Tasse, G., James, S., & Rosman, B. (2020). A Boolean task algebra for reinforcement learning. Advances in Neural Information Processing Systems, 33, 17279–17290.
2. Nangue Tasse, G., James, S., & Rosman, B. (2022, June). World value functions: Knowledge representation for multitask reinforcement learning. Paper presented at the 5th 

Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).



World Value Functions (Tasse et al. 2020, 2022)

58

“Go to a left room.” “Go to a top room.”

“Go to the top left room.”

For AND (conjunction) the composed WVF is given by:

AND

1. Nangue Tasse, G., James, S., & Rosman, B. (2020). A Boolean task algebra for reinforcement learning. Advances in Neural Information Processing Systems, 33, 17279–17290.
2. Nangue Tasse, G., James, S., & Rosman, B. (2022, June). World value functions: Knowledge representation for multitask reinforcement learning. Paper presented at the 5th 

Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).



World Value Functions (Tasse et al. 2020, 2022)
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“Go to a left room.” “Go to a top room.”

“Go to a room on the left or top.”

For OR (disjunction) the composed WVF is given by:

OR

1. Nangue Tasse, G., James, S., & Rosman, B. (2020). A Boolean task algebra for reinforcement learning. Advances in Neural Information Processing Systems, 33, 17279–17290.
2. Nangue Tasse, G., James, S., & Rosman, B. (2022, June). World value functions: Knowledge representation for multitask reinforcement learning. Paper presented at the 5th 

Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).



World Value Functions (WVF) (Tasse et al. 2020, 2022)

Composing WVFs

● Arbitrary expressions of AND, OR, and NOT.
● Can now solve a combinatorial number of goal reaching tasks

60



BabyAI (Chevalier-Boisvert et al. 2019)

● Gridworld domain consisting of language 
instruction tasks.
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BabyAI (Chevalier-Boisvert et al. 2019)

● Gridworld domain consisting of language 
instruction tasks.

“Pick up a red object” ∧ “Pick up a key”

¬“Pick up a blue object” ∨ “Pick up a ball”
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BabyAI (Chevalier-Boisvert et al. 2019)

● Gridworld domain consisting of language 
instruction tasks.

“Pick up a red object” ∧ “Pick up a key”

¬“Pick up a blue object” ∨ “Pick up a ball”

● Modified task set to include 162 goal 
reaching tasks that can be solved 
through AND, OR, and NOT expressions 
over object attributes.
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Compositionally-Enabled RL and Language Agent (CERLLA)

• How can we use compositionality of language + 
value functions to generalize better?

• Must learn mapping from natural language to WVF 
composition.

• Idea: Use language models to translate instruction 
into formal language / boolean symbols (e.g. 
semantic parsing).
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Compositionally-Enabled RL and Language Agent (CERLLA)

• But these symbols are arbitrary (just an index 
over WVFs) - how do we know translation is 
correct?
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Compositionally-Enabled RL and Language Agent (CERLLA)

• But these symbols are arbitrary (just an index 
over WVFs) - how do we know translation is 
correct?

• Idea: Use environment feedback to learn the 
translation!
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Compositionally-Enabled RL and Language Agent (CERLLA)

Core challenge: CERLLA learns to parse input commands to arbitrary symbols 
representing WVFs with unknown semantics, using environment rollouts, a much 
noisier form of supervision than is typical for weakly supervised parsing methods.
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Compositionally-Enabled RL and Language Agent (CERLLA)

70

“Pick up the red ball” WVF_1 AND WVF_8
Reward: Agent picked 

up a red ball?



Compositionally-Enabled RL and Language Agent (CERLLA)
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Compositionally-Enabled RL and Language Agent (CERLLA)
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Compositionally-Enabled RL and Language Agent (CERLLA)
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Compositionally-Enabled RL and Language Agent (CERLLA)
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Compositionally-Enabled RL and Language Agent (CERLLA)
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Compositionally-Enabled RL and Language Agent (CERLLA)
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Experiments
• 162 tasks, learned simultaneously from vision and language.
• Evaluate sample efficiency, and generalization, comparing:

– CERLLA (Ours): using OpenAI’s GPT-4 LM
• CERLLA GPT-3.5

– Two non-compositional baseline DQNs
• Baseline: RNN + CNN

• LM Baseline: pretrained sentence embedding language model + CNN

– Oracle Agent with access to the ground-truth compositional 
expressions for each task.
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Experiments
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Sample Efficiency
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Generalization
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Conclusion
• Introduces CERLLA, a novel semantic parsing 

method based on in-context learning that learns 
from environment feedback.

• Simultaneously learns and solves a large collection 
of 162 compositional vision-language-RL tasks.

• Outperforms non-compositional baselines with 
respect to sample efficiency and generalization to 
held-out tasks.
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Conclusion
• Introduces CERLLA, a novel semantic parsing 
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CaT-Bench: Benchmarking Language 
Model Understanding of Causal and 

Temporal Dependencies in Plans
Yash Kumar Lal*, Vanya Cohen*, Nathanael Chambers, 

Niranjan Balasubramanian, Raymond Mooney

Empirical Methods in Natural Language Processing 2024 87



LLMs Generate Fluent Plans

But can they reason about preconditions in plans?

88



Plans Contain Dependencies
Goal: Bake Almond and 

Chocolate Cake

…
Step 6: Add in ground almonds.
Step 7: Add half flour and half milk.
Step 8: Use wooden spoon to stir.
…
Step 12: Whip cream till stiff peaks
…

89



Plans Contain Dependencies
Goal: Bake Almond and 

Chocolate Cake

…
Step 6: Add in ground almonds.
Step 7: Add half flour and half milk.
Step 8: Use wooden spoon to stir.
…
Step 12: Whip cream till stiff peaks
…

Dependent
Steps
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Goal: Bake Almond and 
Chocolate Cake

…
Step 6: Add in ground almonds.
Step 7: Add half flour and half milk.
Step 8: Use wooden spoon to stir.
…
Step 12: Whip cream till stiff peaks
…

Q: Must Step 6 happen 
before Step 8?

Questions about 
dependent steps

A: Yes, all ingredients have 
to be in bowl before stirring

Preconditions

91



Goal: Bake Almond and 
Chocolate Cake

…
Step 6: Add in ground almonds.
Step 7: Add half flour and half milk.
Step 8: Use wooden spoon to stir.
…
Step 12: Whip cream till stiff peaks
…

Q: Must Step 7 happen 
after Step 6?

Questions about 
non-dependent steps

A: No, almonds can be 
added after flour and milk

Parallel Steps

Q: Must Step 6 happen 
before Step 8?

Questions about 
dependent steps

A: Yes, all ingredients have 
to be in bowl before stirring

Preconditions

92



Creating 😺 CaT-Bench
Goal: Bake Almond and 

Chocolate Cake

…
Step 6: Add in ground almonds.
Step 7: Add half flour and half milk.
Step 8: Use wooden spoon to stir.
…
Step 12: Whip cream till stiff peaks
…

Recipe Flow Graph Corpus (Yamakata et al. 2020)
93



Goal: Bake Almond and 
Chocolate Cake

…
Step 6: Add in ground almonds.
Step 7: Add half flour and half milk.
Step 8: Use wooden spoon to stir.
…
Step 12: Whip cream till stiff peaks
…

6

8

7 11

12

15

Recipe Flow Graph Corpus (Yamakata et al. 2020)

Creating 😺 CaT-Bench

94



Q: Must Step 6 happen 
before Step 8?

Questions about 
dependent steps

Q: Must Step 8 happen 
after Step 6?

Q: Must Step 12 happen 
after Step 6?

Questions about 
non-dependent steps

Q: Must Step 6 happen 
before Step 12?

710

710

1420

710

710

1420

Creating 😺 CaT-Bench
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Benchmarking Models
• GPT-3.5
• GPT-4-Turbo
• GPT-4o
• Llama-3-8B
• Claude-3.5-Sonnet
• Gemini-1.0-Pro
• Gemini-1.5-Pro
• Gemini-1.5-Flash

96



Experiments - Answer Only (A)
• Binary Prediction

97



Models Struggle at Predicting Step Order
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Creating 😺 CaT-Bench
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Experiments - Answer + Explanation (A+E)
• Binary Prediction and Post-hoc Explanation

100



Generating Explanations Helps!
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Generating Explanations Helps!

102



Generating Explanations Helps!
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Chain-of-Thought
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Post-Hoc Explanation Beats Chain-of-Thought

105



Models are Biased Towards Dependence

106



Goal: Bake Almond and 
Chocolate Cake

…
Step 6: Add in ground almonds.
Step 7: Add half flour and half milk.
Step 8: Use wooden spoon to stir.
…
Step 12: Whip cream till stiff peaks
…

Q: Must Step 6 happen 
before Step 8?

Q: Must Step 8 happen 
after Step 6?

Before

After

The model answer to the ‘before’ and ‘after’ questions should be the same.

Robustness: Temporal Consistency

107



How Robust are Models?
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How Robust are Models?

109



● We introduce an easy-to-evaluate plan based reasoning benchmark.

● SOTA LLMs struggle with this simple task but post-hoc explanations 
help.

● Models are inconsistent and biased towards predicting step 
dependence.

Conclusion

110



A Survey of Robotic Language Grounding: Tradeoffs Between Symbols and Embeddings
(IJCAI 2024: Survey Track)
Vanya Cohen*, Jason Xinyu Liu*, Raymond Mooney*, Stefanie Tellex*, David Watkins*
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– Long-Term Proposals
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MET-Bench: Multimodal Entity Tracking 
for Evaluating the Limitations of 

Vision-Language and Reasoning Models

Vanya Cohen and Raymond Mooney

ICML 2025: Workshop on Assessing World Models 113



• Agents need to track the state of the world in 
text and visual modalities.
– Entity state tracking evaluated extensively in text 

tasks1.

114

Motivation

1. Shubham Toshniwal, Sam Wiseman, Karen Livescu, and Kevin Gimpel. Chess as a Testbed for Language Model State Tracking. In Proceedings of the AAAI 2022

Najoung Kim and Sebastian Schuste.. Entity Tracking in Language Models. ACL 2023

Erwan Fagnou, Paul Caillon, Blaise Delattre, and Alexandre Allauzen. Chain and Causal Attention for Efficient Entity Tracking. EMNLP 2024
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Entity State Tracking

Example: Shell Game

• Ball placed under one of three shells.
• Series of swaps change the hidden ball 

position.
• Predict the final position of the ball.
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Example: Text Shell Game

Ball Position: 2

1 2 3
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Example: Text Shell Game

Swap 1, 2

Swap 2, 3

Swap 1, 3
1 2 3
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Example: Text Shell Game

Q: Final State?

1 2 3
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Example: Text Shell Game

Q: Final State?

A: 3

1 2 3
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Example: Multimodal Shell Game

Text Input:

Ball Position: 2
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Example: Multimodal Shell Game

Text Input:

Ball Position: 2

Model receives 
a text 
description of 
the initial state
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Example: Multimodal Shell Game Model receives 
an image 
depiction of 
the action

1 2 3
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Example: Multimodal Shell Game Model receives 
an image 
depiction of 
the action

1 2 3
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Example: Multimodal Shell Game

Q: Final State?

1 2 3
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Example: Multimodal Shell Game

Q: Final State?

A: 3

1 2 3
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Example: Multimodal Chess

Text Input:
Forsyth–Edwards Notation (FEN)

"rnbqkbnr/pppppppp/8/8/8/8/
PPPPPPPP/RNBQKBNR w KQkq - 
0 1"
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Example: Multimodal Chess

Universal Chess Interface Notation

e2e4

“The piece at e2 moves to e4.”
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Example: Multimodal Shell Game

Q: Final State?
A: 
rnbqkbnr/pppppppp/8/8/4P
3/8/PPPP1PPP/RNBQKBNR b 
KQkq e3 0 1



129

MET-Bench: Multimodal Entity State Tracking



Shell Game: Reasoning
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Chess: Reasoning

131



Image Action Perception

132

Q: In UCI notation what move does the 

arrow on the chessboard represent? 

The move is from the green square to 

the red square. (e.g., 'g2f3').

Q: Which shells are being swapped in the image? 

Shells are labeled '1', '2', '3' and the shells being 

swapped have their numbers highlighted in green. 

Only output a move in the format 'X swap Y' and 

nothing else.

1 2 3



Image Action Perception
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Image Action Perception
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Cascaded Inference
Image Actions → Text Actions → State Prediction
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Cascaded Inference
Image Actions → Text Actions → State Prediction
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Discussion
• Models perceive the image depictions of 

actions, but cannot track entity state.
• Reasoning models perform better, especially 

for long-context and tracking from images.
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Limitations
• Synthetic tasks; strategy games.
• Current challenges are in real-world and 

embodied domains.
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Short-Term Proposal
• Expand MET-Bench to embodied tasks.
• Human annotation of entity tracking 

reasoning traces.
– Evaluate reasoning + collect correct 

reasoning examples
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Short-Term Proposal
Minecraft:

– Challenging benchmark for planning and 
acting with frontier models1.

– Semantically rich, varied tasks.
– Accessible world state.

1. Voyager (Wang et al. 2024); Dreamer 4 (Hafner et al. 2025) 141



Perception
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Perception
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World Modeling (State Tracking)
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Reasoning

145



Reasoning
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Reasoning
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Reasoning
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Reasoning
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Reasoning
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Reasoning
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Long-Term Proposals
• CaT-Bench and MET-Bench

– Reasoning models perform best at these tasks.

• CoT traces show brittle reasoning.
– CaT-Bench CoT underperforms.
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Long-Term Proposals
• RL to improve improve MET-Bench and 

CaT-Bench-type task reasoning.
– Utilize human-annotated reasoning traces to 

bootstrap learning.
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Long-Term Proposals
Reward Signal



Long-Term Proposals
• Test action reasoning as an auxiliary RL task 

for improving agentic instruction following.
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Environment

Observations 
and Feedback

Actions

Language Task 
Description 

(Goal)

Produce valid actions to accomplish a task 
specified in natural language.

Auxiliary Action-Reasoning Training with RL

Preconditions
CaT-Bench

Postconditions
CaT-Bench
MET-Bench

Goal-Action
Home robotics, 
embodied 
simulation.
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Proposed Timeline
Nov - Dec:

• Collect embodied task dataset in Minecraft.

Jan - Feb:

• Human evaluation of MET-Bench model reasoning traces.
• Collect human ground-truth reasoning traces.

March:

• Initial results:
– Evaluate finetuning on reasoning traces.
– RL training for improving reasoning for MET-Bench tasks.

Defense in mid April. 157



Questions and Discussion
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