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Motivation

● In sparse reward settings, 

random exploration has very 

high sample complexity.

● Reward shaping: Intermediate 

rewards to guide the agent 

towards the goal.

● Designing intermediate rewards 

by hand is challenging.
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● Standard MDP formalism, 

plus a natural language 

command describing the task.

● Use agent’s past actions and 

the command to generate 

rewards.

For example,

Past actions Reward

LLLJLLL →       High

RRRUULL → Low

[L: Left, R: Right, U: Up, J: Jump]
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● Standard MDP formalism, 

plus a natural language 

command describing the task.

● Use agent’s past actions and 

the command to generate 

rewards.

For example,

Past actions Reward

4441444 →       High

3332244 →       Low

[4: Left, 3: Right, 2: Up, 1: Jump]

Approach Overview
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Problem: Given a sequence of actions (e.g. 4441444) and a command (e.g. 

“Jump over the skull while going to the left”), are they related?
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● Using the sequence of actions, generate an action-frequency vector:

ϵ ⇒ [0      0      0      0      0      0      0      0]

4 ⇒ [0      0      0      0      1      0      0      0]

42 ⇒ [0      0      0.5   0      0.5   0      0      0]

422 ⇒ [0      0      0.7   0      0.3   0      0      0]
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Problem: Given a sequence of actions (e.g. 4441444) and a command (e.g. 

“Jump over the skull while going to the left”), are they related?

● Using the sequence of actions, generate an action-frequency vector:

ϵ ⇒ [0      0      0      0      0      0      0      0]

4 ⇒ [0      0      0      0      1      0      0      0]

42 ⇒ [0      0      0.5   0      0.5   0      0      0]

422 ⇒ [0      0      0.7   0      0.3   0      0      0]

● Train a neural network that takes in the action-frequency vector and the 

command to predict whether they are related or not.

LanguagE-Action Reward Network (LEARN)
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passed through 3 linear layers.
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● Action-frequency vector 

passed through 3 linear layers.

● Three language encoders:

○ InferSent

○ GloVe+RNN

○ RNNOnly

● Concatenate encoded action-

frequency vector and encoded 

language.

● Pass through linear layers 

followed by softmax layer.

LanguagE-Action Reward Network (LEARN)
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● Used Amazon Mechanical 

Turk to collect language 

descriptions for trajectories.

LanguagE-Action Reward Network (LEARN)
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● Used Amazon Mechanical 

Turk to collect language 

descriptions for trajectories.

● Minimal postprocessing to 

remove low quality data.

● Used random pairs to 

generate negative examples.

LanguagE-Action Reward Network (LEARN)
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● Using the agent’s past 

actions, generate an action-

frequency vector.

● LEARN: scores the 

relatedness between the 

action-frequency vector and 

the language command.

● Use the relatedness scores as 

intermediate rewards, such 

that the optimal policy does 

not change.
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● 15 tasks
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● Amazon Mechanical Turk to collect 3 descriptions for each task.

Experiments

- JUMP TO TAKE BONUS WALK RIGHT AND LEFT THE CLIMB 

DOWNWARDS IN LADDER

- Jump Pick Up The Coin And Down To Step The Ladder

- jump up to get the item and go to the right
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● Different rooms used for training LEARN and RL policy learning.

Experiments
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● Different rooms used for training LEARN and RL policy learning.

Experiments
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● Compared RL training 

using PPO algorithm 

with and without 

language-based reward.

● ExtOnly: Reward of 1 for 

reaching the goal, 

reward of 0 in all other 

cases.

● Ext+Lang: Extrinsic 

reward plus language-

based intermediate 

rewards.



Analysis

35



Analysis
● For a given RL run, we have a 

fixed natural language 

description.

36



Analysis
● For a given RL run, we have a 

fixed natural language 

description.

● At every timestep, we get an 

action-frequency vector, and 

the corresponding prediction 

from LEARN.
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Analysis
● For a given RL run, we have a 

fixed natural language 

description.

● At every timestep, we get an 

action-frequency vector, and 

the corresponding prediction 

from LEARN.

● Compute Spearman 

correlation coefficient 

between each component 

(action) and the prediction.
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Analysis
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go to the left and go under 

skulls and then down the ladder

go to the left and then go down 

the ladder

move to the left and go under 

the skulls
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Related Work

Language to Reward
[Williams et al. 2017, 

Arumugam et al. 2017]

Language to Subgoals
[Kaplan et al. 2017]

Policy

D

States
Goal 

states

Instruction

Reward

Adversarial Reward Induction
[Bahdanau et al. 2018]
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Code and Data available at

www.cs.utexas.edu/~pgoyal

http://www.cs.utexas.edu/~pgoyal

