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Emergence of Large Language Models(LLMs)

Better Text 
Understanding

Generate Fluent 
Text

Complete NLP 
tasks by generation 

Complete Complex 
Tasks

T5, GPT

FLAN
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Reasoning Tasks with Large Language Models 

Natural Language Reasoning(NLR): Common Sense Reasoning, 
Reading Comprehension, Multi-hop Question Answering, Textual 
Entailment Recognition, ...

Symbolic Reasoning(SR): Math Word Problem Solving, Logical 
Deduction, Code Generation, Automatic Program Repair, 
Knowledge-Graph QA, ...
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Natural Language Reasoning V.S Symbolic Reasoning

LLMs rely heavily on semantics in tokens and contexts, and 
struggle more when semantics are inconsistent or when 
symbolic/counter-commonsense reasoning is needed. 

[1]Gendron, Gaël, et al. "Large language models are not strong abstract reasoners." arXiv preprint 
arXiv:2305.19555 (2023).

5



Natural Language Reasoning V.S Symbolic Reasoning

Using Natural Language to explicitly describe the 
chain-of-thought(CoT) in the context can enhance models’ 
abilities to do both Natural Language and Symbolic Reasoning 
Tasks.

[2] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances 
in neural information processing systems 35 (2022): 24824-24837.
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Competitive-Level Programming in the Era of LLMs

Some Brain Teaser
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[Max Cities To Destroy]

•  

def max_city(n):
    return math.ceil(n/3)
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Challenges in Competitive Programming Problems

Many times, the chain-of-thought process is not reflected directly 
in the solution. 

Human-written editorials are hard to obtain at scale.

How to better reason CP problems when <problem, 
solution-program> pairs are all we have?
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Enhancing Competitive-level Code Generation 
by Utilizing Natural Language Reasoning

 solution (code) natural language chain-of-thought 
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Can LLMs learn the algorithmic reasoning needed for 
competitive-level programming task?

• Editorial: a comprehensive explanation or guide that discusses the 
problems presented in a programming contest or challenge, which 
often contains some of the following aspects.

– Problem restatment
– Difficulty
– Prerequisites
– Quick explanation
– Explanation
– Code
– Pitfalls(what to avoid)
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LLMs Reasoning Distillation

problem
verify

Teacher LLM

fine-tune

Student LLM

solve
CoT, solution <problem, CoT, solution>

GPT-4 performs poorly in solving problems from the 
training set to yield a set of effective CoTs.

[3]Hsieh, Cheng-Yu, et al. "Distilling step-by-step! outperforming larger language models with less training data and smaller model 
sizes." arXiv preprint arXiv:2305.02301 (2023). 13



Distill Explaining as Reasoning

problem
verify

Teacher LLM

fine-tune

Student LLM

solve
CoT, solution <problem, CoT, solution>

problem, solution

Explainer LLM

Explain
CoT <problem, CoT, solution>

fine-tune
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Methodology

<Problem, Human Solution> 🡪 Editorial-style explanation of solution

*A simplified illustration 
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Human Evaluation of Explanations

write

Problem

Programmer

Solution

LLM(GPT)

Explanation

generate

Pipeline Likert Score on Different Aspects:

(1)Brief Problem Summary

(2)Used Algorithm

(3)Step-by-Step Description

(4)Explanation of the Solution

(5)Time Complexity

(6)Why this solution is correct (Key Idea)

score
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Human evaluation of LLMs-generated explanations

Likert Scores of 50 problems with rankings from 800 to 2000. 

Brief Prob Summary

Used Algo

Step-by-Step

Explanation O(·)One-Sent Usefulness Clearness

why correct

Understand 
key idea
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Can LLMs learn from silver(generated) explanations?

Why not directly learn from problem to code? 

Learning from<problem, human solution> pair is not effective.

• Practically: AlphaCode fine-tuned on over 12M pairs, but was only to 
obtain a solve rate of 15.6% when sampling 1000 programs.

• Reasons:
– Solutions were written given time constraints, readibility is poor.

– Diverse in coding style, programming languages.

– Solution alone don’t contain the reasoning process preceding problem solving.
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Can LLMs learn from silver explanations?

• Natural language explanations, on the other hand, semantic rich, 
containing the reasoning process preceding implementation, should be 
more effective for models to learn reasoning abilities.

• If generated at scale, can silver explanations be used as a source to 
improve subsequent problem-solving? 

19



Learning Algorithmic Reasoning with LLMs from 
Explaining Solution Programs

Instead of learning from the <problem, solution-program> pairs, we 
propose to learn from hierarchical, detailed, and semantic-rich 
explanations(Given by Explainer LLM) of them. 

Our framework contains a Reasoner LLM to learn the problem-solving 
reasoning process from automatically annotated editorial-style 
explanations and a Coder LLM to implement the solution given the verbal 
solution from the Reasoner. 
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Dataset and Evaluation Metrics

Dataset Source: Codeforces problems after 2022, ensuring GPT-3.5/GPT-4 
hasn’t seen the problems. 

We collect 246 problems with release date later than Aug 2023, with similar 
distribution than CodeContests.

Explanation Collection: We generate 8248 editorial style explanations for 
distinct <problem, solution> pairs from GPT-4.

Metric: Solve@k, For each problem, Sample k solutions, submit them to online 
judge. Total number of problems with at least one accepted solution.
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Baselines and Our Method

0-shot Coder: Intruct an LLM(Coder) to solve the problem and give the code.

0-shot Coder w/CoT: 0-shot Coder + Chain-of-thought prompting
0-shot Reasoner + Coder: Reasoner to give editorial style CoT; and Coder to 
implement the program conditioned on the editorial style CoT.

Fine-tuned Coder: Fine-tune an LLM on <problem, solution-program> pairs

Supervised Fine-tune (SFT) for all finetuned mentioned.
All Coder and Reasoner LLMs in this work is GPT-turbo-3.5.
We also experimented with DeepSeek-Coder-6.7b (details in paper)
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Editorial-Style Chain-of-thought (Explanation)

• Problem Restatement

• Conceptual Evolution

• Key to Solution

• Solution Description

• Step-by-Step Solution Explanation

• Common Pitfalls

24



Experimental Results

Full Exp: With every aspect in the editorial.

Best Exp: With single aspect in the editorial that can yield best performance(Step-by-Step)

solve@1 solve@5 solve@10

0-shot Coder 1.1% 2.7% 3.3%

0-shot Coder w/CoT 1.1% 2.7% 3.6%

Finetuned Coder 0.5% 0.8% 3.6%

0-shot Reasoner + Coder 1.2% 2.5% 3.3%

w/ Finetuned Reasoner (Full Exp) 1.1% 3.2% 4.9%

w/ Finetuned Reasoner (Best Exp) 1.1% 3.7% 6.1%
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Does learning from explanations help avoid 
brute-force solution?

Accepted Wrong Answer Time Limit 
Exceeded

Other

0-shot Coder 24.0% 18.3% 56.7% 1.0%

0-shot Coder w/CoT 23.4% 29.2% 42.5% 5.0%

0-shot Reasoner+Coder 24.3% 19.3% 52.9% 3.4%

w/ Full Explanation 42.1% 22.8% 29.8% 5.3%

w/ Step-by-Step 
Description

50.0% 19.2% 25.6% 5.8%

w/ Key Idea 35.5% 29.2% 32.3% 3.1%

Final judgments from Codeforces of programs that pass public tests, cases rejected due to 
ineffeciency are largely reduced. (Other=Run time error/memory limit exceeded etc.) 26



RQ: Should we have diverse solving strategies or 
should we have different implementations of the 
most promising strategy?
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Sample from Reasoner/Coder

k strategies from Reasoner
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Sample from Reasoner/Coder

k programs for one strategy
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Num_Sample from 
Reasoner

Num_Sample/edit
from Coder

Solve@10

1 10 2.8%

2 5 3.7%

5 2 4.1%

10 1 4.9%

Sample from Reasoner/Coder

All experiments are with Fine-tuned Reasoner(Full Explanation), the temperature for sampling is 0.5
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Ans: Sampling different chain-of-thoughts is more 
helpful than implementing different programs 
under the same chain-of-thoughts.

RQ: Should we have diverse solving strategies or 
should we have different implementations of the 
most promising strategy?
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Conclusion from Learning Algorithmic Reasoning 
with LLMs from Explaining Solution Programs
To tackle the challenging algorithmic reasoning task:

• Explaining solutions along with problems leverages LLMs’ abilities in 
code comprehension, enable reasoning process distilling for problems 
beyond models’ capacities.

• Learning from hierarchical, detailed, and semantic-rich explanations of 
<problem, solution-program> pairs is more effective than learning from 
them directly and can substantially improve LLMs’ performance in 
solving these problems.

• Sampling more strategies allows distinct reasoning paths, which can 
improves solve@k when k>1 32
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Findings & Questions

• LLMs are good at explaining 
solutions.

• Separating the strategy-exploration 
& code implementation helps 
structuring the reasoning process

• Exploring diverse problem-solving 
strategies performs better than 
exploring diverse implementations 
of similar strategy.

• Can LLMs self-explain its 
generated solutions?

• May we apply this to a 
zero-shot setting?

• How do LLMs efficiently 
explore different strategies 
in the search space?
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Problem

Planner Coder Tester Debugger

Agent Collaboration for Code Generation with LLMs

[3]Zhong, Li, Zilong Wang, and Jingbo Shang. "Debug like a human: A large language model 
debugger via verifying runtime execution step-by-step." arXiv preprint arXiv:2402.16906 (2024). 37



Existing Work: Tree Search for Code Generation

Planner

…[4] Islam, Md Ashraful, Mohammed Eunus Ali, and Md Rizwan Parvez. "Mapcoder: Multi-agent code 
generation for competitive problem solving." arXiv preprint arXiv:2405.11403 (2024).
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Tree Search Trade-off:

❖ Go Deeper: keep refining one solution

❖ Go Wider: try different solutions/plans

Carefully set the width & depth according to task
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Limitations of Previous Works

❖ Agent pipeline is fixed process

❖ Tree exploration relies on width&depth parameters

❖ Exit condition is simple (e.g., pass visible test cases)
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Motivation

➢ Agent pipeline is flexible

➢ Tree Expanding is dynamic

➢ Exit Condition (Verified)

Should I iterate this method 
and debug or should I try a 

different strategy?

for this problem, maybe 
try 3 different 
strategies…

Given test cases are all 
positive integers, what if 

they are negative?
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Method Overview
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❖ Local Functional Agents:
➢ Thinker: Generate Strategies for Solving or Error Reflection
➢ Solver: Implement Code from Strategy
➢ Debugger: Refine Code based on Reflection

❖ Global Critic Agent:
➢ Tree Expansion, number of children
➢ Node-Wise Decision Making on Next Step
➢ Evaluate Solutions w/ Execution Feedback from Environment

Agents (Zero-shot Instruction)

43



Prompts

Solver:
Your goal is to implement the solution for a programming problem 
based on the instruction from user.
[Problem]: <problem description>
[Instruction]: <strategy>

Thinker: 
Your goal is to think of multiple strategies in English on how to 
[approach and solve this problem)]/[improve this solution]. You should 
decide how many and what strategies are feasible and list and number 
them line by line. …
[Problem]: <problem description>
[Solution]: <previous solution> 

Debugger:
Your goal is to improve the following solution for a programming 
problem based on its execution feedback on test cases, including 
evaluation/reflection for the solution and an instruction from user. …
[Problem]: <problem description>
[Solution]: <previous solution> 
[Feedback]: <execution feedback>, <Critic Agent feedback>
[Instruction]: <reflection>

Critic Agent Scoring & Evaluation: 
Your task is to evaluate a strategy and corresponding 
implementation for solving a programming problem. The 
solution failed on test cases. 
You should score from 1 to 5 on how good the execution outputs 
are matching the expected ones. …
—----------------------------------------------
You should score from 1 to 5 on how well do the solution 
implement the strategy and solve the task? 
Evaluate if one should keep refining this solution or try other 
strategies. 
[problem] [solution] [feedback]

Critic Agent Solution Verification:
You are given a programming task along with a user's solution 
that passed all visible tests. Your job is to verify whether this 
solution will pass the hidden test cases. Answer True if it’s an 
acceptable solution, Answer False if it’s not. Your answer should 
be a single word True/False. …
[problem][solution][feedback]
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Experiments
❖ Datasets:

➢ HumanEval(Chen et al., 2021), 
➢ MBPP(Austin et al., 2021)
➢ HumanEval+; MBPPEval+ (Liu et al., 2023)
➢ CodeContests(Li et al., 2022) 
➢ APPS(Hendrycks et al., 2021)

❖ Evaluation Metric: 
Pass@1 (only 1 program will be run against evaluator); 
code budget = 20 (allow to gen at most 20 programs per prob)
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❖ Baselines & Methods
➢ CodeTree-BFS/DFS: use BFS/DFS to replace agent judge for 

what nodes to explore and tree expansion
➢ Resample: Keep resampling till reaching budget.
➢ Reflexion: Keep code-execute-reflect-code till reaching 

budget (Shinn et al., 2023)
➢ Strategy List: List budget of strategy, implement one by one
➢ MapCoder: An agent-based coding framework(Islam et al., 

2024) 

Experiments
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Experimental Results
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❖ Budget Usage Curve
Experimental Results
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Completed Work: CodeTree
❖ Efficiency 
Adding budget doesn’t increase the average inference time linearly, simple 
problems will still exit early before reaching budget.

(code budget=30 for Resample, Reflexion & CodeTree under GPT-4o; off-the-shelf O1-preview) 49



Conclusion from CodeTree

To solve algorithmic programming challenges in a 0-shot setting:

● Separating Natural Language Reasoning with Code Implementation into 2 
stages allows agents to explore distinct thoughts towards problem-solving.

● Exploring the correct solution search space can be exhausive, and 
agent-guided tree seach can make it efficient.

50



Significant Progress has been made to Solving CP.
Can LLMs trained to solve problems identify similar 
problems?

51
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Completed Work: AlgoSimBench
The Myth of Generalizing Algorithmic Reasoning

Problem

(Chain-of-thought)
Solution

LLM

A Top-down Point of View

• Analyze the problem and  identify the 
problem type

• Identify the solving strategies and 
algorithms to use

• Work out the details on the algorithm
• Implement the code => debug
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Can LLMs trained to solve problems identify similar 
problems?

Problem

(Chain-of-thought)
Solution

LLM

Problem, Problem, ..., Problem
Ref_Prob

the __ problem requires the 
same algorithm as the ref_prob

LLM
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Semantic-Adversary Multi-Choice Question to Identify 
Algorithmically Similar Problems
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Data Curation

● Problem Algorithm Labels:
Four Competitive-Programming Online Communities

● Problem Sources: Codeforces, AtCoder, CodeChef
● Semantic-adversary: Distractors as semantically similar as 

possible, Correct option as semantically dissimilar as 
possible

● Human-Verify: filter out False Distractors

402 MCQs with 903 distinct problems, 231 distinct 
fine-grained algorithm tags.
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Fine-grained Algorithm Tags

Instead of general tags 
like dynamic 
programming, we use 
fine-grained algorithms 
tags that can represent the 
solution better.
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Attempted Solution Matching
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Experimental Settings
● Dataset: AlgoSimBench 402 MCQs
● Evaluation metric: cross-dataset accuracy
● Experimental Settings:

○ LLM End2End Selection: {problem}{options} =LLM=> {CoT}{option}
○ Retrieval Setting: Sim(ref_p, correction_option) > Sim(ref_p, 

option_i)
● Methods:

○ Problem Statement
○ Summary
○ Oracle Solution
○ ASM-NL(Natural Language); ASM-PL (Programming Language)
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LLM End-to-End Selection

Evaluate models’ performances (%) of MCQ are correct.
Solution*: An oracle setting where each human-written correct solution is assumed 
to be available any time.
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Retrieval-based Selection

Accuracy(%) comparison across summary, ASM generated by different LLMs. 
GCB: graph-code-bert
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Conclusion from AlgoSimBench:

● The algorithmic reasoning abilities learnt from problem solving does 
not automatically generalize to similar domain: identifying 
algorithmically similar problems

● To explicitly enforce LLMs to solve the problem first will largely 
improve LLMs’ performances in identifying algorithmically similar 
problems

● BM25 which focuses more on keywords performs better than dense 
retrieval methods
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● ContraDoc: Understanding Self-Contradictions in 
Documents with Large Language Models (NAACL 2024)
Jierui Li, Vipul Raheja and Dhruv Kumar 

● Learning to Reason Deductively: Math Word Problem 
Solving as Complex Relation Extraction (ACL 2022)
Zhanming Jie, Jierui Li and Wei Lu 

Other Works when @ UT
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Proposed Future Works
Instruction-aware Code Embedding

Identifying Algorithmically Similar problems can be an important step 
towards generating diverse strategies for one problem as it can flag 
references in a corpus of problems. 

To tackle the challenge presented in AlgoSimBench, we aim at improving the 
current Code Embedding models to highlight features related to algorithms 
and problem-solving.
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Instruction-aware Code Embedding
Preliminaries

Text Piece Embedding: Given each piece of query or document, the embedding model 
represents it as a single vector.

Top-k Candidate Finding: With cosine-similarity or doc-product similarity, find top-k 
closest vectors to the query vector.

Reranker: Interaction between query and each candidate document.
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text

LM Encoder

mean pool

embedding model

hidden states

pooling

representation

Mean Pooling
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text

LM Encoderembedding model

hidden states

pooling

representation

Last-token Pooling
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Contrastive Training for Embedding Models 

query

positive

hard negatives

in-batch negatives

Pull Closer

Push Farther

• Mining Hard Negatives[5]

• Causal LMs[6]

• Instruct-append[6]

[5]Suresh, Tarun, et al. "CoRNStack: High-quality contrastive data for better code retrieval and 
reranking." arXiv preprint arXiv:2412.01007 (2024).
[6]Zhang, Yanzhao, et al. "Qwen3 Embedding: Advancing Text Embedding and Reranking Through 
Foundation Models." arXiv preprint arXiv:2506.05176 (2025).
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Limitations of Current Methods
Averaged Information in Text : Pooling aggregating token-level represen- tations into 
fixed-length embeddings, without specific focus of any part

Task-Agnostic: Code2NL, NL2Code, Code2Code tasks are all feeded as <postive, anchor, 
negative> triplets, performance relies on “defining hard negatives”[5]

Intention-Unaware: One might intend to retrieve code pieces with “functionality” or 
“algorithm” or “programming language”.
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Instruction-attended Text Embedding
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Interactive Text Embedding
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Learning Embeddings from Downstream Code 
Generation Feedback

Embedding
Model

text

Relevant 
Pairs

Generative
Model

RAG-CodeGen
Task

Code
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Learning Embeddings from Downstream Code 
Generation Feedback

Embedding
Model

text

Relevant 
Pairs

Generative
Model

RAG-CodeGen
Task

CodeEmbedding/Generative 
Models are the same model
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Evaluation

Datasets: 

Embedding/Retrieve Benchmarks: MTEB[7], AlgoSimBench, CodeSearchNet[8]

CodeRAG: CodeRAGBench, RPO

CP CodeGen: LiveCodeBench, CodeContests

[7]Muennighoff, Niklas, et al. "Mteb: Massive text embedding benchmark." arXiv preprint 
arXiv:2210.07316 (2022).
[8] Husain, Hamel, et al. "Codesearchnet challenge: Evaluating the state of semantic code 
search." arXiv preprint arXiv:1909.09436 (2019).
[9] Shi-Qi Yan and Zhen-Hua Ling. Rpo: Retrieval preference optimization for robust 
retrieval-augmented generation, 2025. 
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Question & Discussion
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