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Abstract

We present a generative probabilistic
model, inspired by historical printing pro-
cesses, for transcribing images of docu-
ments from the printing press era. By
jointly modeling the text of the docu-
ment and the noisy (but regular) process
of rendering glyphs, our unsupervised sys-
tem is able to decipher font structure and
more accurately transcribe images into
text. Overall, our system substantially out-
performs state-of-the-art solutions for this
task, achieving a 31% relative reduction
in word error rate over the leading com-
mercial system for historical transcription,
and a 47% relative reduction over Tesser-
act, Google’s open source OCR system.

1 Introduction

Standard techniques for transcribing modern doc-
uments do not work well on historical ones. For
example, even state-of-the-art OCR systems pro-
duce word error rates of over 50% on the docu-
ments shown in Figure 1. Unsurprisingly, such er-
ror rates are too high for many research projects
(Arlitsch and Herbert, 2004; Shoemaker, 2005;
Holley, 2010). We present a new, generative
model specialized to transcribing printing-press
era documents. Our model is inspired by the un-
derlying printing processes and is designed to cap-
ture the primary sources of variation and noise.

One key challenge is that the fonts used in his-
torical documents are not standard (Shoemaker,
2005). For example, consider Figure 1a. The fonts
are not irregular like handwriting – each occur-
rence of a given character type, e.g. a, will use the
same underlying glyph. However, the exact glyphs
are unknown. Some differences between fonts are
minor, reflecting small variations in font design.
Others are more severe, like the presence of the
archaic long s character before 1804. To address
the general problem of unknown fonts, our model

(a)

(b)

(c)
Figure 1: Portions of historical documents with (a) unknown
font, (b) uneven baseline, and (c) over-inking.

learns the font in an unsupervised fashion. Font
shape and character segmentation are tightly cou-
pled, and so they are modeled jointly.

A second challenge with historical data is that
the early typesetting process was noisy. Hand-
carved blocks were somewhat uneven and often
failed to sit evenly on the mechanical baseline.
Figure 1b shows an example of the text’s baseline
moving up and down, with varying gaps between
characters. To deal with these phenomena, our
model incorporates random variables that specifi-
cally describe variations in vertical offset and hor-
izontal spacing.

A third challenge is that the actual inking was
also noisy. For example, in Figure 1c some charac-
ters are thick from over-inking while others are ob-
scured by ink bleeds. To be robust to such render-
ing irregularities, our model captures both inking
levels and pixel-level noise. Because the model
is generative, we can also treat areas that are ob-
scured by larger ink blotches as unobserved, and
let the model predict the obscured text based on
visual and linguistic context.

Our system, which we call Ocular, operates by
fitting the model to each document in an unsuper-
vised fashion. The system outperforms state-of-
the-art baselines, giving a 47% relative error re-
duction over Google’s open source Tesseract sys-
tem, and giving a 31% relative error reduction over
ABBYY’s commercial FineReader system, which
has been used in large-scale historical transcrip-
tion projects (Holley, 2010).
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Generative Model in 3 parts: 

1. Language model 

2. Typesetting model 

3. Rendering model

Starting Point: Ocular
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Language Model

Over-inked

It appeared that the Prisoner was veryE :

X :

Wandering baseline Historical font

Figure 2: An example image from a historical document (X)
and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.

E p r i s o n

[Berg-Kirkpatrick et al. 2013]Slide courtesy of Taylor Berg-Kirkpatrick 
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munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
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proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
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P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.
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and Nagy, 2000; Huang et al., 2006), which is not
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Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.

E

Typesetting Model
· P (T |E)

T

XRendering Model

P (X|E, T )

p r i s o n

Our Focus

[Berg-Kirkpatrick et al. 2013]Slide courtesy of Taylor Berg-Kirkpatrick 12



• The language model helps Ocular work well, but 
creates additional challenges for many documents. 

• Our work helps to overcome those challenges.

Starting Point: Ocular
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1.  Multilingual code-switching 

2.  Inconsistent/outdated orthography

Our Focus

14



Ocular’s Language Model

a
ei

r t
ei�1 ei+1

Kneser-Ney smoothed character 6-gram

E

[Berg-Kirkpatrick et al. 2013]Slide courtesy of Taylor Berg-Kirkpatrick 15



file6.txt

Neither Lorillard 
nor the researchers 
who studied the 
workers were aware 
of any research on 
smokers of the Kent 
cigarettes . We have 
no useful 
information on 
whether users are at 
risk , said James A. 
Talcott of Boston 's 
Dana-Farber Cancer 
Institute .

file5.txt

We 're talking about 
years ago before 
anyone heard of 
asbestos having any 
questionable 
properties . There 
is no asbestos in 
our products now .

file4.txt

Although preliminary 
findings were 
reported more than a 
year ago , the 
latest results 
appear in today 's 
New England Journal 
of Medicine , a 
forum likely to 
bring new attention 
to the problem . A 
Lorillard spokewoman 
said , This is an 
old story .

Ocular’s Language Model

a
ei

r t
ei�1 ei+1

E

[Berg-Kirkpatrick et al. 2013]

file3.txt

The asbestos fiber , 
crocidolite , is 
unusually resilient 
once it enters the 
lungs , with even 
brief exposures to 
it causing symptoms 
that show up decades 
later , researchers 
said . Lorillard 
Inc. , the unit of 
New York-based Loews 
Corp. that makes 
Kent cigarettes , 
stopped using 

file2.txt

Rudolph Agnew , 55 
years old and former 
chairman of 
Consolidated Gold 
Fields PLC , was 
named a nonexecutive 
director of this 
British industrial 
conglomerate . A 
form of asbestos 
once used to make 
Kent cigarette 
filters has caused a 
high percentage of 
cancer deaths among 

file1.txt

Pierre Vinken , 61 
years old , will 
join the board as a 
nonexecutive 
director Nov. 29 . 
Mr. Vinken is 
chairman of Elsevier 
N.V. , the Dutch 
publishing group .

count n-grams
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spanish6.txt
spanish5.txt
spanish4.txt
spanish3.txt
spanish2.txt
spanish1.txt

latin6.txt
latin5.txt
latin4.txt
latin3.txt
latin2.txt
latin1.txt

nahuatl6.txt
nahuatl5.txt
nahuatl4.txt
nahuatl3.txt
nahuatl2.txt
nahuatl1.txt

Baseline Multilingual Model

eiei�1 ei+1

E
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spanish6.txt
spanish5.txt
spanish4.txt
spanish3.txt
spanish2.txt
spanish1.txt

latin6.txt
latin5.txt
latin4.txt
latin3.txt
latin2.txt
latin1.txt

nahuatl6.txt
nahuatl5.txt
nahuatl4.txt
nahuatl3.txt
nahuatl2.txt
nahuatl1.txt

Baseline Multilingual Model

eiei�1 ei+1

E
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count n-grams



• Poor results 

• “Multilingual blur”
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Baseline Multilingual Model



spanish6.txt
spanish5.txt
spanish4.txt
spanish3.txt
spanish2.txt
spanish1.txt

latin6.txt
latin5.txt
latin4.txt
latin3.txt
latin2.txt
latin1.txt

nahuatl6.txt
nahuatl5.txt
nahuatl4.txt
nahuatl3.txt
nahuatl2.txt
nahuatl1.txt

ei-1,l ei,l ei+1,l

ei-1,s ei,s ei+1,s

ei-1,n ei,n ei+1,n

Code-Switching Language Model
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spanish2.txt
spanish1.txt

latin6.txt
latin5.txt
latin4.txt
latin3.txt
latin2.txt
latin1.txt

nahuatl6.txt
nahuatl5.txt
nahuatl4.txt
nahuatl3.txt
nahuatl2.txt
nahuatl1.txt

E

ei-1,l ei,l ei+1,l

ei-1,s ei,s ei+1,s

ei-1,n ei,n ei+1,n
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Code-Switching Language Model
E

eiei�1 ei+1

20



                  is learned 
unsupervised via EM,

E

eiei�1 ei+1

P(   |       )

Code-Switching Language Model
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with a hyperparameter 
biasing the model 
toward not switching 
(long language spans)
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AÁBCDÉFGHIÍJKLMÑOÓPQRSTUÚVWXYZ
aábcdéfghiíjklmñoópqrstuúvwxyz
01234567890.,/\()?!”’:;-

ABCDFGHIJKLMOPQRSTUVWXYZ
abcdfghijklmopqrstuvwxyz
01234567890.,/\()?!”’:;-

ABCDFGHIJKLMOPQRSTUVWXYZ
abcdfghijklmopqrstuvwxyz
01234567890.,/\()?!”’:;-

Spanish

Latin

Nahuatl

24



a
á
b
c
d
e

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
á
b
c
d
e

a
b
c
d
e
f

a
b
c
d
e
f

a
b
c
d
e
f

26



Code-Switching Language Model

• Improves transcription quality, and 

• Implicitly identifies language spans in text 
(metadata of the transcription)

27



Orthographic 
Variability
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• We train our language models from available text 
(e.g. Project Gutenberg) 

• Modern transcribers use modern spellings, which 
often do not match the printed documents

Orthographic Variability

29



dize dice

Transcription Modern Form

30

Orthographic Variability

numero número

Dõde Donde



Simple solution:   

Modify the modern corpora to use old conventions.

Orthographic Variability
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spanish6.txt
spanish5.txt
spanish4.txt
spanish3.txt
spanish2.txt
spanish1.txt

Orthographic Variability

spanish6b.txt
spanish5b.txt
spanish4b.txt
spanish3b.txt
spanish2b.txt
spanish1b.txt

ñ

Replacement 
Rules

u → v 
c → z 
ú → u 

on → õ 
que → q   

…

32

Modern Spanish Old Spanish



Experiments
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• Evaluated on five different books Primeros Libros 

• Years 1553 to 1600 

• Differing fonts, language proportions, clarity

Experiments
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Unknown Fonts

Gante

Anunciación

Sahagún

Rincón

Bautista

(1553)

(1583)

(1595)

(1600)

(1565)
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Experimental Results

0

5

10

15

Character  
Error Rate

Ocular +code-switch +orth.var.

12.3
11.3

10.5

36

(lower is better. ~90%  
characters are correct)



A thing we do well

merita

metira˜

Without handling orth. variation:

With handling orth. variation:

Modern form: mentira
37



A thing we do wrong

38



A thing we do wrong

síModel output:

Gold transcription: li

tĩi

tli

Model avoids switching languages, but this is 
actually from a description of Nahuatl grammar.

← Spanish

← Nahuatl

38



A thing that’s hard

 tetechtla miec caquixtiliztli

• All letters are correct, but the model adds spaces 

• No agreed-upon standards for Nahuatl spacing 

• Hard to evaluate what is “correct”
39



Conclusion
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• By accounting for multilingual text and 
obsolete orthography, we can improve the 
state-of-the-art for historical OCR. 

• These are common characteristics of texts from 
all over the world and from all eras. 

• Expansion of OCR abilities means a wider range 
of texts may be available for study.

Conclusion

41


