Learning a Part-of-Speech Tagger from Two Hours of Annotation

Dan Garrette and Jason Baldridge

University of Texas at Austin

Low-Resource Languages

6,900 languages in the world

~30 have non-negligible quantities of data

No million-word corpus for any endangered language

Low-Resource Languages

Kinyarwanda

Niger-Congo; morphologically-rich

Malagasy

Austronesian; spoken in Madagascar

Also, English

Low-Resource Languages

Supervised training is not an option.

We do semi-supervised training.

Annotate some data by hand

... cheaply

... like, in 2 hours

Semi-Supervised Training

HMM with Expectation-Maximization (EM)

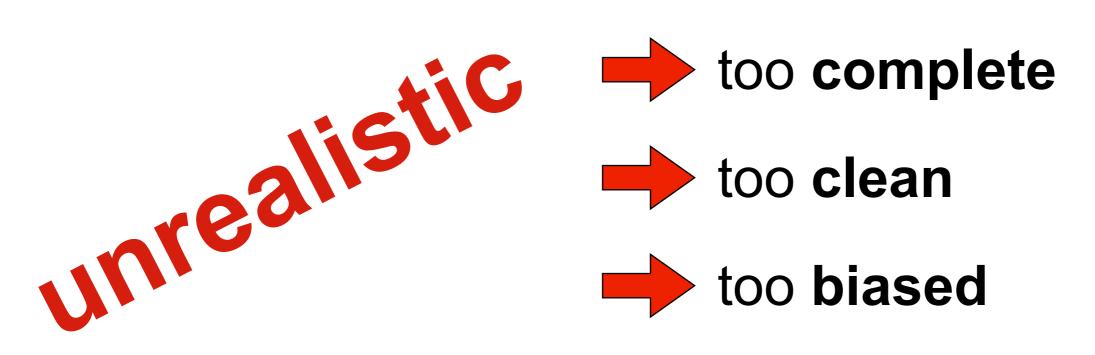
Need:

[Kupiec, 1992] [Merialdo, 1994]

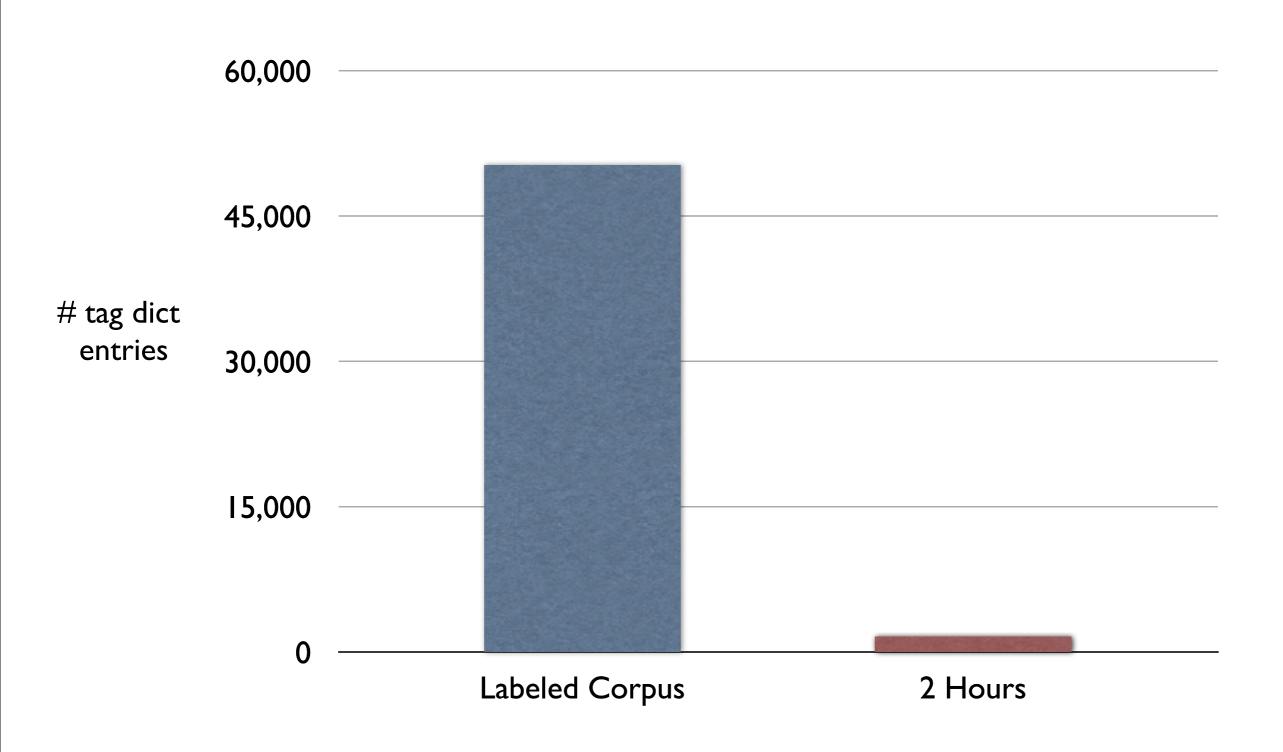
Tag Dictionary

Most previous work:

Extract from a large labeled corpus



A Real Tag Dictionary

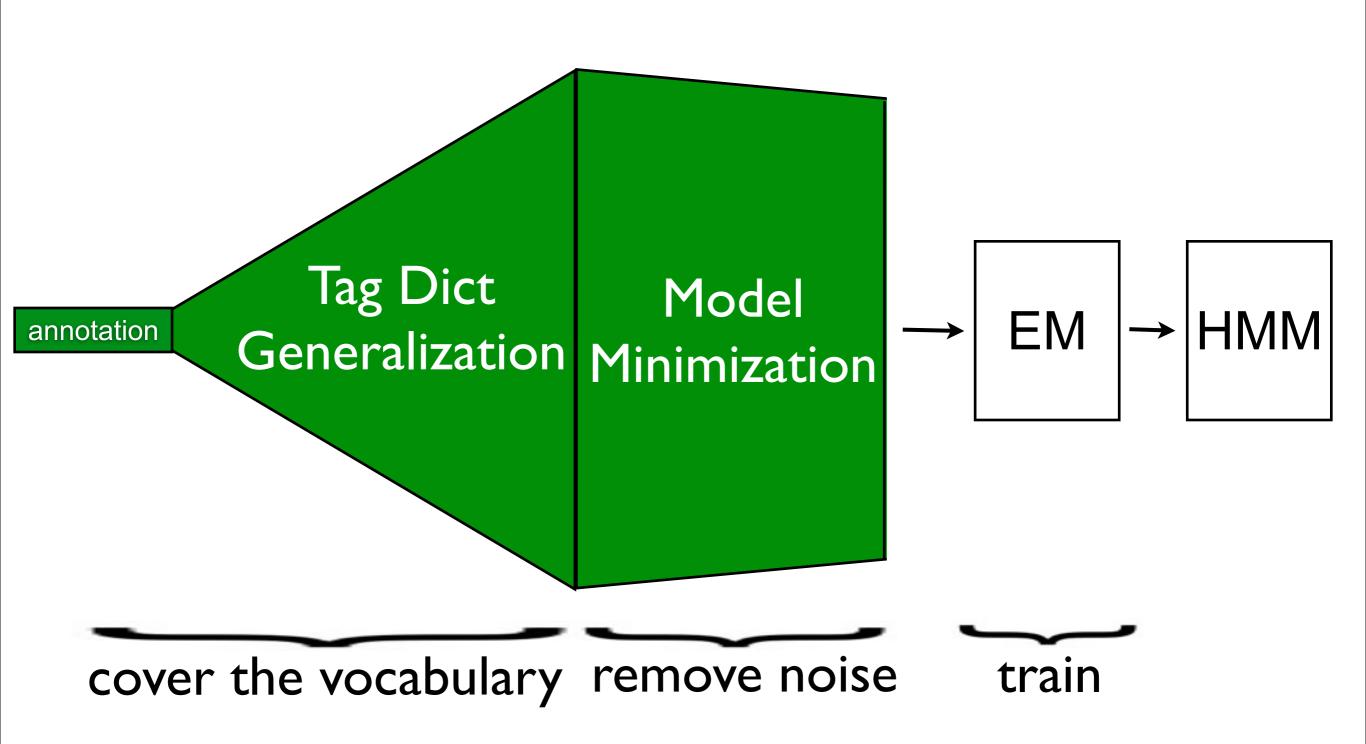


A Real Tag Dictionary

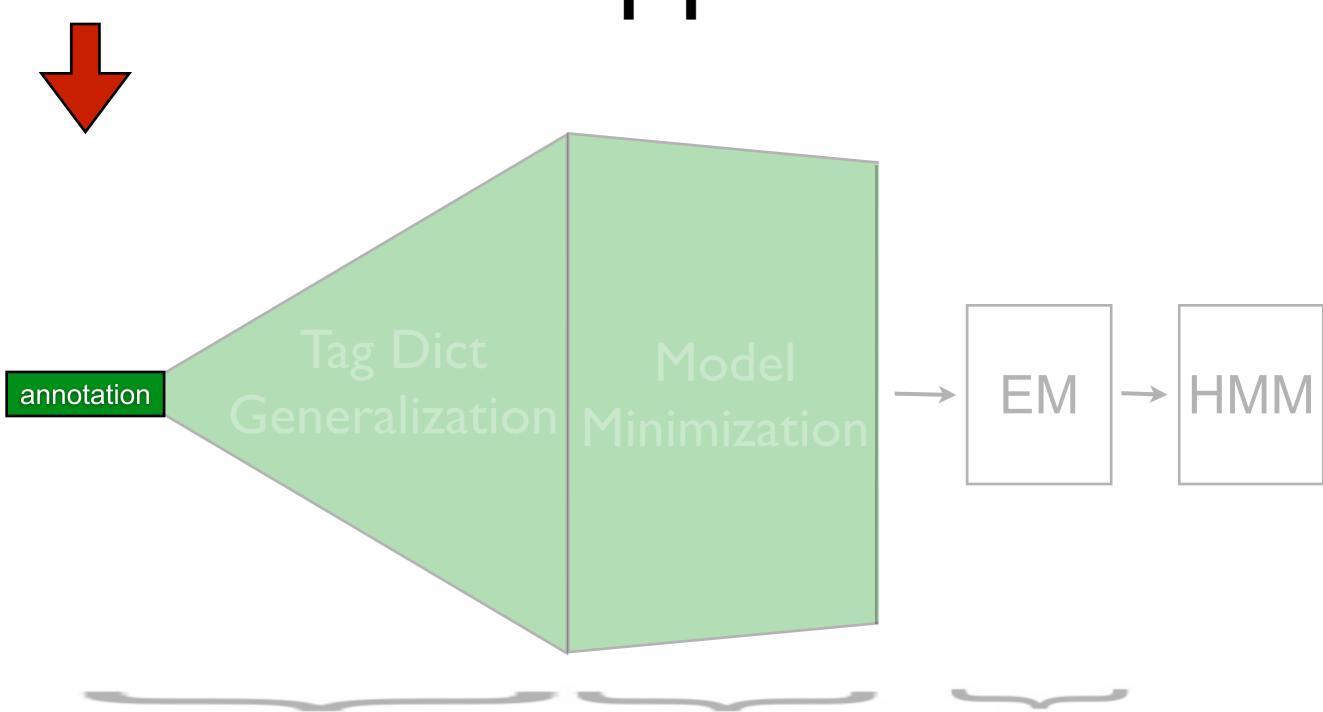
Extremely low coverage means most words are unknown

⇒ Bad for EM (poorly constrained)

Our Approach



Our Approach

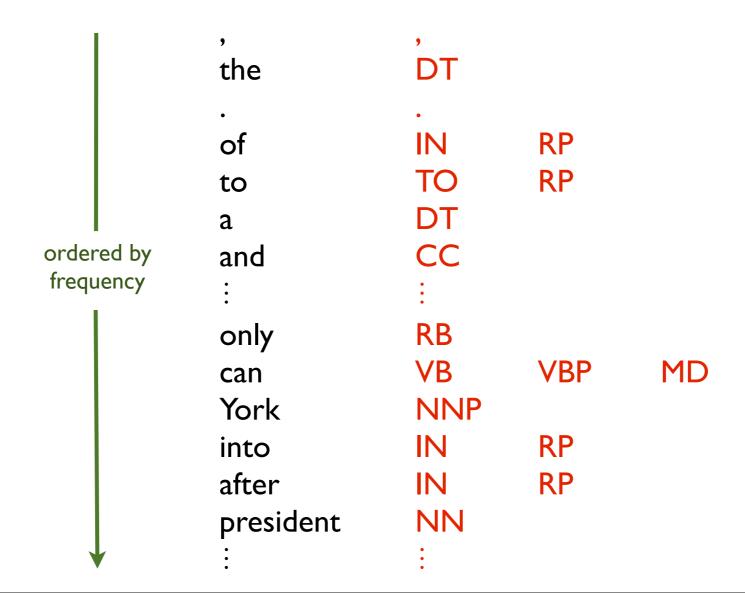


cover the vocabulary remove noise

train

Collecting Annotations

Task #1 -- 2 hours to create a tag dictionary



Collecting Annotations

Task #2 -- 2 hours to annotate full sentences

```
Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 . NNP NNP , CD NNS JJ , MD VB DT NN IN DT JJ NN NNP CD .

Mr. Vinken is chairman of Elsevier N.V. , the Dutch publishing group . NNP NNP VB NN IN NNP NNP, DT JJ JJ NN .
```

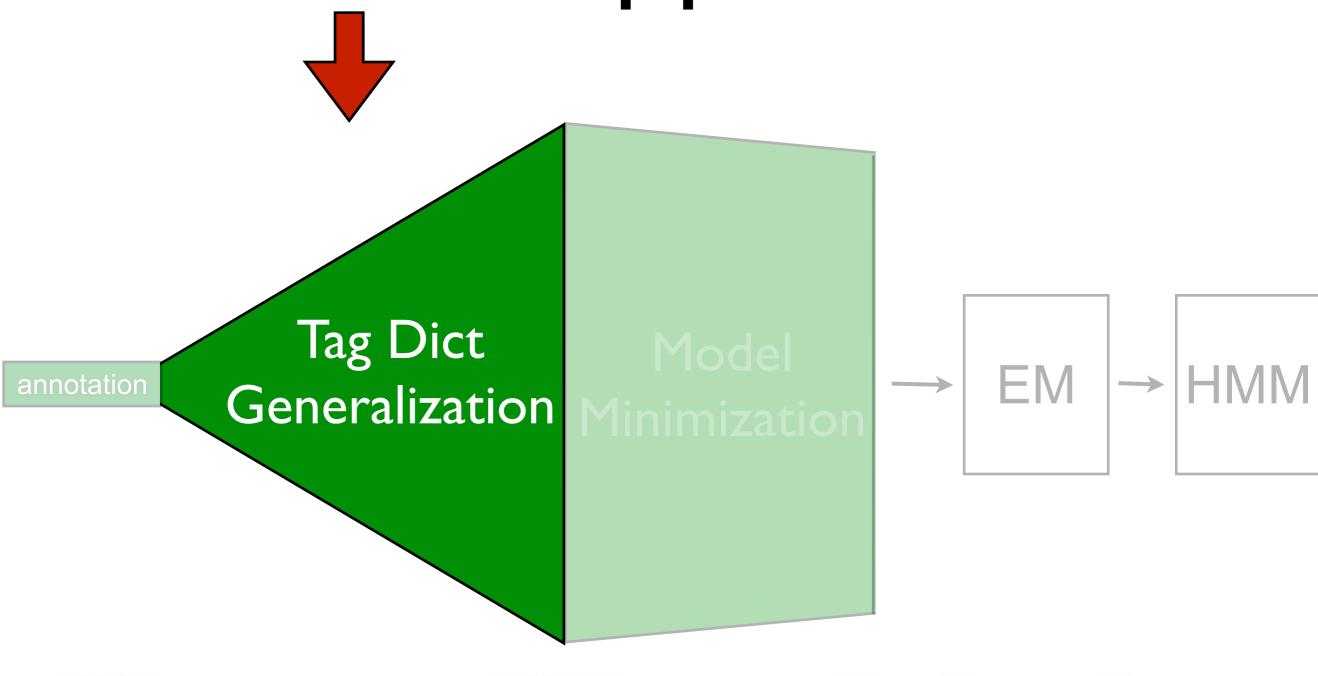
Collecting Annotations

In 2 hours:

	# sent	# tok	# TD entries
Full Sentences	90	1537	750
Tag Dict			1798

(for Kinyarwanda)

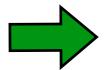
Our Approach



cover the vocabulary remove noise

train

These annotations are too sparse!



Generalize to the entire vocabulary

Haghighi and Klein (2006) do this with a vector space.

We don't have enough raw data

Das and Petrov (2011) do this with a parallel corpus.

We don't have a parallel corpus

Our strategy: Label Propagation

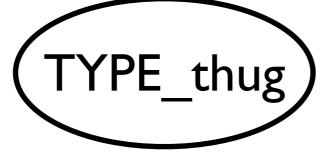
Connect annotations to raw corpus tokens

Push tag labels to entire corpus

Annotations

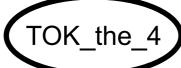
Raw Corpus

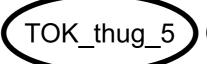
TYPE_the



TYPE_dog

the₄ thug₅ walks₆



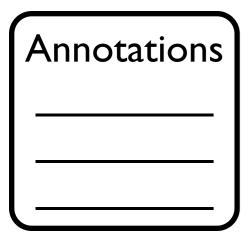



```
Raw Corpus
```

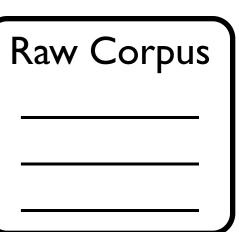
TYPE_the

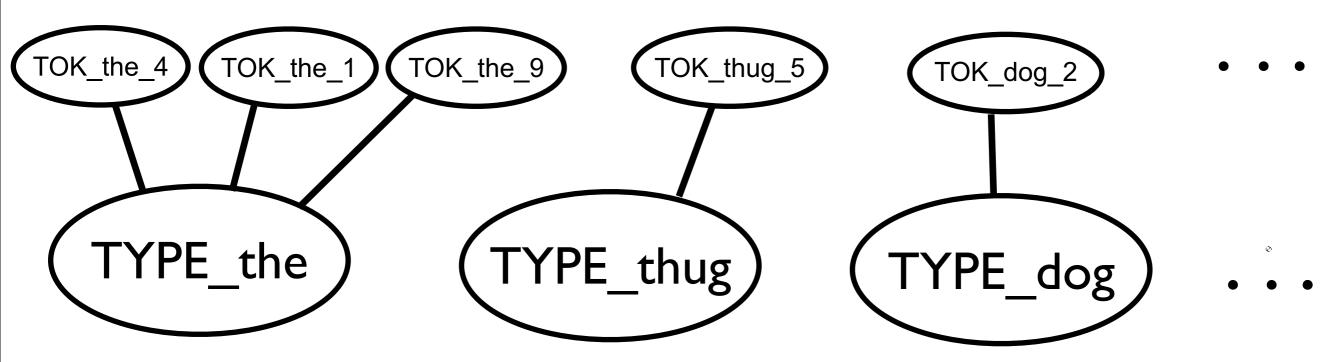
TYPE_thug

TYPE_dog



the₄ thug₅ walks₆



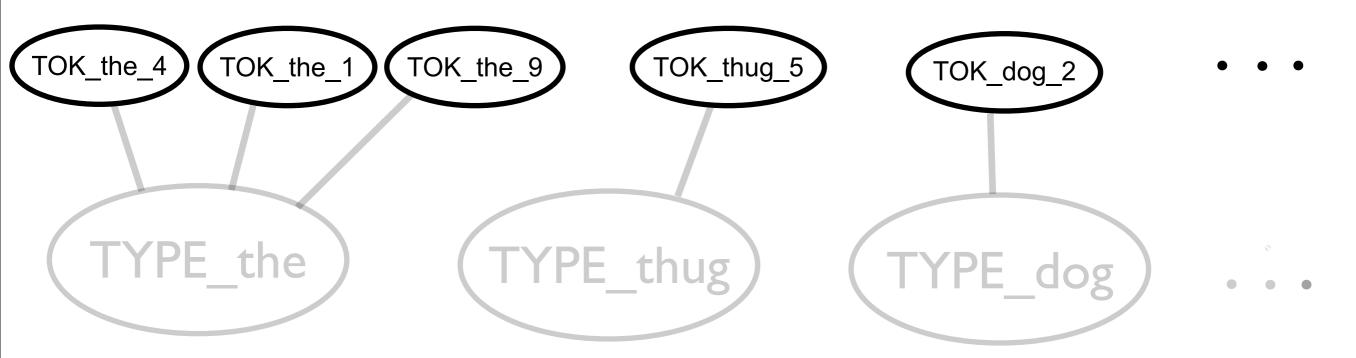


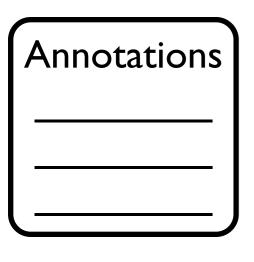
the₄ thug₅ walks₆

PREV_the

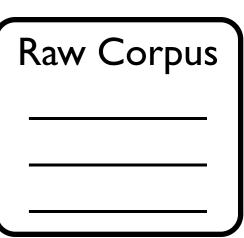
PREV_thug

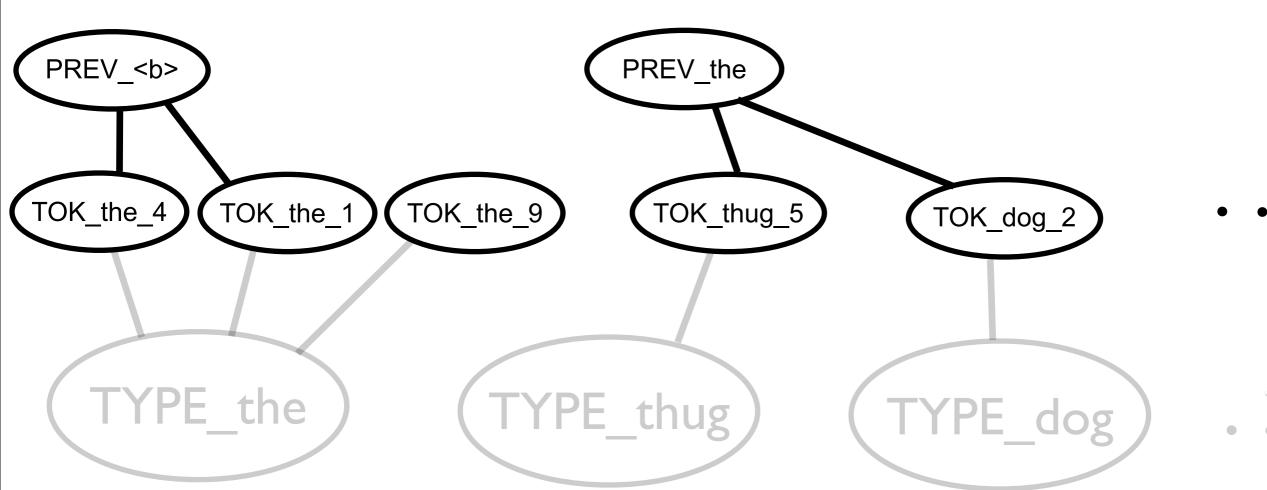
```
Raw Corpus
```

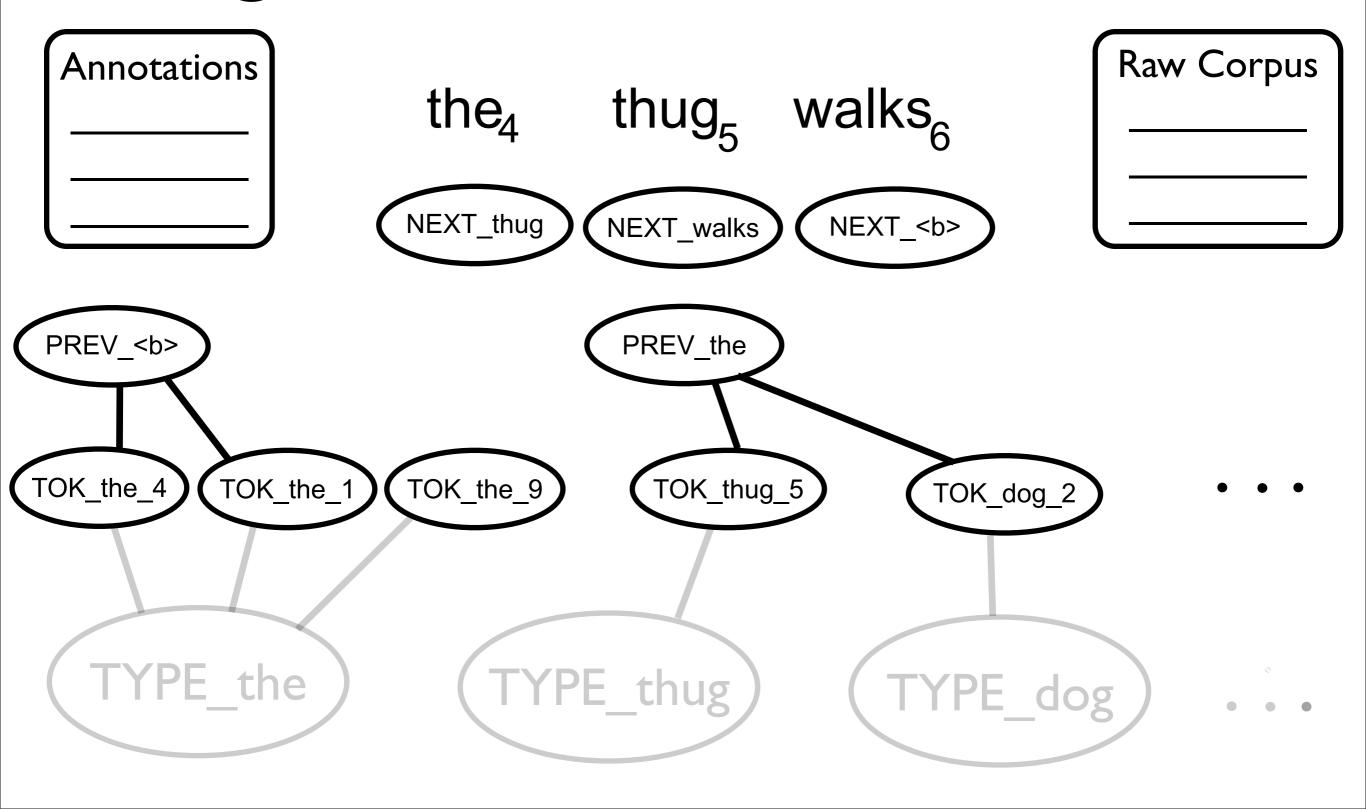




the₄ thug₅ walks₆



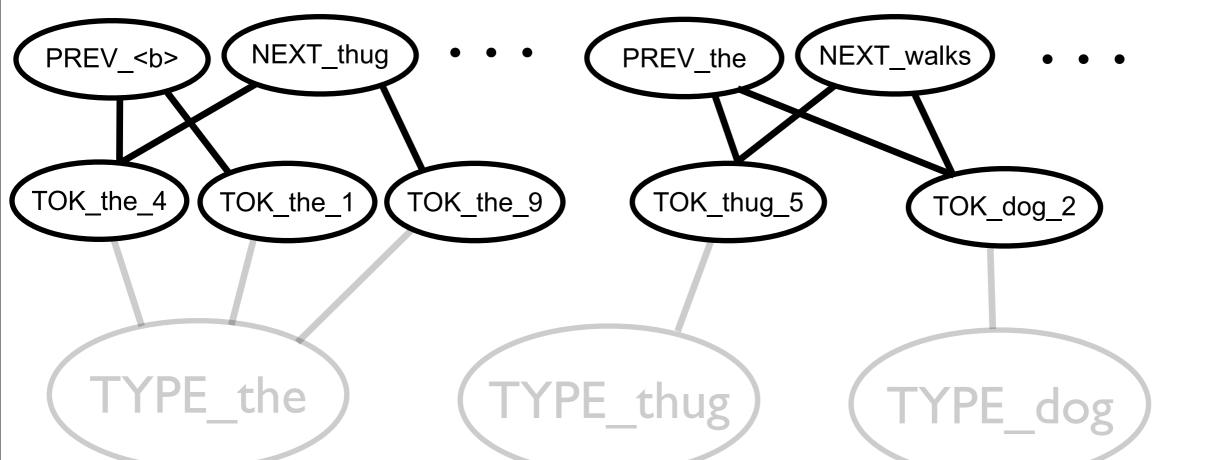


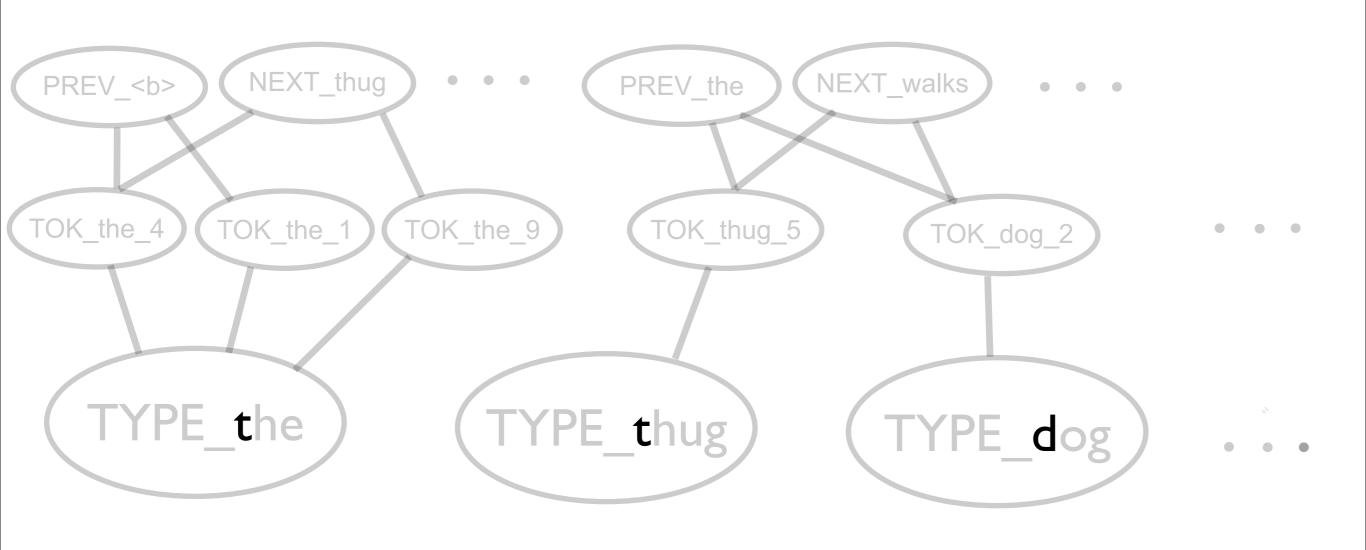


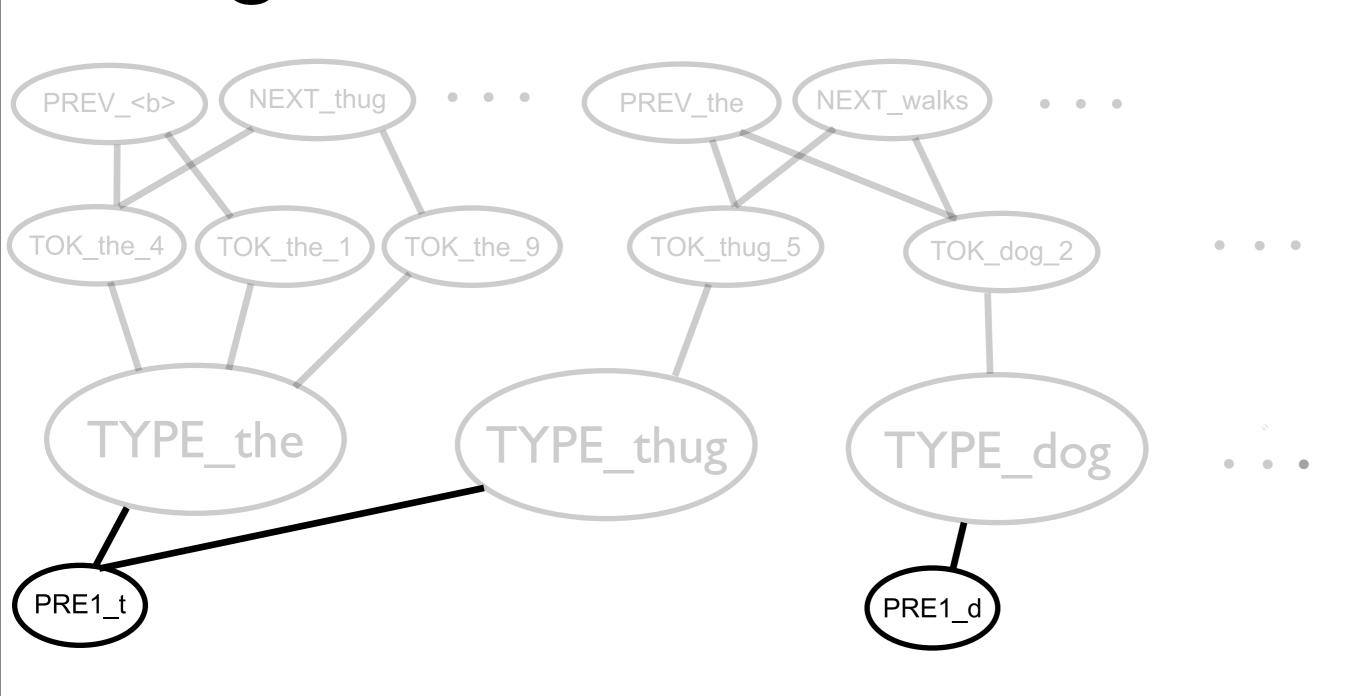
Annotations

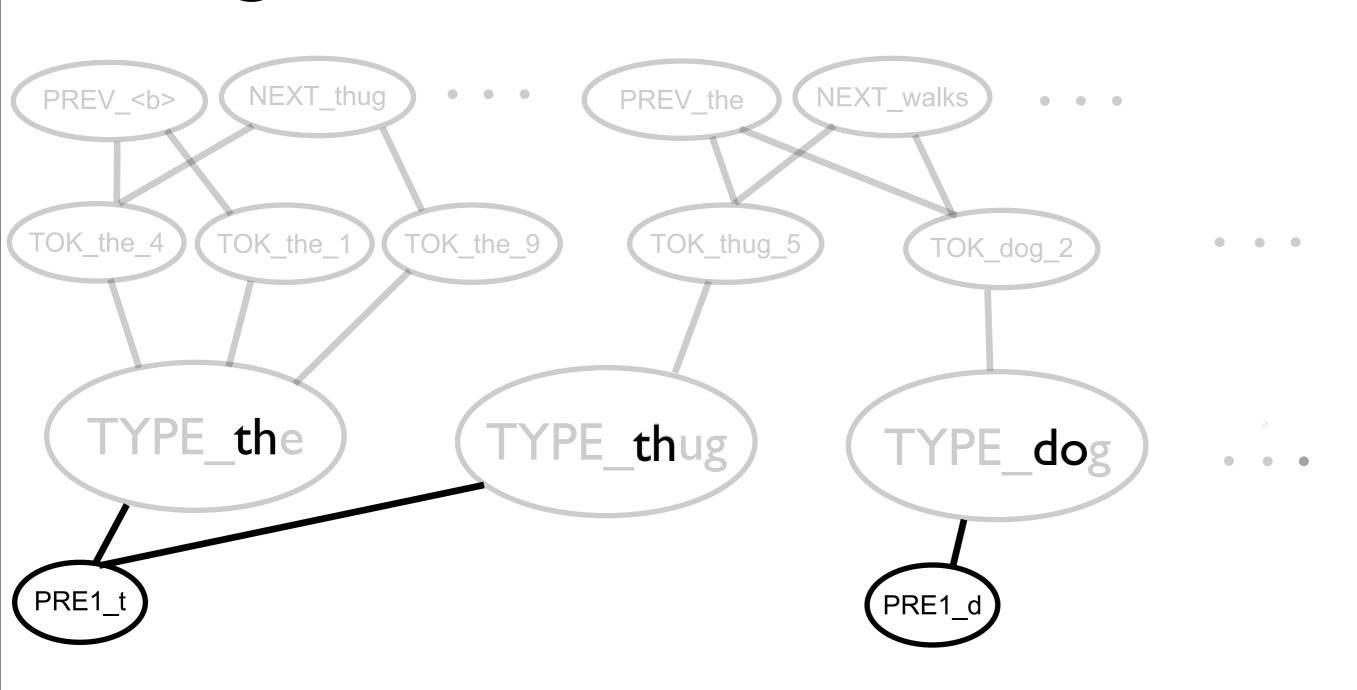
the₄ thug₅ walks₆

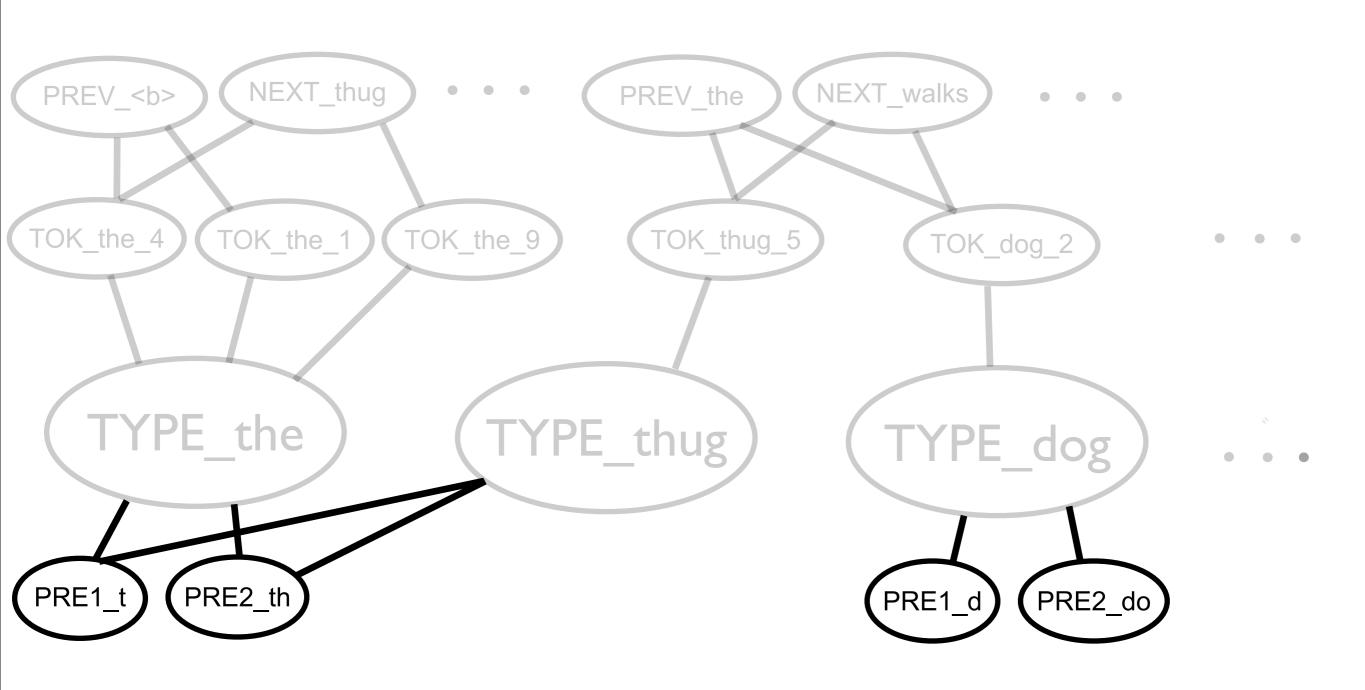
Raw Corpus

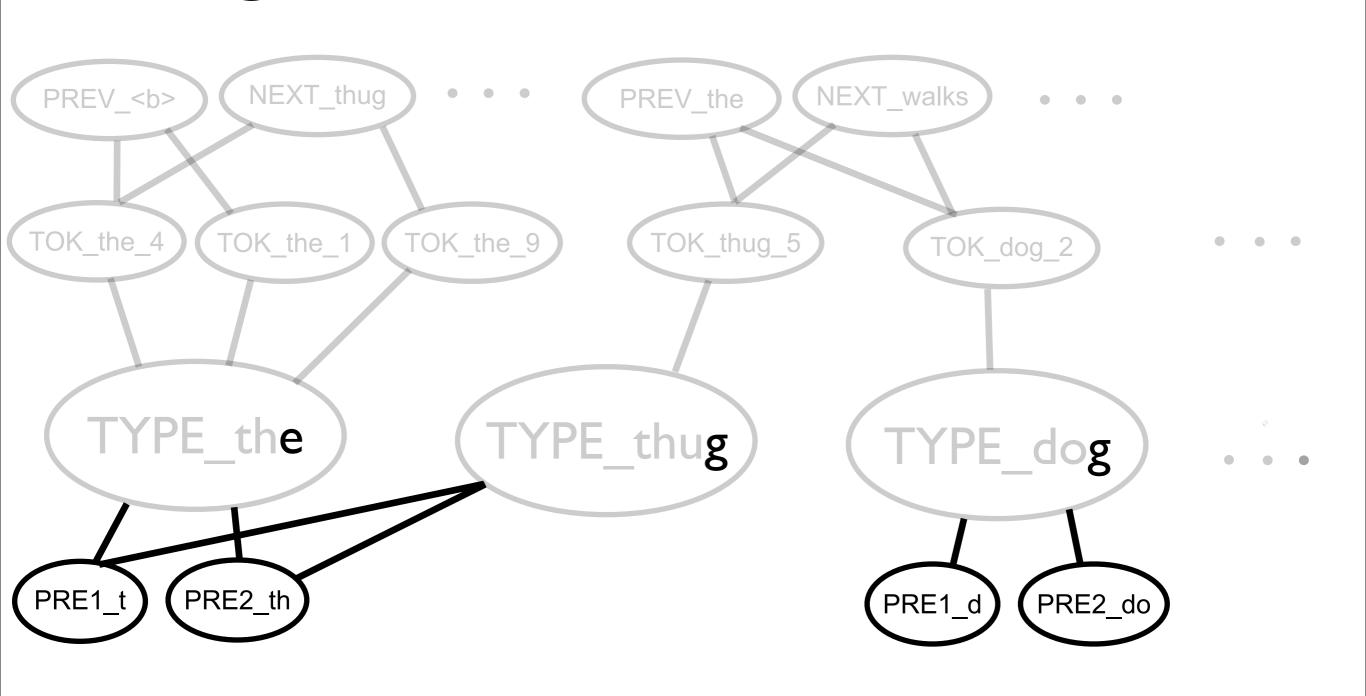


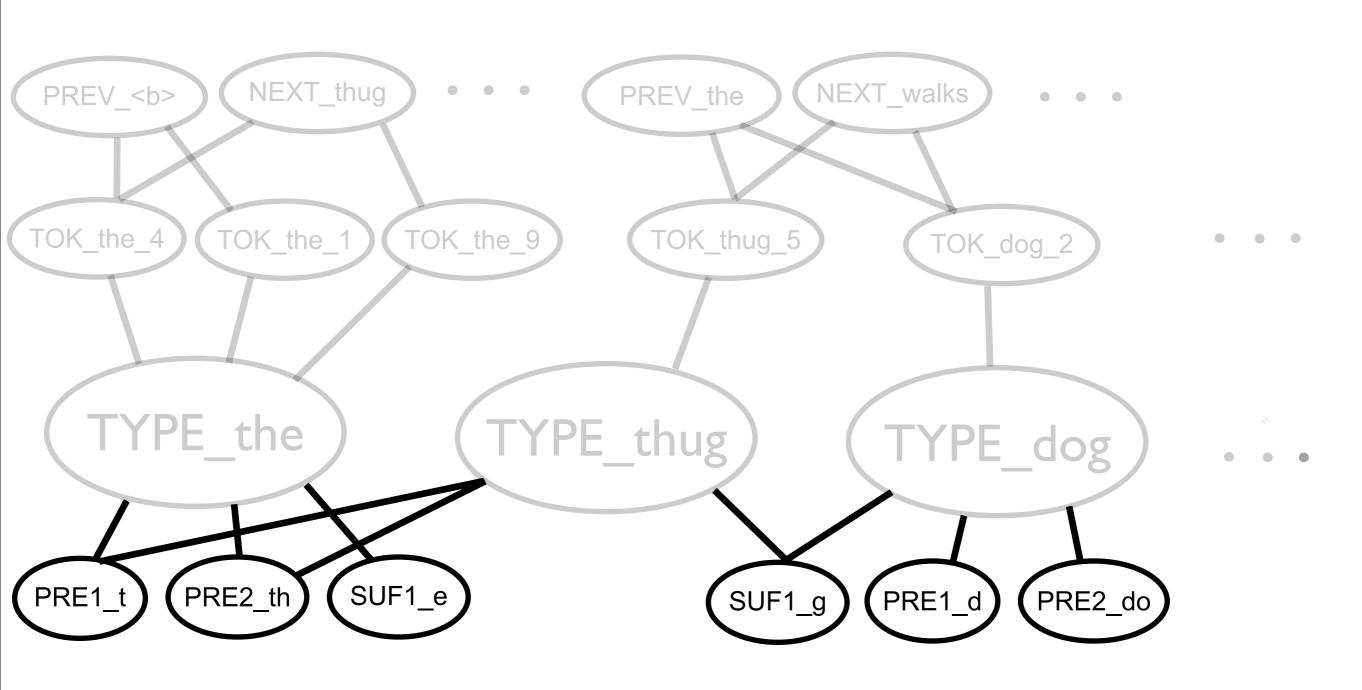


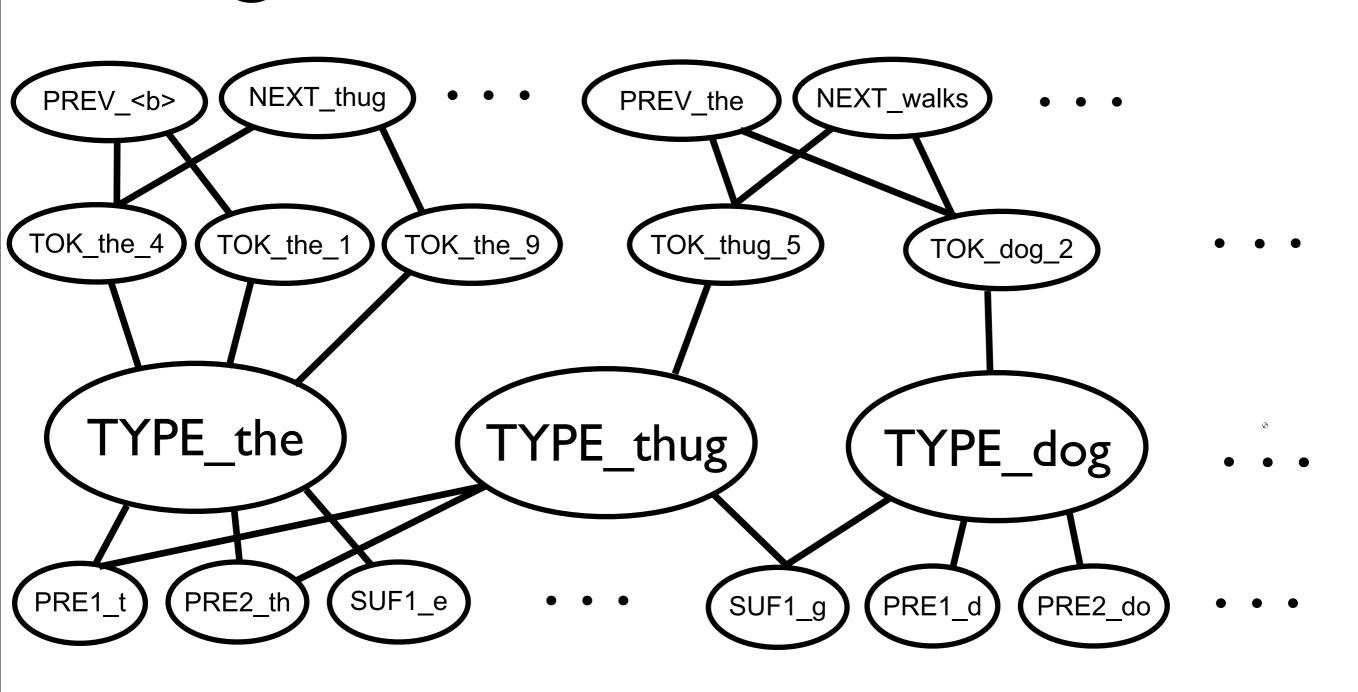


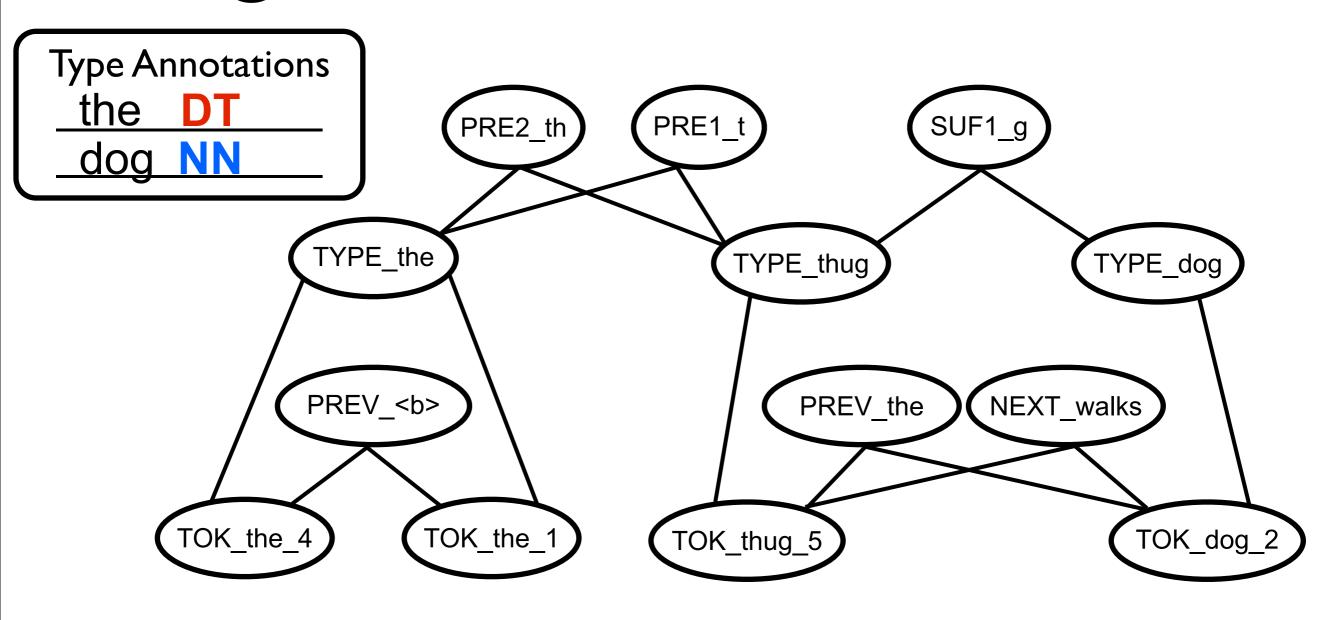


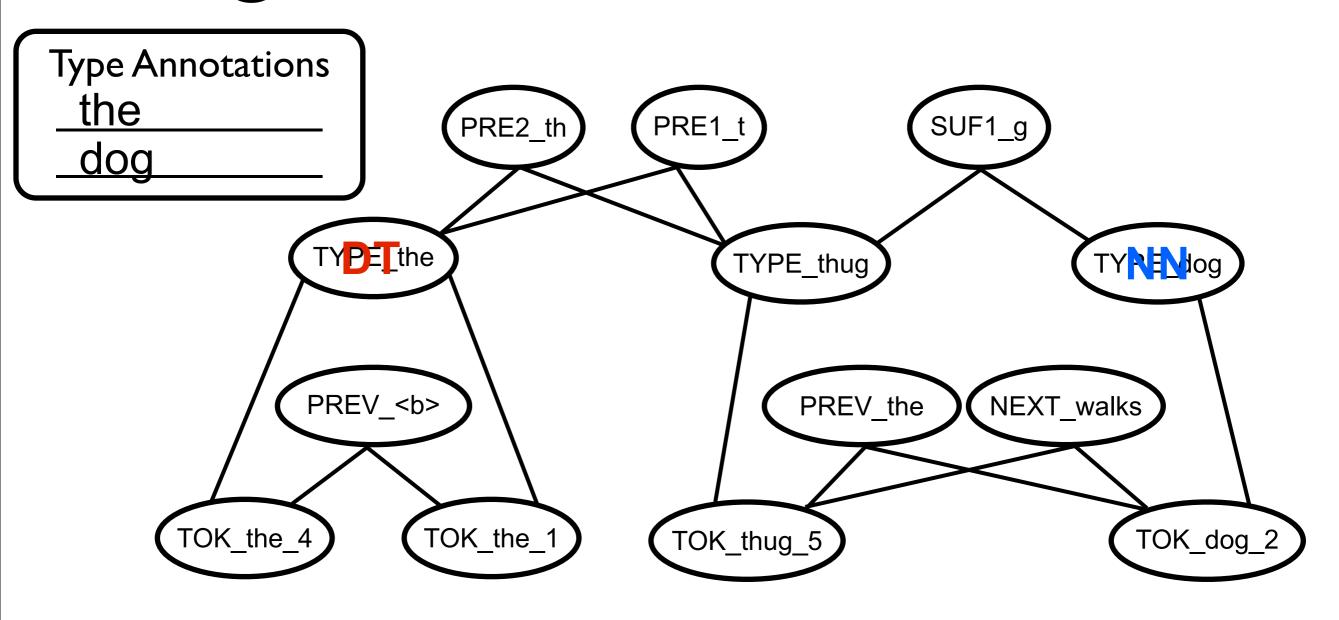


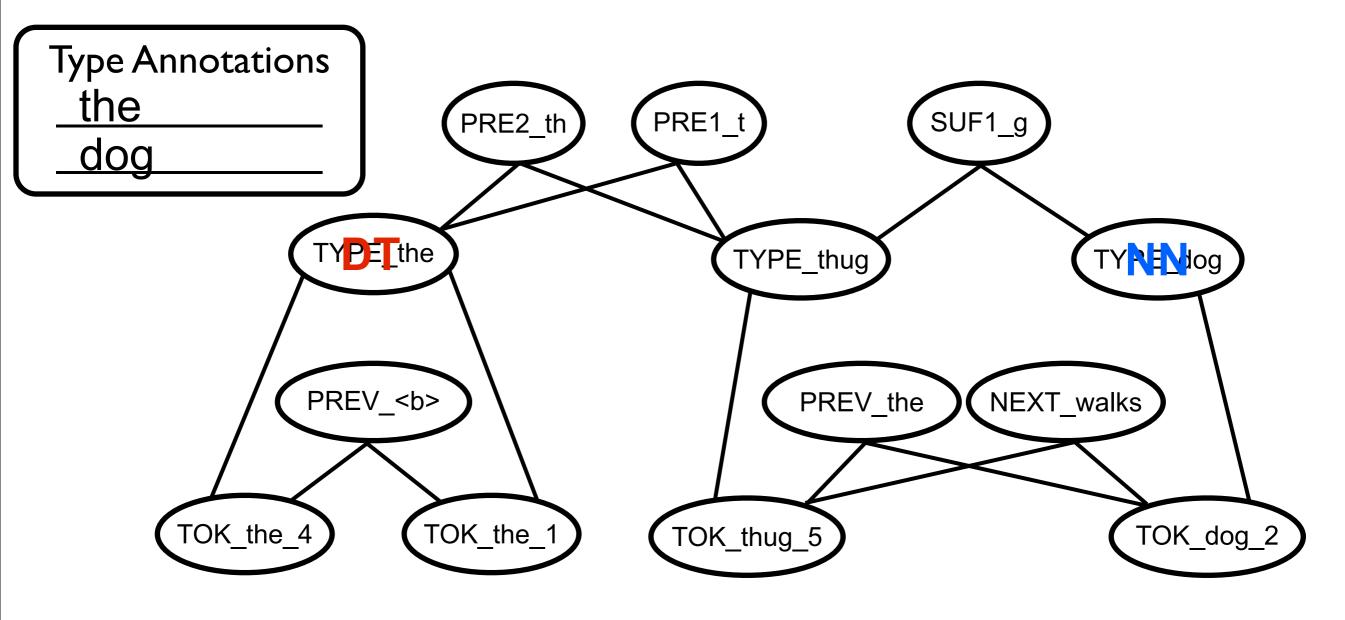




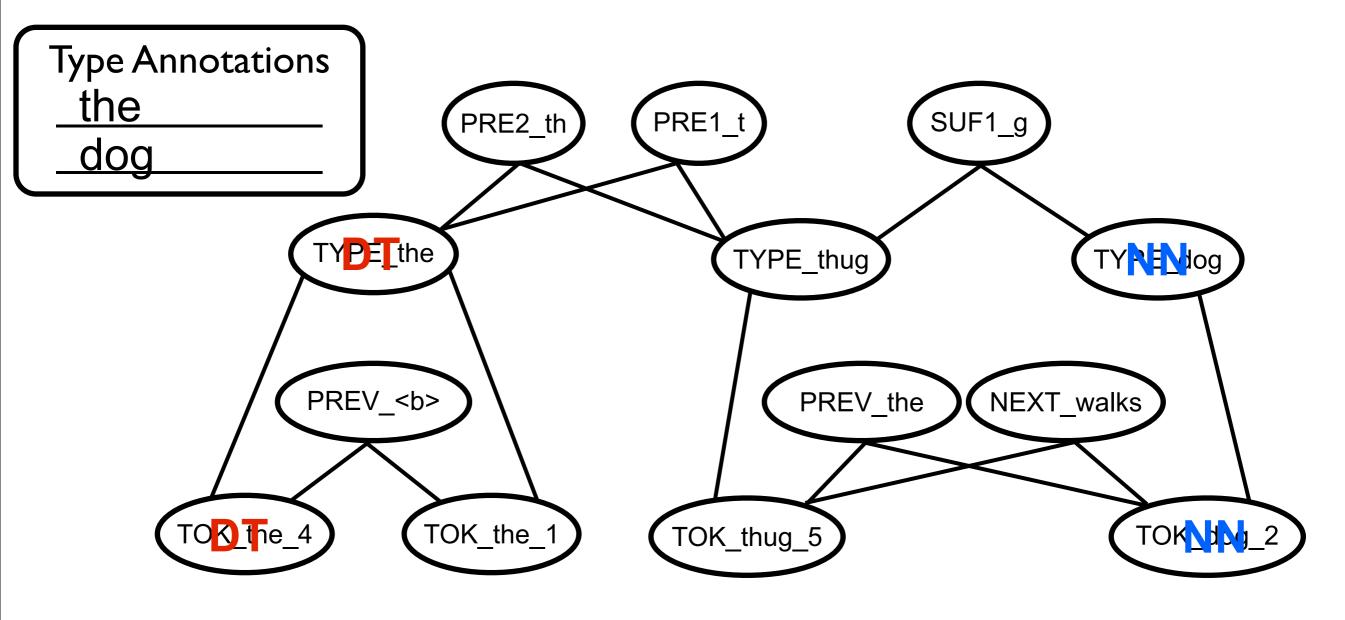




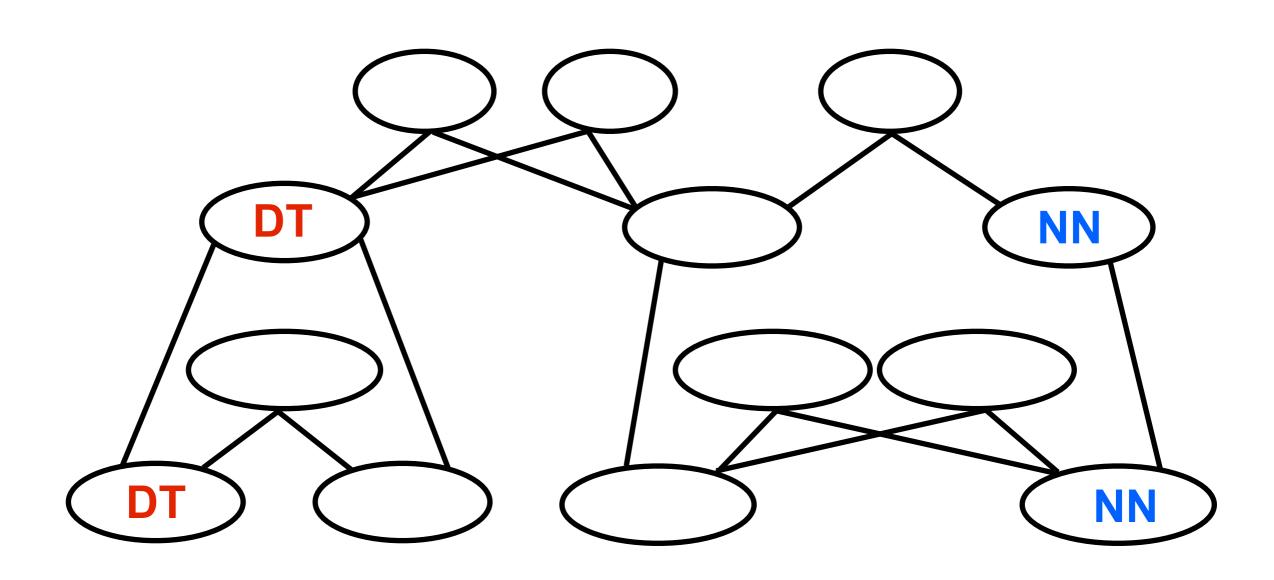


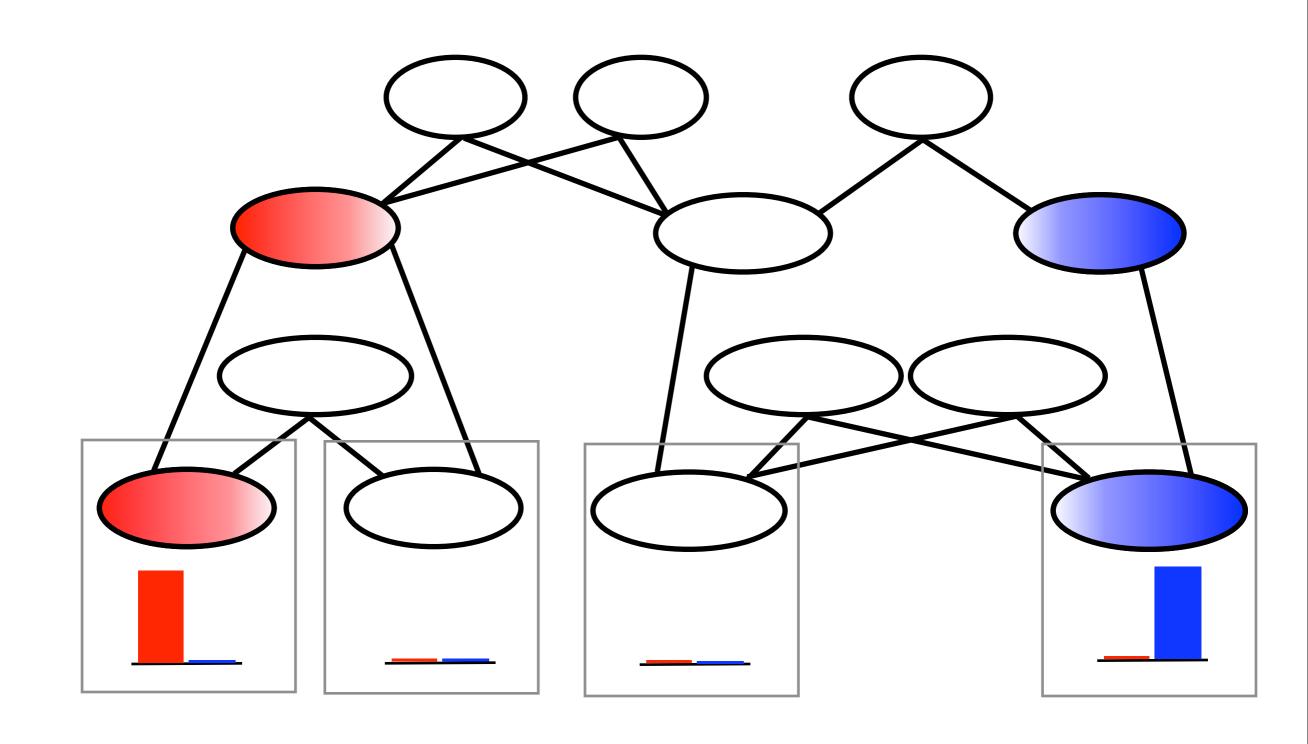


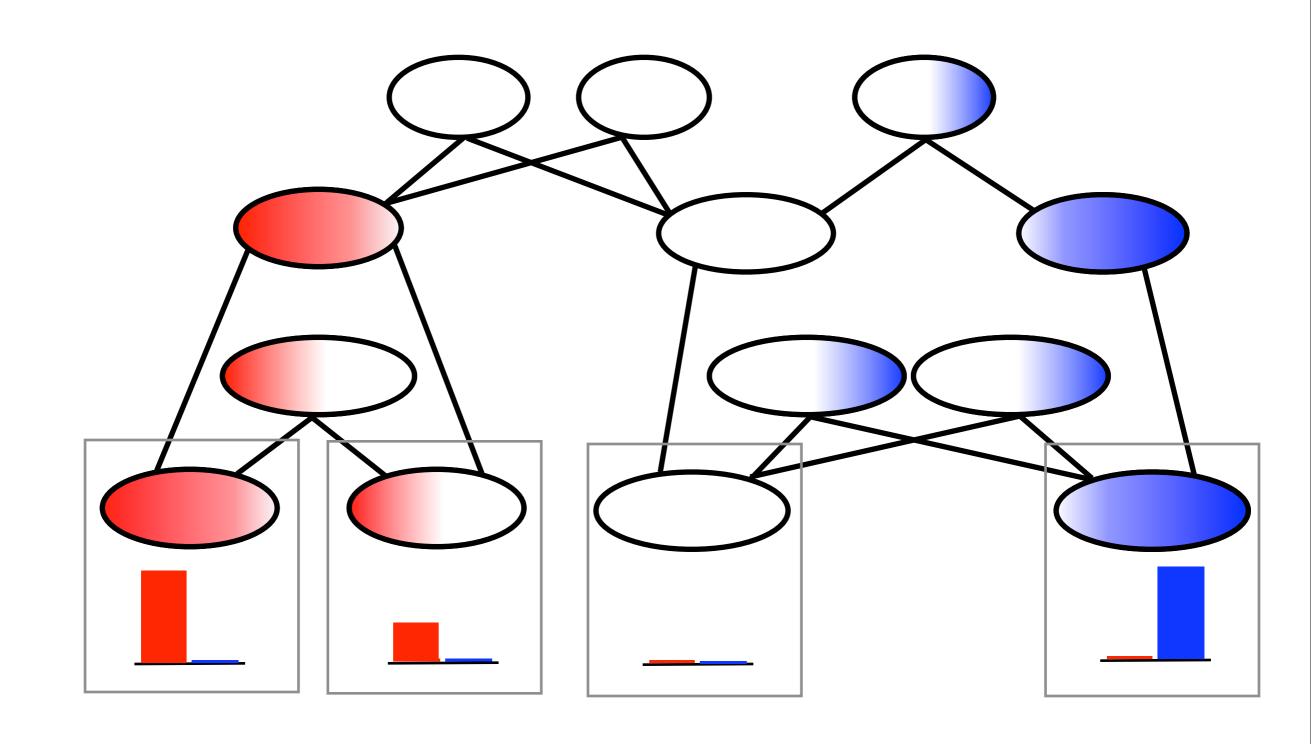
Token Annotations
the dog walks
DT NN VBZ

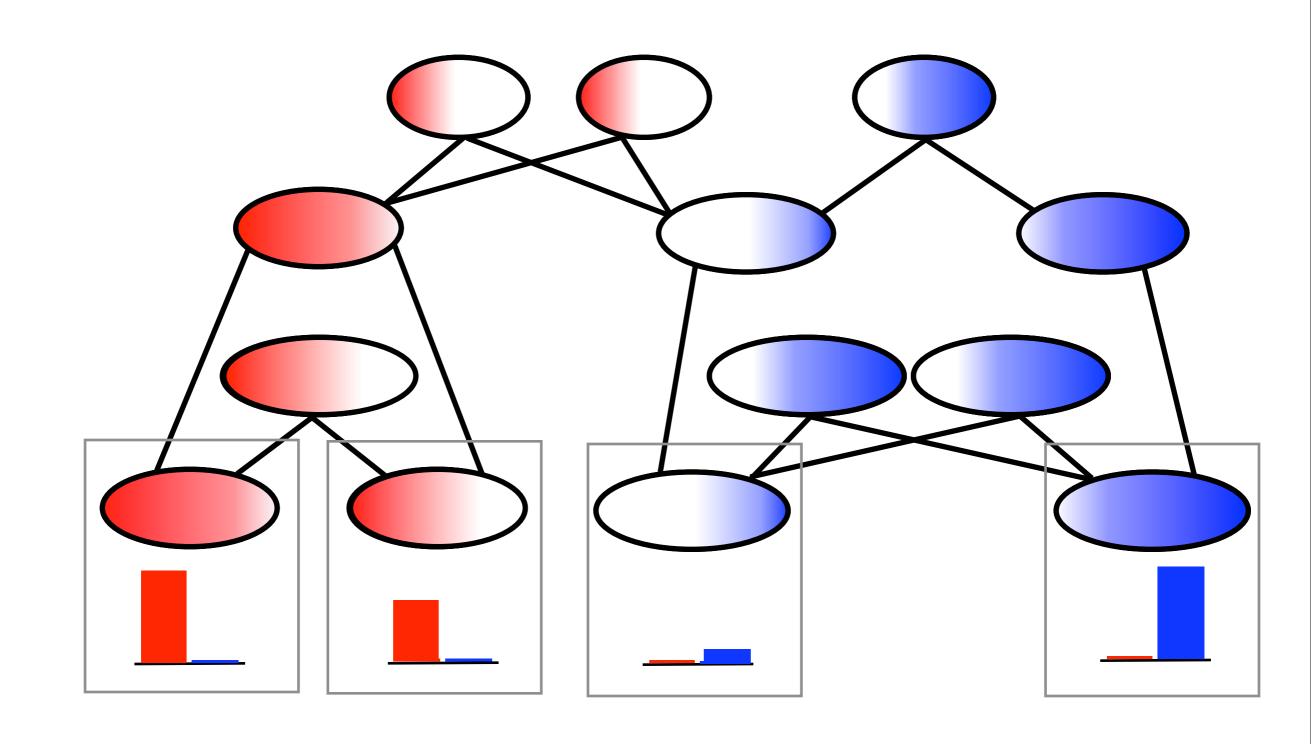


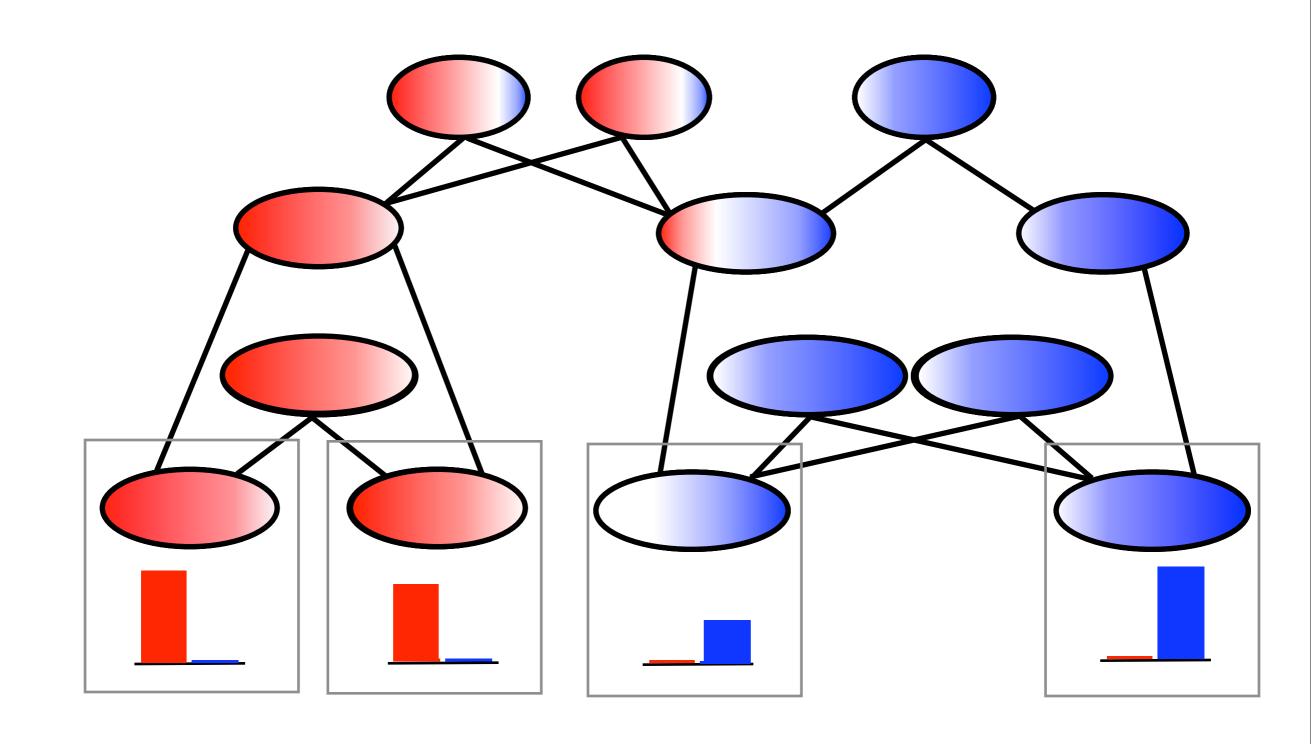
Token Annotations the dog walks

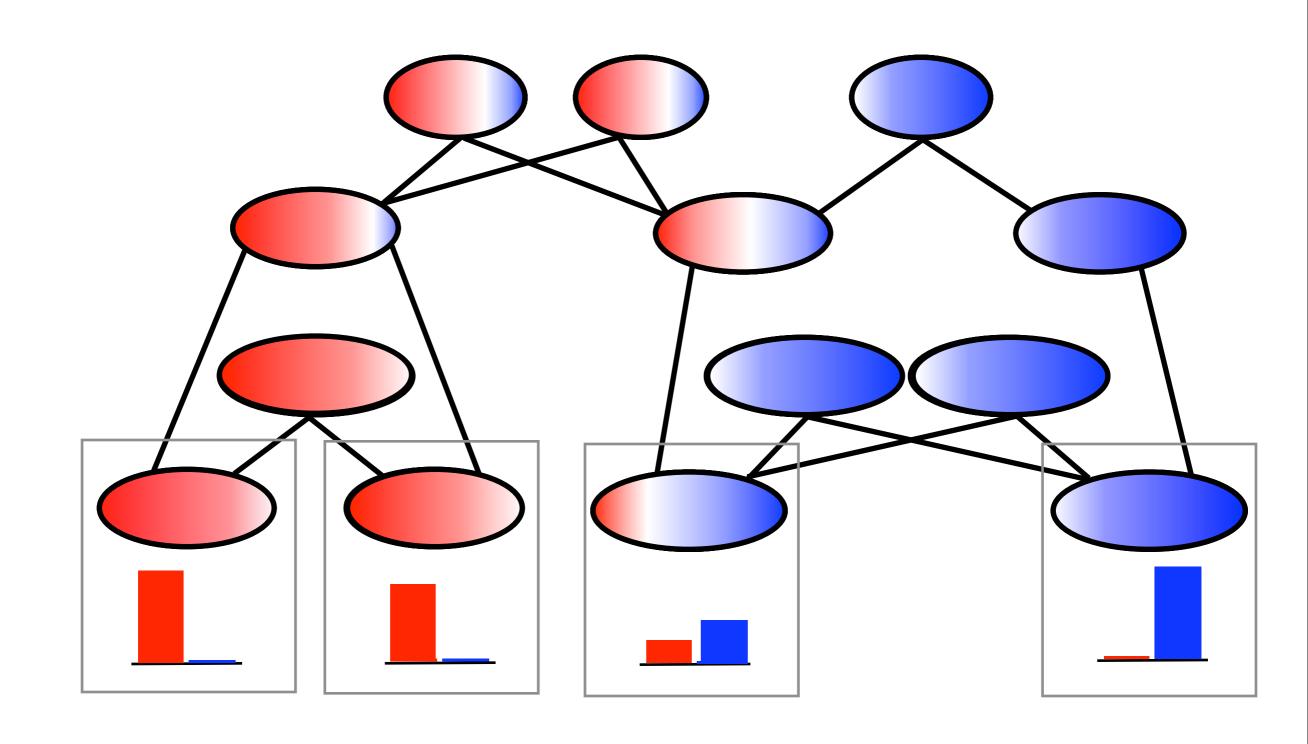


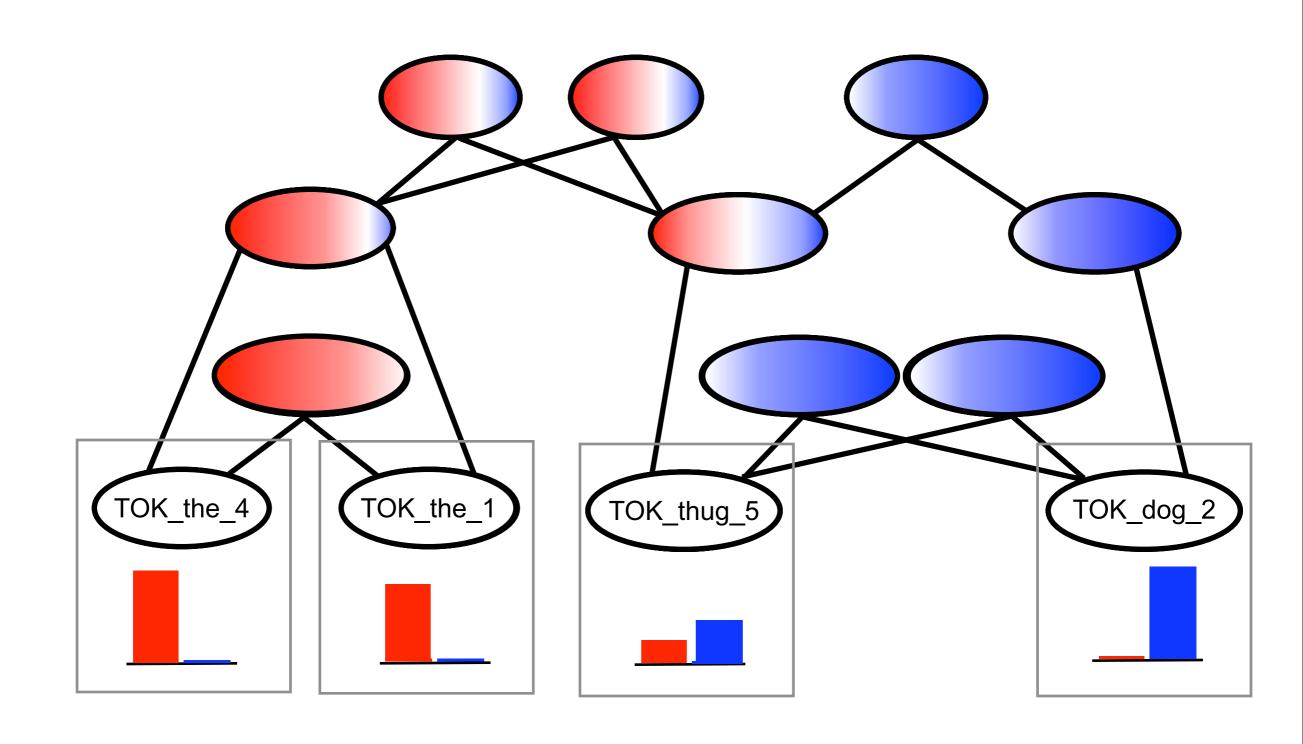






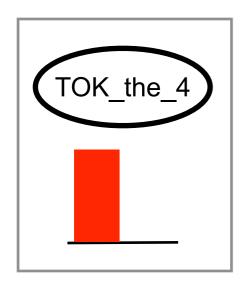


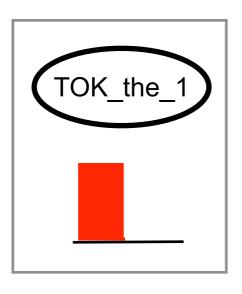


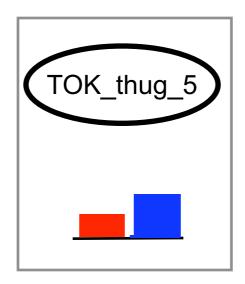


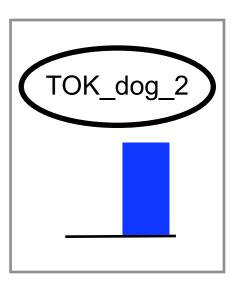
Result:

- a tag distribution on every token (soft tagging)
- an expanded tag dictionary (non-zero tags)

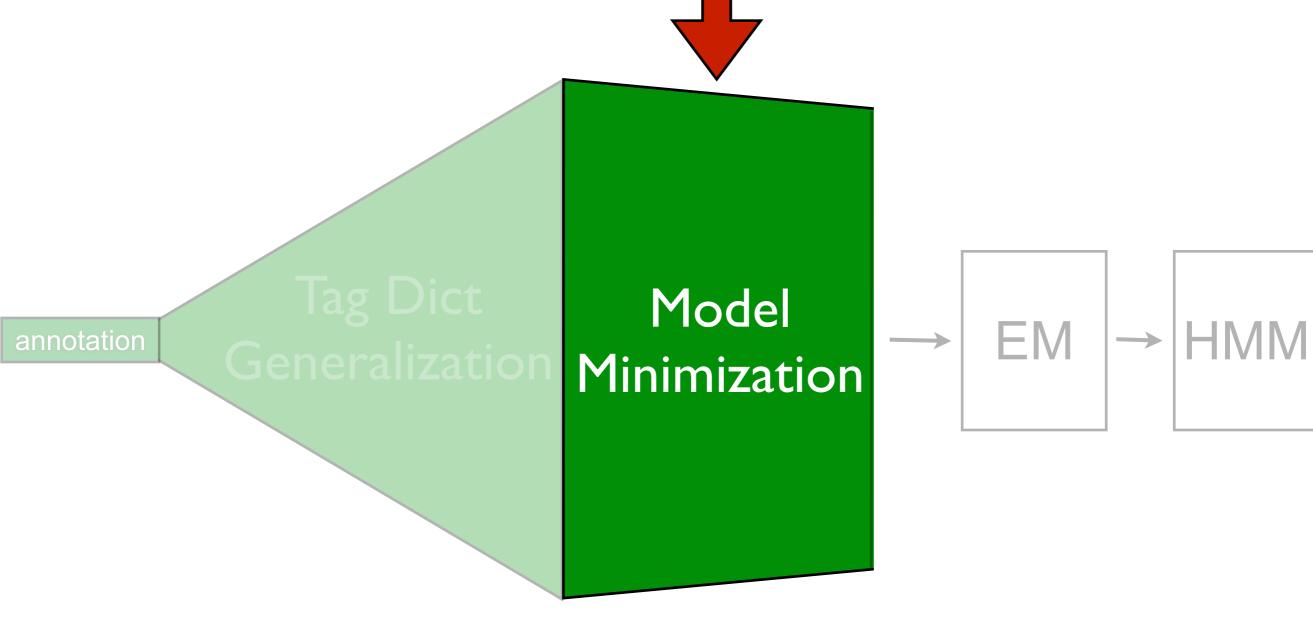








Our Approach

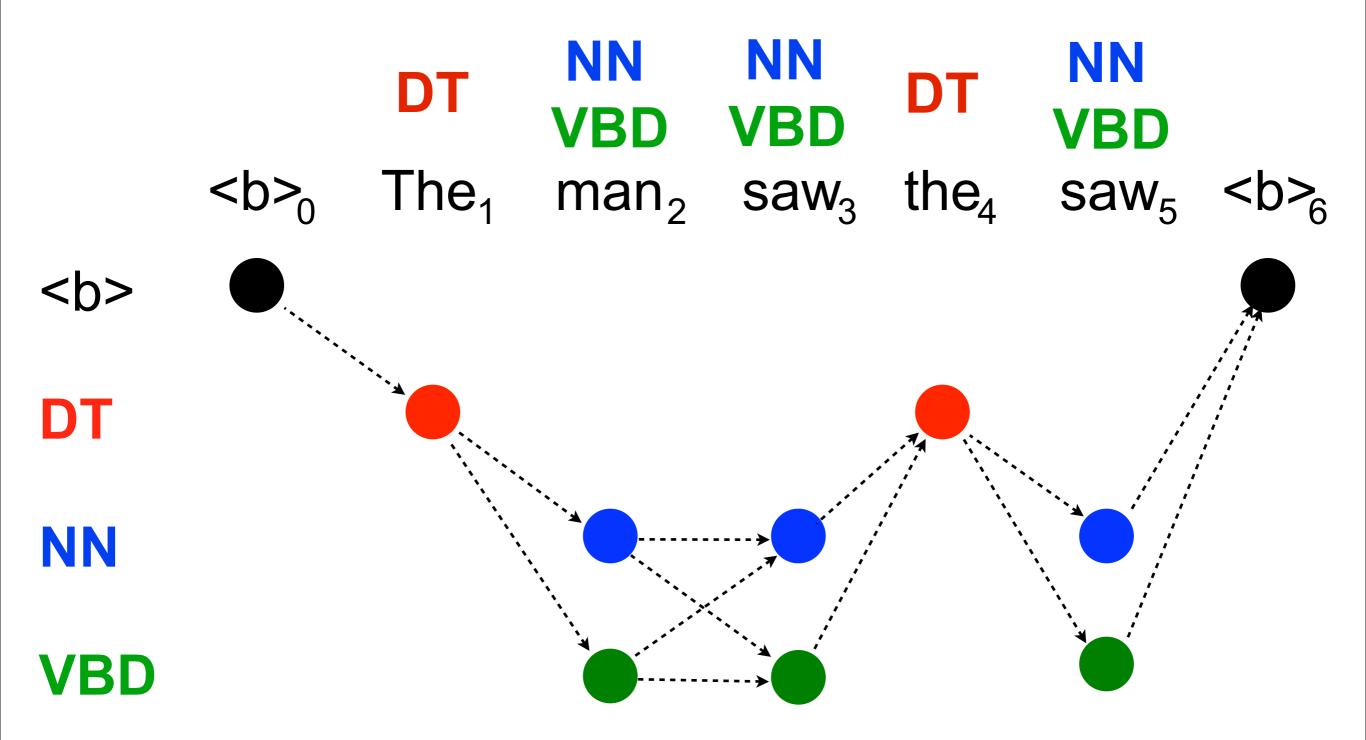


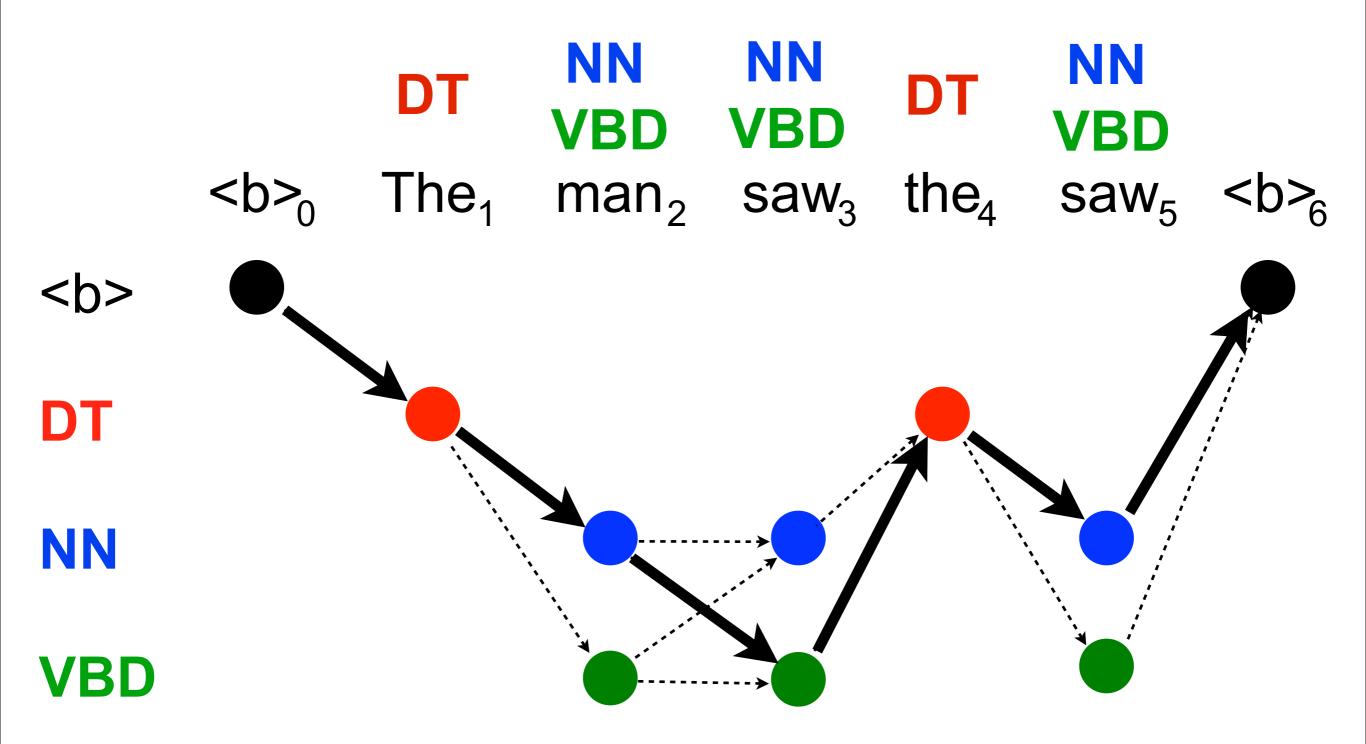
cover the vocabulary remove noise

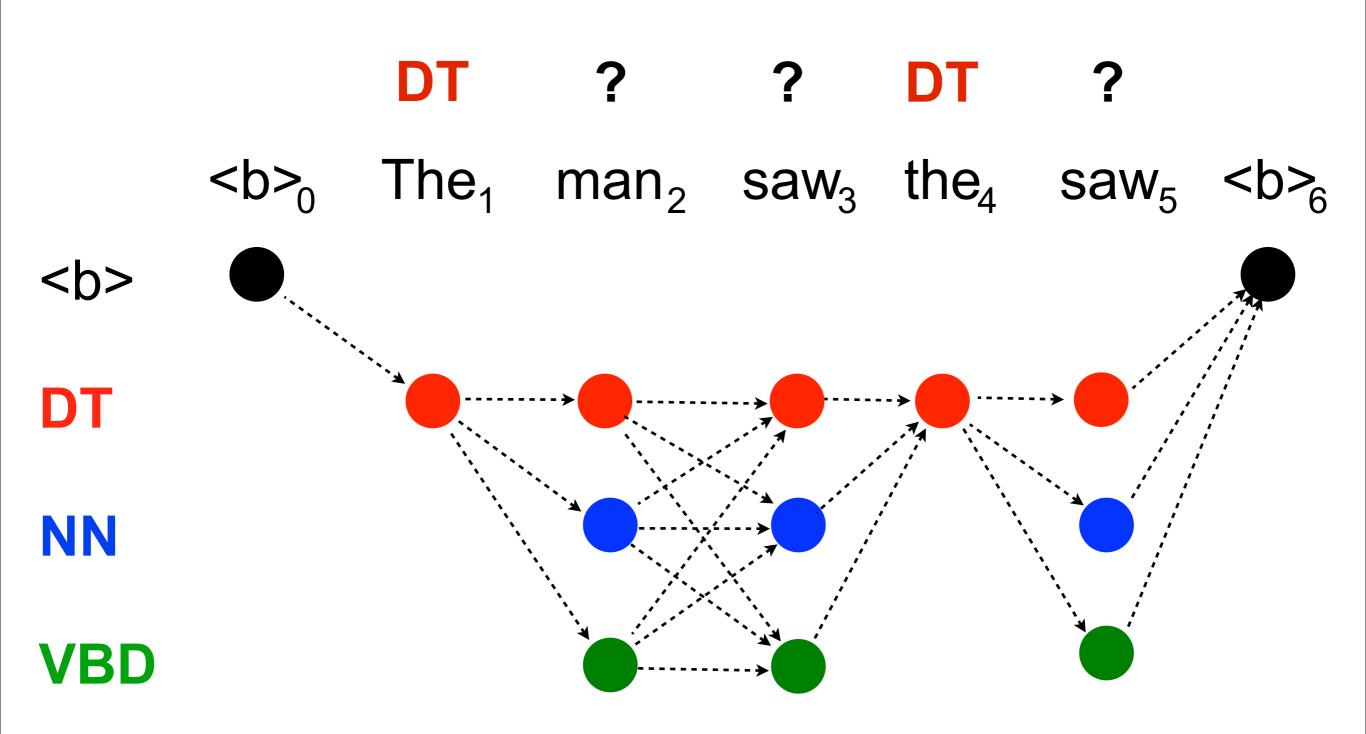
train

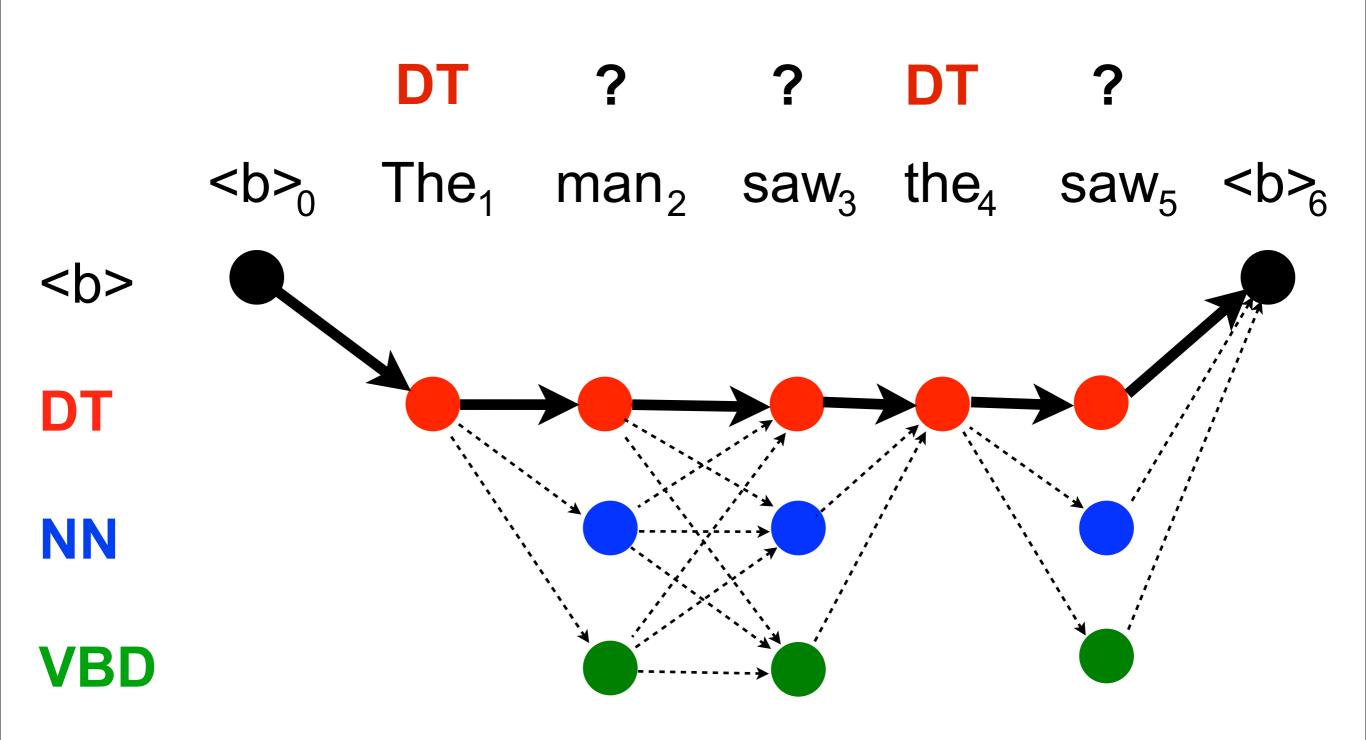
 Induce a cleaner hard tagging from a noisy soft tagging.

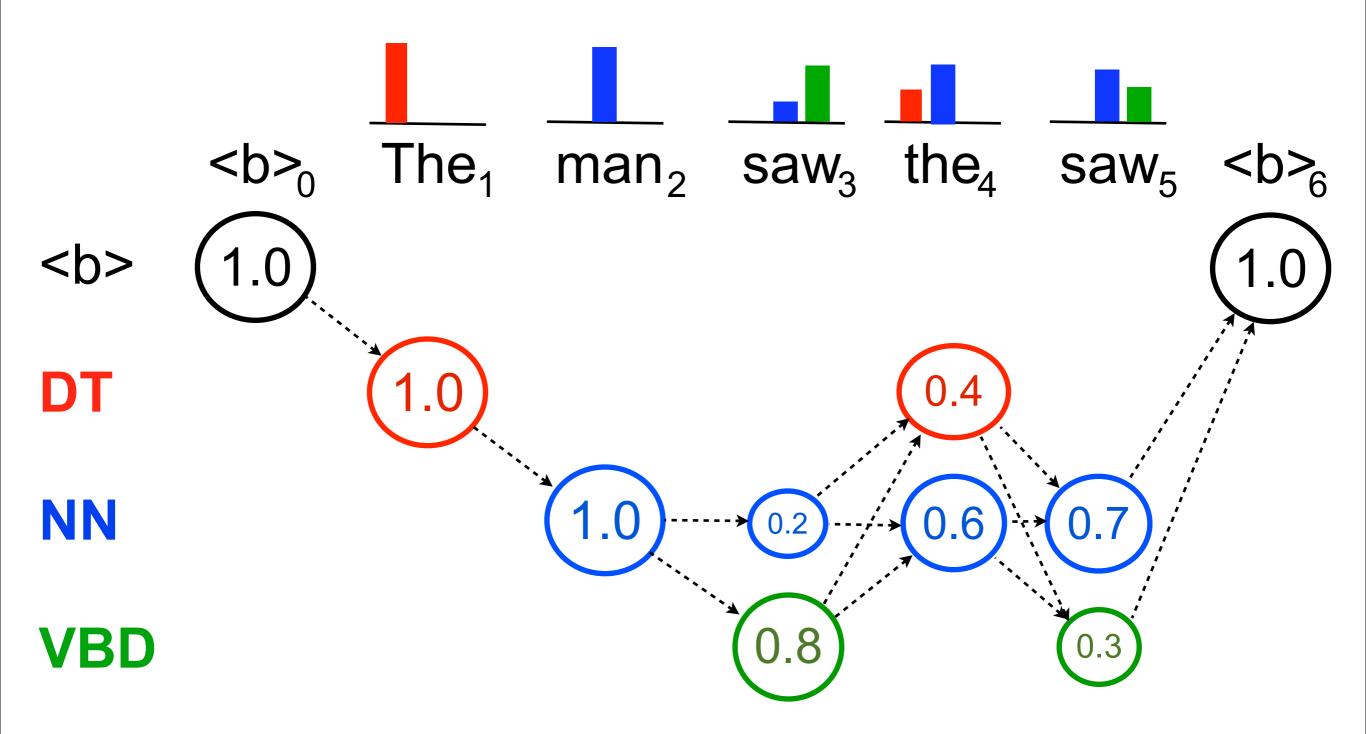
 Greedily seek the minimal set of tag bigrams that describe the raw corpus.

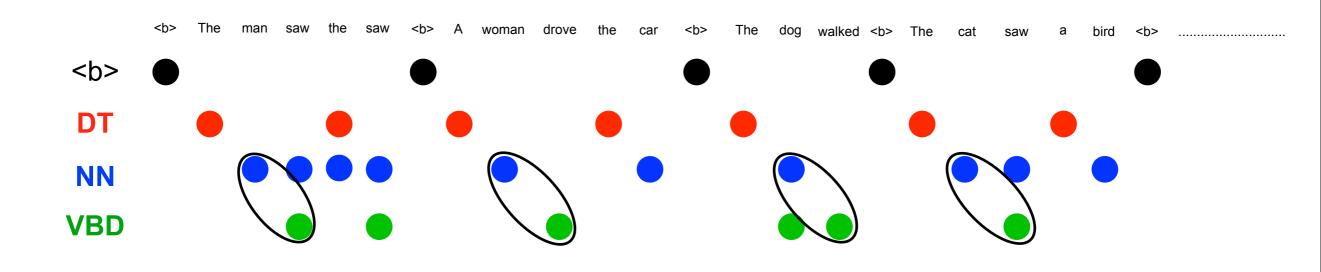




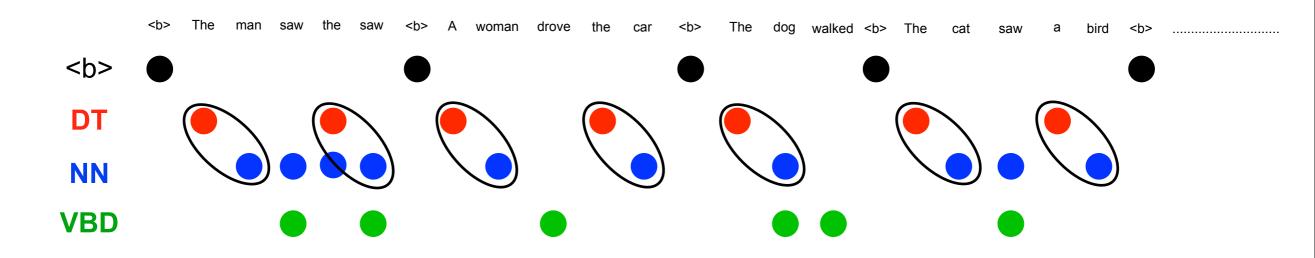


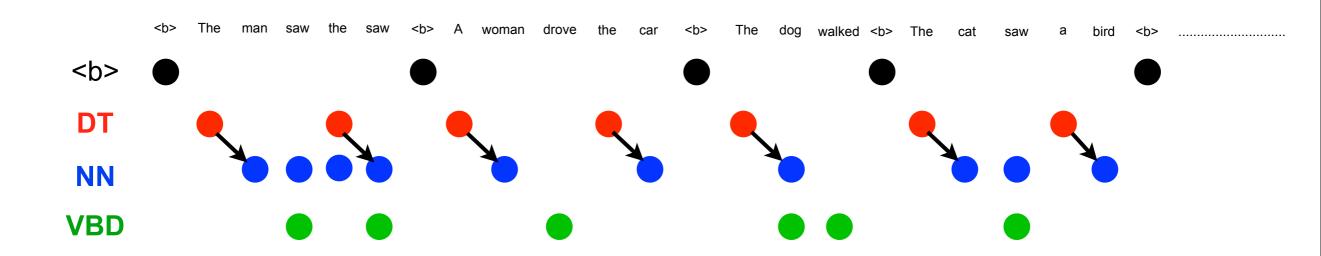


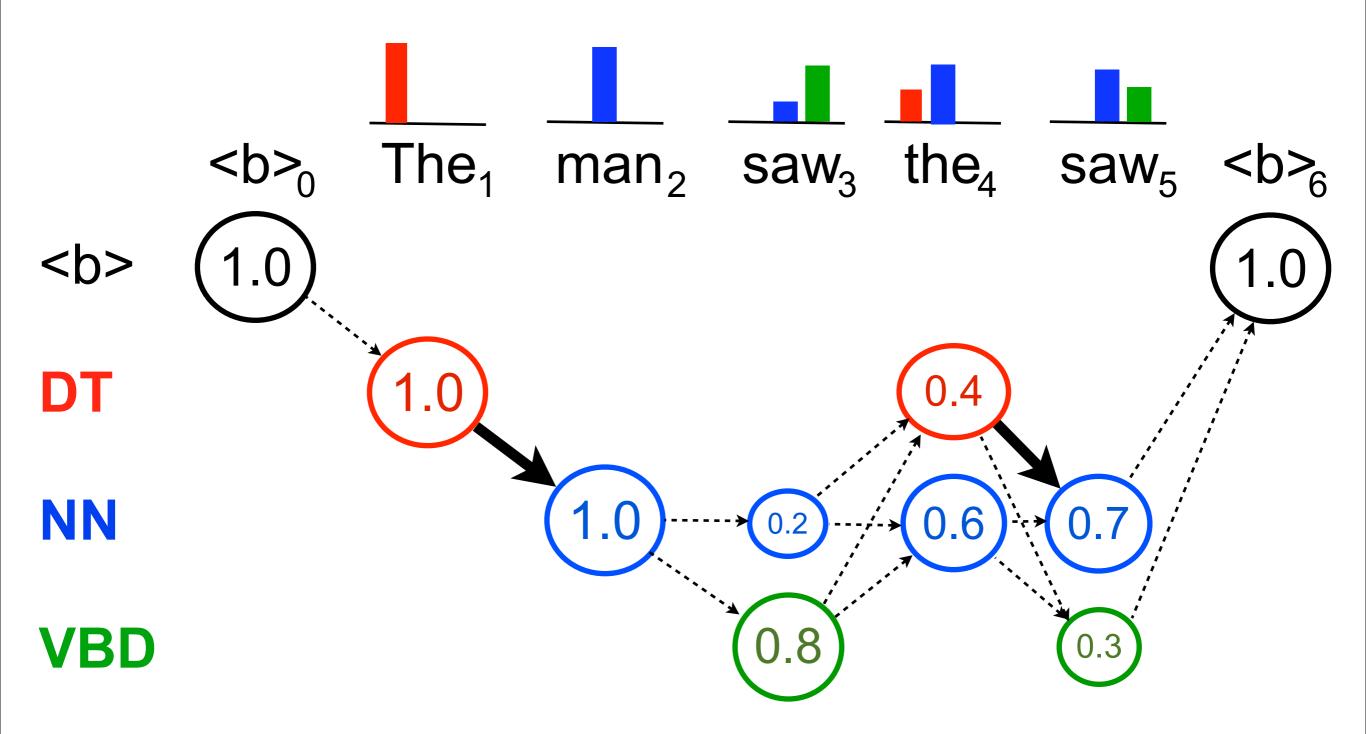


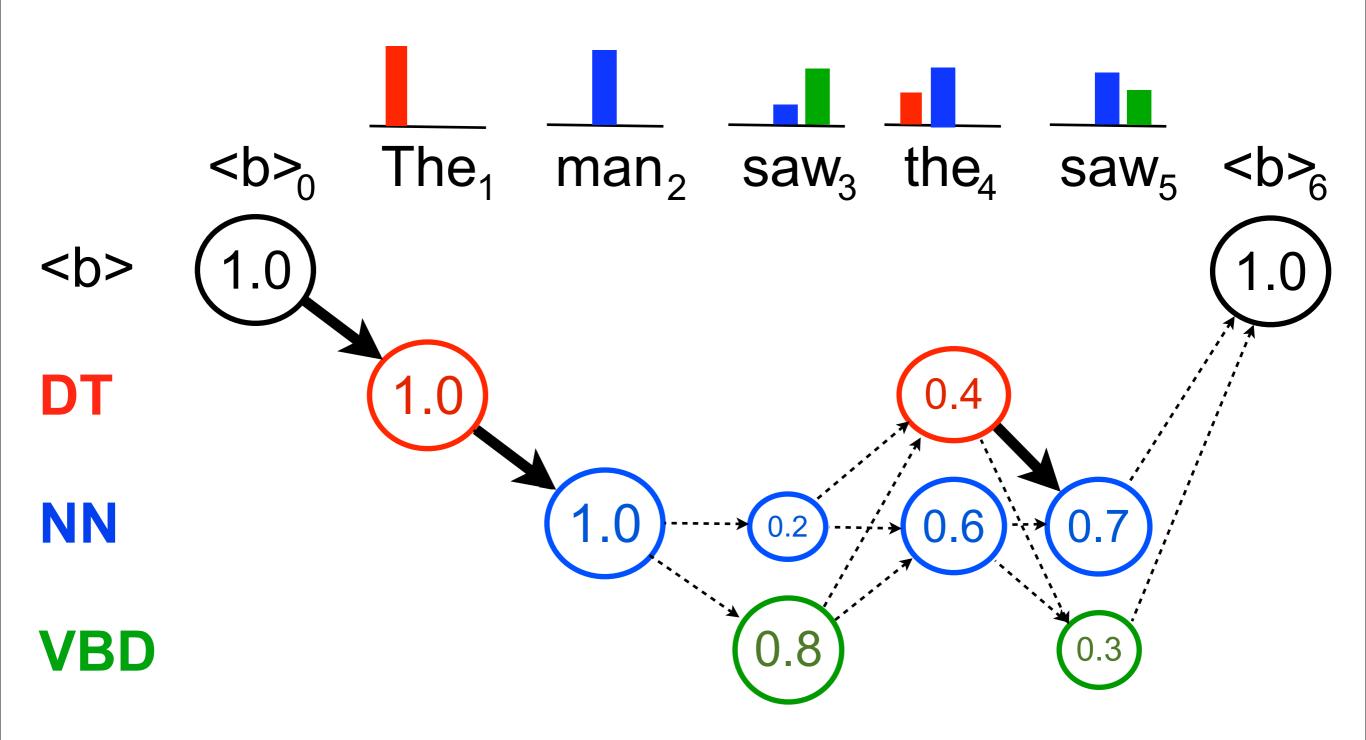


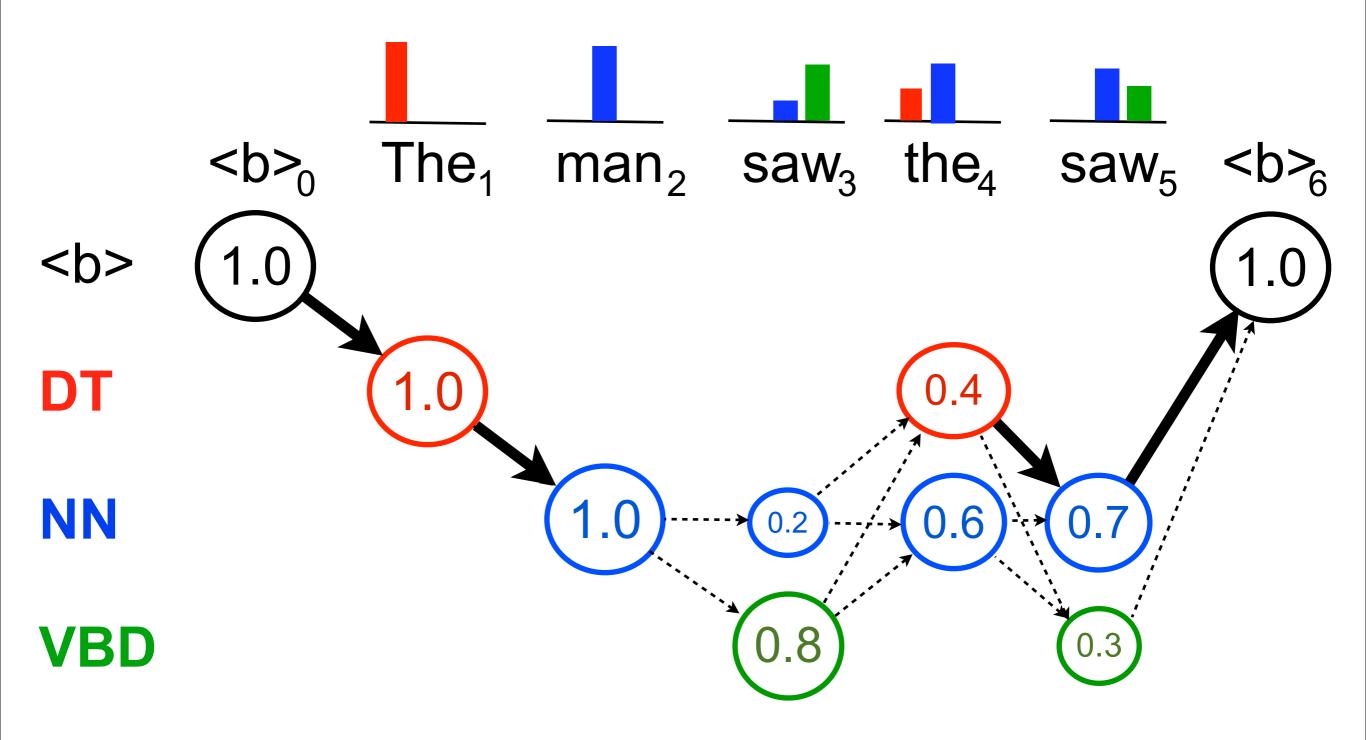
f(NN → VBD) { tag bigram occurrences weights on their nodes

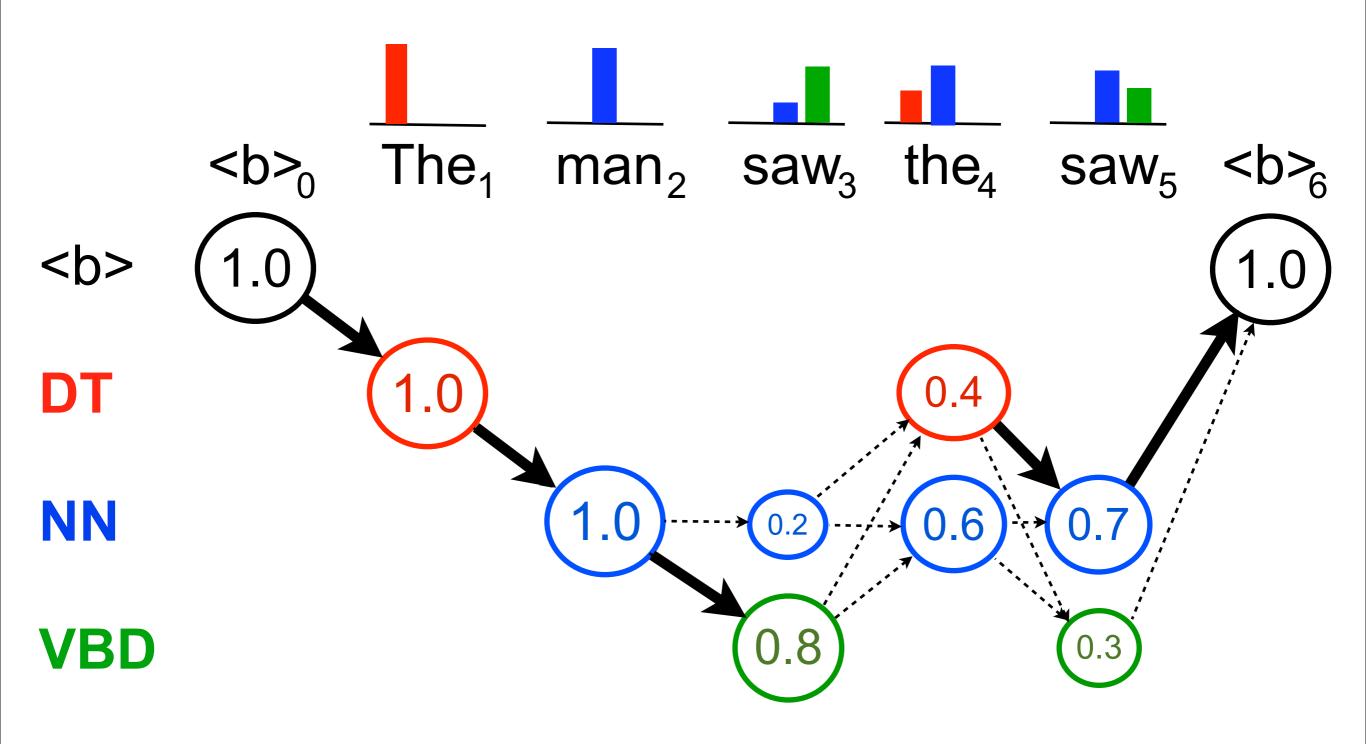


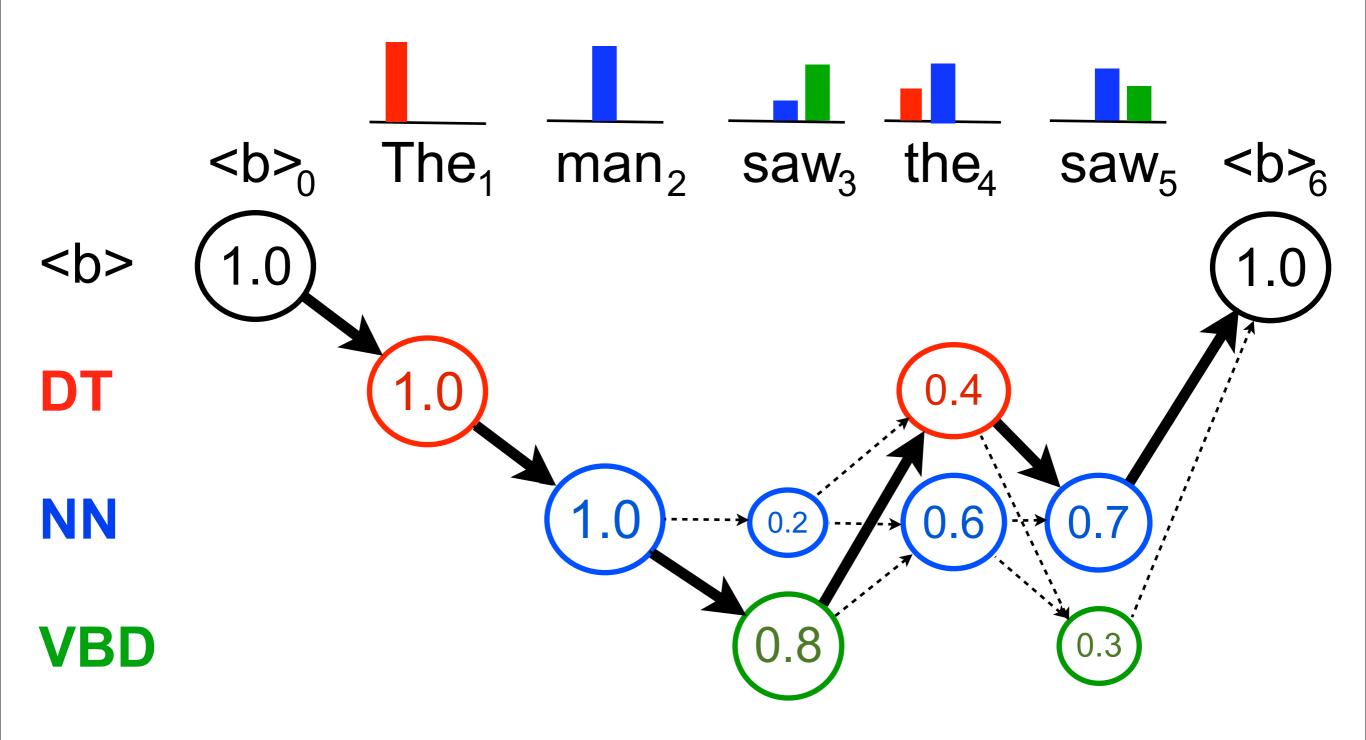


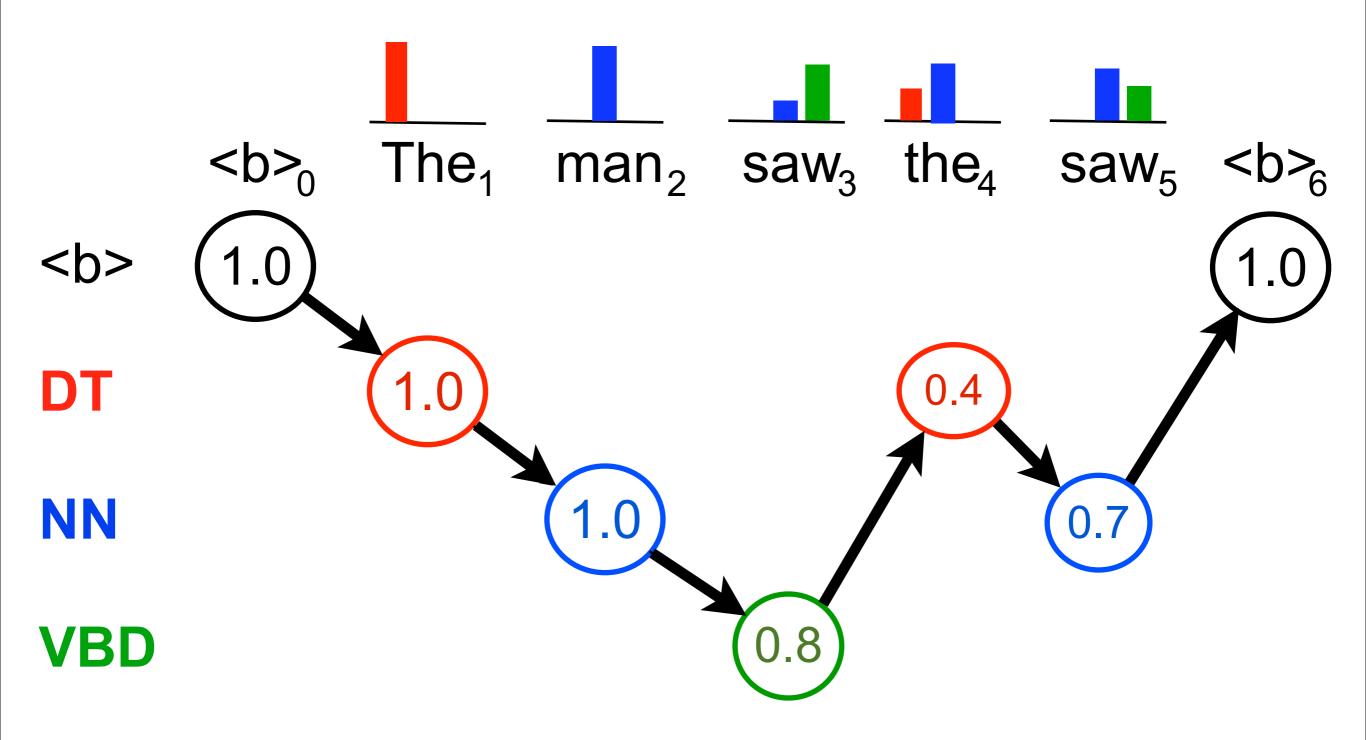


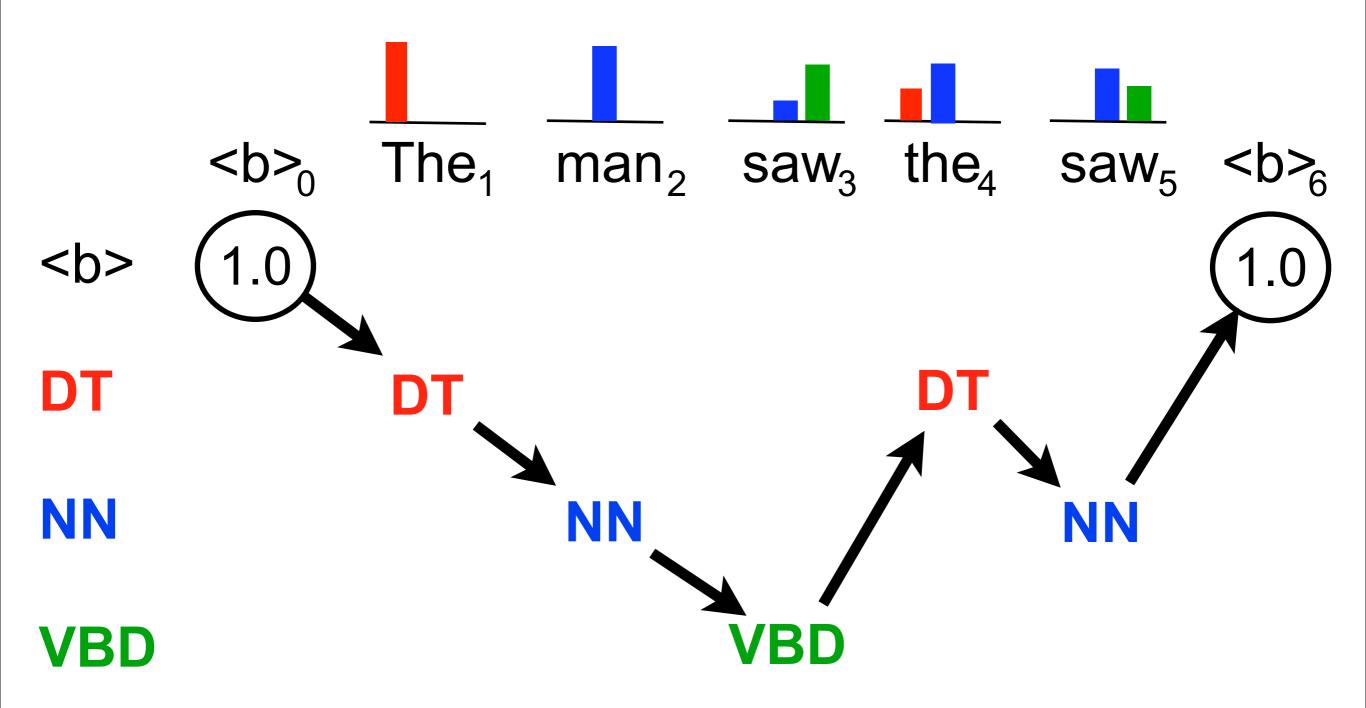






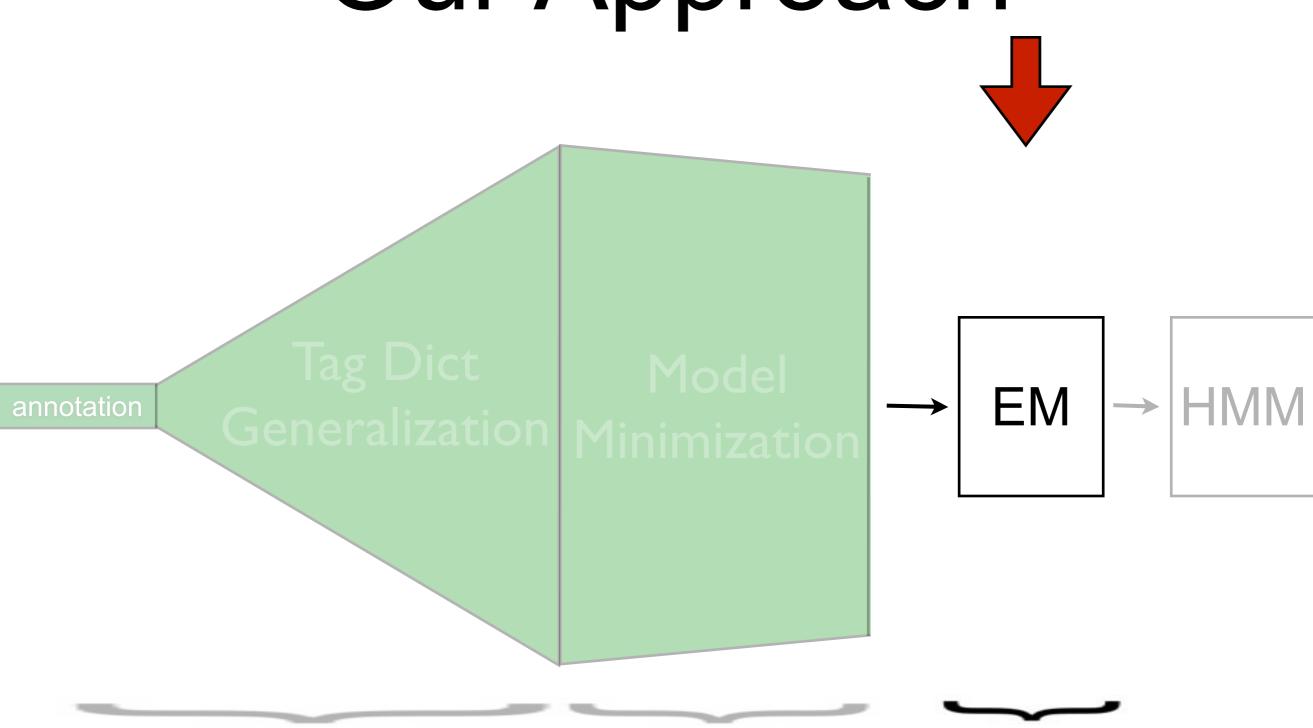






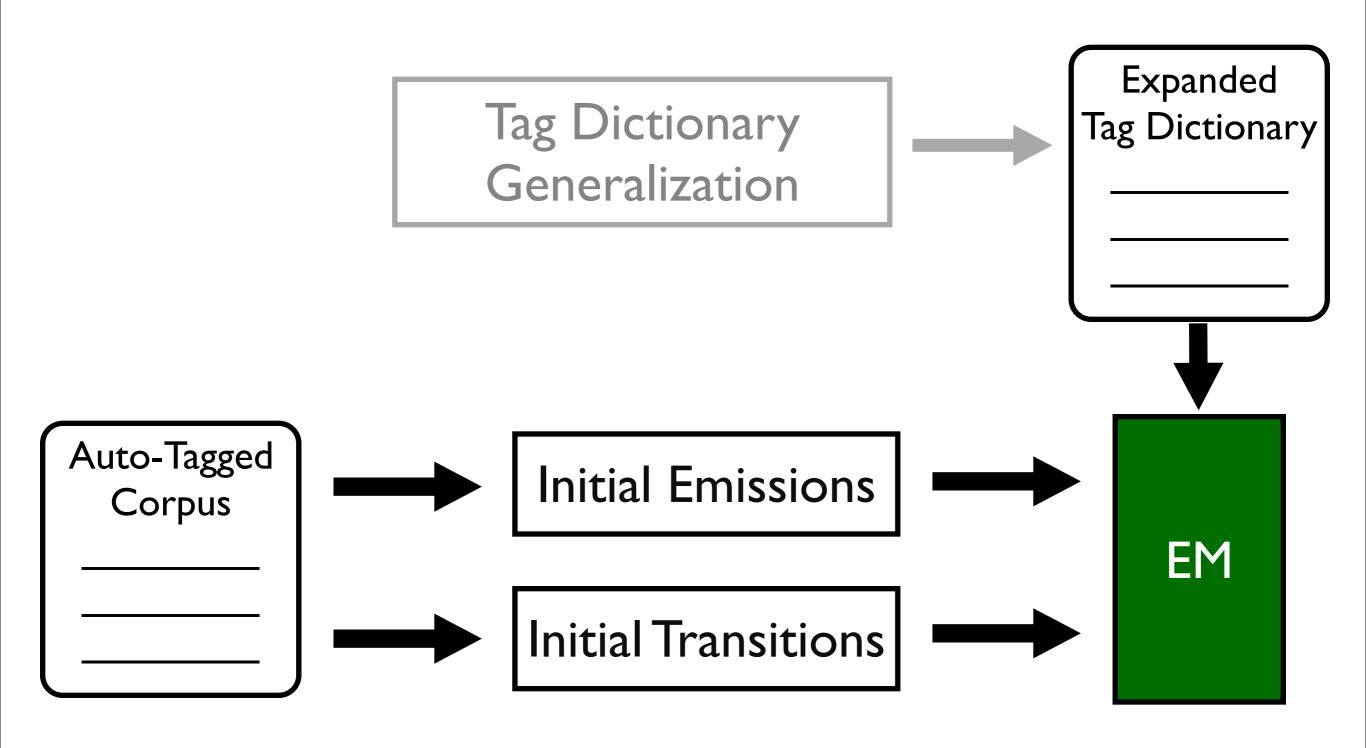
```
<b>_0 The<sub>1</sub> man<sub>2</sub> saw<sub>3</sub> the<sub>4</sub> saw<sub>5</sub> <b>_6 DT NN VBD DT NN
```

Our Approach

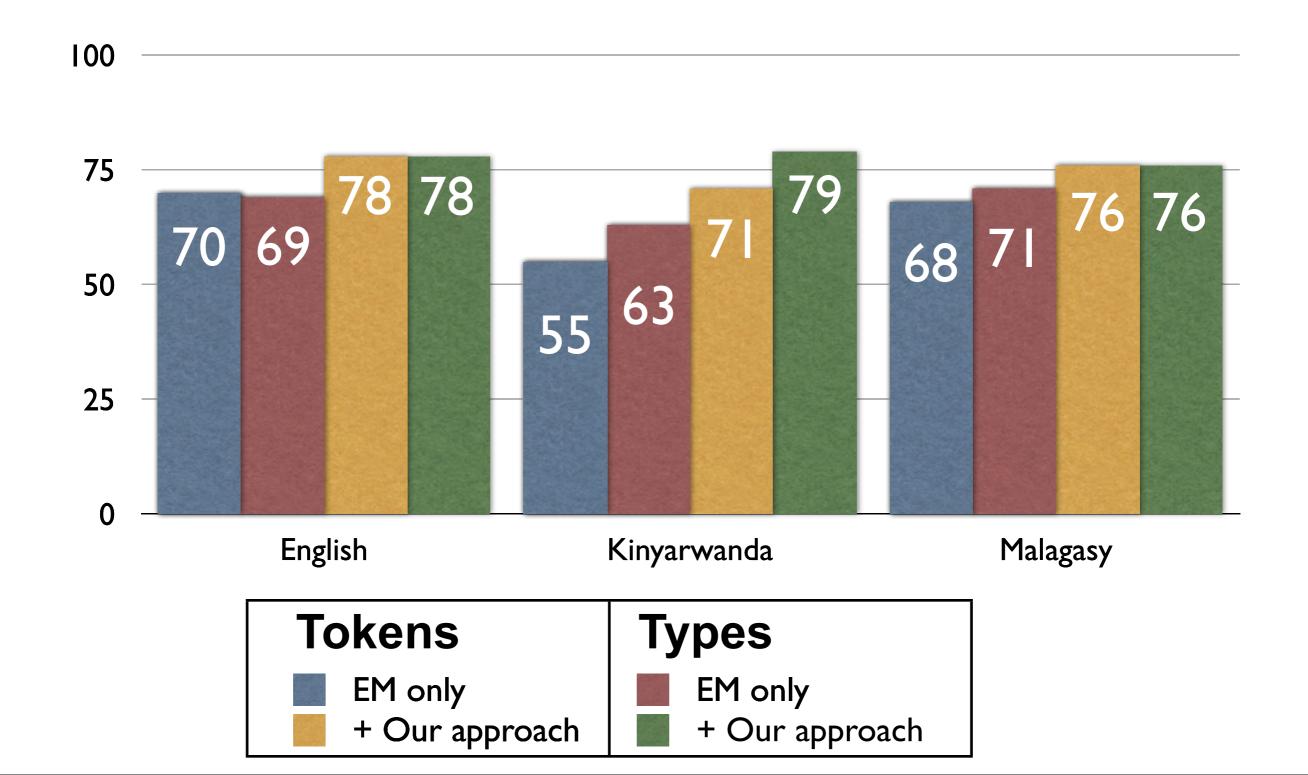


cover the vocabulary remove noise

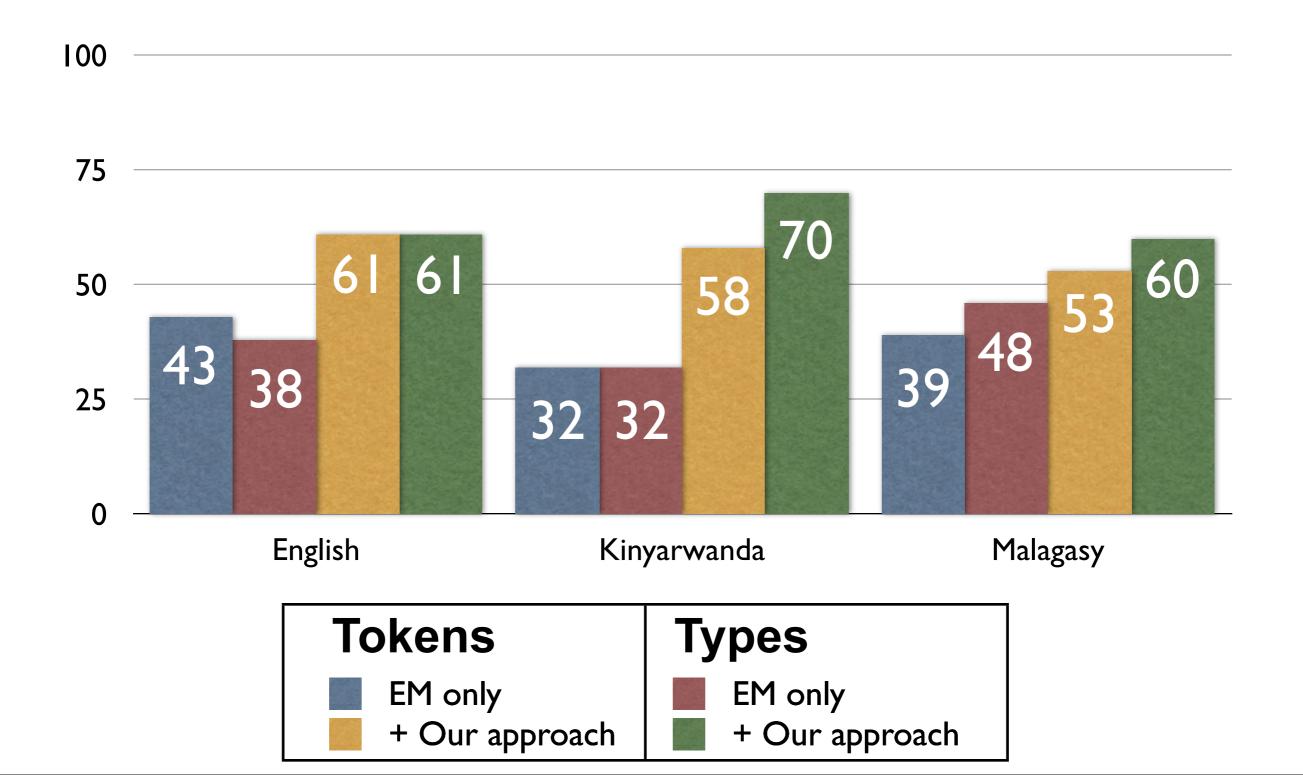
train



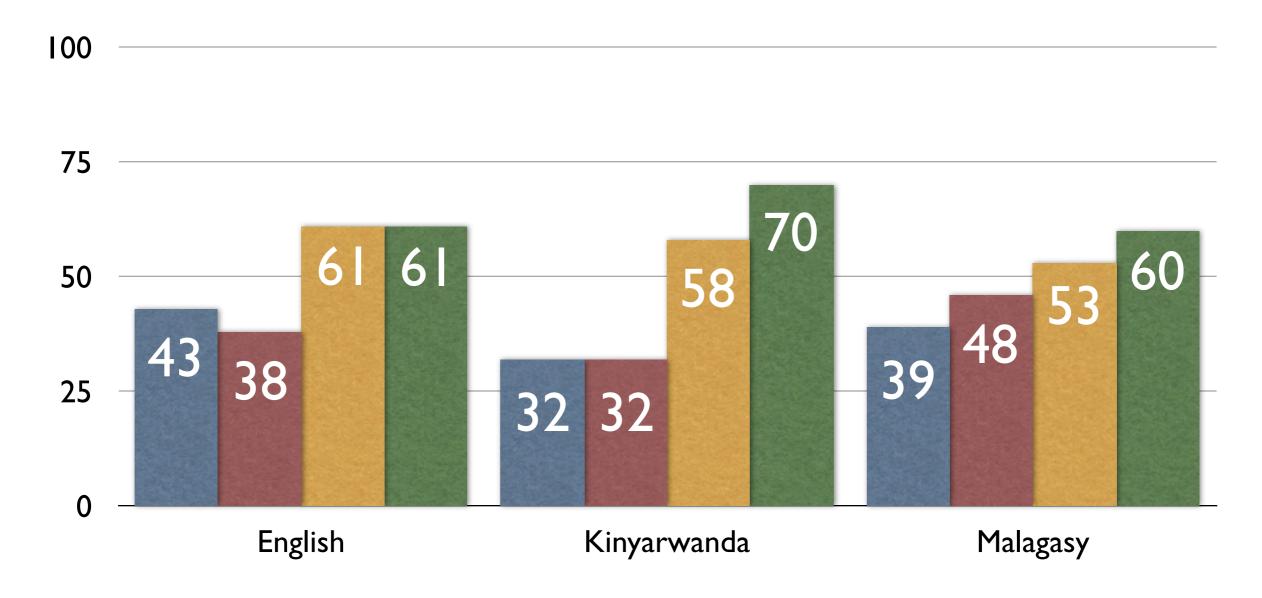
Total Accuracy



Unknown Accuracy



Unknown Accuracy



Remember: Very high unknown rates.

Especially for morphological-rich Kinyarwanda.

Conclusion

- Developed a semi-supervised approach to learn a tagger from realistically minimal input.
- Currently being used for further lowresource research (e.g. unsupervised dependency parsing).

ACL Preview

- Learning curves for annotation time
- Mixed types and tokens under fixed time constraints
- Morphological transducers
- 90% accuracy on full 45 tag English
 Penn Treebank with 4 hours of data

Software Available

Train your own low-resource taggers.

Or use our Kinyarwanda and Malagasy models.

Open source: link on my website or in the paper.