
Impact of Evaluation Methodologies 
on Code Summarization

Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Raymond J. Mooney, Milos Gligoric

The University of Texas at Austin

ACL 2022

partially supported by



ML Models for Code Summarization

• Advances in ML/NLP are helping developers to produce and maintain 
software-related artifacts, for example code summarization

2

comment generation

method naming



Evaluation Methodologies of Code Summarization ML Models

• extract a dataset of (code, comment) samples

• split the dataset into training, validation, test sets

• train on training + validation sets

• report automatic metrics on test set

3

project n

project 2

project 1
split

training (70%)
…

validation (10%)
…

test (20%)
…

ML model



1 written in 2018

2 written in 2019

Temporal Relations Not Explicitly Modeled in Prior Work

misunderstanding if a model might be useful / not useful once adopted

4

evaluation methodologies in prior work

time

train model on

1 …

use model on

2 …

use case of ML model

training

2 …

validation
…

test

1 …

mixed-project

using future to predict past

training

1 2 …

validation

a b …

test

𝛼 𝛽 …

cross-project

too strong assumption



Our Contributions

• Study the evaluation methodologies of 18 recent papers on code summarization
• found two commonly used evaluation methodologies: mixed-project and cross-project

• define two use cases that could be evaluated by these methodologies

• Define a more practical use case: continuous-mode

• Propose an appropriate evaluation methodology for this use case: time-segmented

• Experiment several existing ML models using the three methodologies

5

mixed-project (used by 15/18)

cross-project (used by 4/18)

time-segmented (proposed)

evaluation methodology use case

in-project batch-mode

cross-project batch-mode

continuous-mode



• Evaluation methodologies and use cases

• Experiments to study the impact of evaluation methodologies

• experiments setup

• dataset

• results and findings

Outline

mixed-project

cross-project

time-segmented

in-project batch-mode

cross-project batch-mode

continuous-mode

6



Alice’s project

Alice

Mixed-Project Evaluation Methodology &
In-Project Batch-Mode Use Case

7

2
6

5

1

4

3

other projects

2
6

5

ML model

train
ap

p
ly

1

4

3

• Used in prior work

• Randomly shuffle the samples and split them 
into training, validation, and test sets



Alice’s project

Alice

Cross-Project Evaluation Methodology &
Cross-Project Batch-Mode Use Case

8

other projects

ML model trainapply

• Used in prior work

• Randomly shuffle the projects and split them 
into training, validation, and test sets



Limitation of Batch-Mode Use Cases

Usually happen only once in the lifecycle of a project

9

other projects

2
6

5

ML model

train
ap

p
ly

1

4

3

use ML model at 𝜏−1

in-project batch-mode

use ML model at 𝜏
temporal relations among samples exists

other projects

ML model
train

ap
p

ly

2
6

5

1

4

3

7
8

9



Continuous-Mode Use Case

10

time

τ−1

write comments for each method around the 
same time as the method itself

download the latest model

other projects

ML model train

Alice’s project

apply it on each newly written method

ap
p

ly
download the latest model𝜏

ML model train

…

Alice

ap
p

ly

2
1

3

other projects
Alice’s project

2
6

5

1

4

3

6
5 4

7 8
9

apply it on each newly written method



Time-Segmented Evaluation Methodology

• Not used in prior work on developing new ML models for code summarization

• Split samples in a time-aware method
• assign samples before 𝜏−2 to training set

• assign samples after 𝜏−2 and before 𝜏−1 to validation set

• assign samples after 𝜏−1 and before 𝜏 to test set

11



• Evaluation methodologies and use cases

• Experiments to study the impact of evaluation methodologies

• experiments setup

• dataset

• results and findings

Outline

mixed-project

cross-project

time-segmented

in-project batch-mode

cross-project batch-mode

continuous-mode

12



Experiments Setup

13

comment generation method naming

Metrics

BLEU
METEOR
ROUGE-L
EM (exact match)

Precision
Recall
F1
EM (exact match)

Models
DeepComHybrid
Transformer
Seq2Seq

Code2Vec
Code2Seq

Hu et al. ESE’20

Ahmad et al. ACL’20

Alon et al. POPL’19

Alon et al. ICLR’19

Task



Dataset

• 77,745 (code, comment) with timestamps from 160 popular Java projects on GitHub

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology
• common test (TestC) set to compare each pair of methodologies

14

project n

project 2

project 1 split

MP = mixed-project    CP = cross-project    T = time-segmented

2019.1.1

2020.1.1

2021.1.1

70%10%20%

70% 10% 20%



Results and Findings (1/4)

• Different methodologies may lead to conflicting evaluation results
• Code2Vec is better than Code2Seq under the mixed-project and time-segmented methodologies, but is 

worse under the cross-project methodology

15

task: method naming

metric: F1

59.3

18.9

52.6
39.8

0

25

50

75

100

mixed-project cross-project

Code2Vec Code2Seq

55.3

14.4

46.2
35.5

0

25

50

75

100

time-segmented cross-project

Code2Vec Code2Seq



Results and Findings (2/4)

16

21.2

59.6

21.6

62.1

0

25

50

75

100

cross-project time-segmented

Seq2Seq Transformer

• Different methodologies may lead to conflicting evaluation results
• Transformer is statistically significantly better than Seq2Seq under the time-segmented methodology, but 

not under the cross-project methodology

task: comment generation

metric: METEOR

* *

*no significant difference between the models



Results and Findings (3/4)

• Evaluation results from prior work do not represent the ML models’ performance 
in the continuous-mode use case

• Results under the mixed-project methodology are inflated

• Results under the cross-project methodology may be an under-estimation

17

task: method naming

metric: F1

56.2
42.9

63.7

46.9

0

25

50

75

100

Code2Vec Code2Seq

time-segmented mixed-project

53.9
40.6

13.0
28.8

0

25

50

75

100

Code2Vec Code2Seq

time-segmented cross-project



Results and Findings (4/4)

• Evaluation results from prior work do not represent the ML models’ performance 
in the continuous-mode use case

• Results under the mixed-project methodology are inflated

• Results under the cross-project methodology may be an under-estimation

18

task: comment generation

metric: BLEU

56.3 53.2
43.2

65.6 61.7
52.6

0

25

50

75

100

Transformer Seq2Seq DeepComHybrid

time-segmented mixed-project

56.1 53.3
45.6

14.3 13.4 11

0

25

50

75

100

Transformer Seq2Seq DeepComHybrid

time-segmented cross-project



Conclusions

• We need to more diligently choose evaluation methodology and 
report results of ML models according to the intended use cases

• Time-segmented evaluation methodology should be adopted in the 
evaluation of ML models for code summarization

19

data and code: https://github.com/EngineeringSoftware/time-segmented-evaluation
preprint: https://arxiv.org/abs/2108.09619

Pengyu Nie <pynie@utexas.edu>

https://github.com/EngineeringSoftware/time-segmented-evaluation
https://arxiv.org/abs/2108.09619


backup slides

20



Evaluation Methodologies of ML Models

• Evaluation paradigm based on automatic metrics: 
• split a dataset of (code, comment) samples into training, validation, and test sets

• train ML models on training + validation sets

• report automatic metrics (e.g., BLEU, F1) on test set

21

• What is the intended use cases of the ML model?
• How to split the dataset, such that the evaluation results represent 

the ML model’s performance in the intended use cases?
• In the context of code summarization: should we consider the 

timestamps of code and comments?

split

training (70%)
…

validation (10%)
…

test (20%)
…

ML model

project 1 project 2



Timestamps of Code and Comments

C

A B

D𝜏

𝜏−1

time

• Developers iteratively add/edit code and comments
• the style of newer code and comments written can be affected by older code and comments

• Temporal relations among samples are not explicitly modeled in the evaluation of 
prior work

• can lead to inflated values for automatic metrics

• can lead to misunderstanding if a model might be useful once adopted

22

training

B C …

validation
…

test

A D …

split



Experiments Setup

• Dataset
• (code, comment) with timestamps from popular Java

projects on GitHub using English for summaries

• collected samples before 𝜏 = 2021.1.1
time-segmented on 𝜏−2 = 2019.1.1 and 𝜏−1 = 2020.1.1

• splitting ratios for in-project and cross-project: 70%,10%,20%

• Models
• comment generation: DeepComHybrid, Transformer, Seq2Seq

• method naming: Code2Vec, Code2Seq

• Automatic metrics
• comment generation: BLEU, METEOR, ROUGE-L, EM (exact match)

• method naming: precision, recall, F1, EM (exact match)

• Run each model 3 times & perform statistical significance tests

23



Results and Findings (1/3)

• Depending on the methodology, one model can perform better or worse than another

24



Results and Findings (2/3)

• Depending on the methodology, the differences between models may or may not be observable

25

not significant not significant



Results and Findings (3/3)

• Results under the mixed-project methodology are inflated

• Results under the cross-project methodology may be an under-estimation of the more realistic 
continuous-mode use case

26

0



Conclusions

• We need to more diligently choose evaluation methodology and 
report results of ML models according to the intended use cases

• Time-segmented evaluation methodology should be adopted in the 
evaluation of ML models for code summarization

• Misuse of evaluation methodologies can lead to inflated values for automatic 
metrics and misunderstanding if a model might be useful once adopted

27

data and code: https://github.com/EngineeringSoftware/time-segmented-evaluation
preprint: https://arxiv.org/abs/2108.09619

Pengyu Nie <pynie@utexas.edu>

https://github.com/EngineeringSoftware/time-segmented-evaluation
https://arxiv.org/abs/2108.09619


Application of Methodologies: Goals

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies

28

project n

project 2

project 1 split

MP = mixed-project    CP = cross-project    T = time-segmented



Application of Methodologies: Step 1/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies

29

1. time-segment samples in each project



Application of Methodologies: Step 2/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies

30

1. time-segment samples in each project

2. perform in-project split

splitting ratios

𝑟𝑥 = 70%
𝑟𝑦 = 10%

𝑟𝑧 = 20%



Application of Methodologies: Step 3/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies

31

1. time-segment samples in each project

2. perform in-project split

3. perform cross-project split

splitting ratios

𝑟𝑥 = 70%
𝑟𝑦 = 10%

𝑟𝑧 = 20%



Application of Methodologies: Step 4/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies

32

1. time-segment samples in each project

2. perform in-project split

3. perform cross-project split

4. group into Train, Val, and TestS sets

MP = mixed-project    CP = cross-project    T = time-segmented



Application of Methodologies: Step 5/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies

33

1. time-segment samples in each project

2. perform in-project split

3. perform cross-project split

4. group into Train, Val, and TestS sets

5. intersect TestS sets to get TestC sets

MP = mixed-project    CP = cross-project    T = time-segmented



Application of Methodologies: Step 6/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies

34

1. time-segment samples in each project

2. perform in-project split

3. perform cross-project split

4. group into Train, Val, and TestS sets

5. intersect TestS sets to get TestC sets

6. perform post-processing

• downsample Train sets to the same size
• remove duplicates from Val, TestS, and TestC sets

MP = mixed-project    CP = cross-project    T = time-segmented



Mixed-Project Evaluation Methodology

Randomly shuffle the samples and split them into training, validation, and test sets

35



In-Project Batch-Mode Use Case

36

time

write comments for only a part of methods

time to add documentations, with ML model

2
6

5

1

4

3

Alice’s project

τ

other projects

2
6

5

ML model

train
ap

p
ly

1

4

3

Alice



Cross-Project Evaluation Methodology

Randomly shuffle the projects and split them into training, validation, and test sets

37



Cross-Project Batch-Mode Use Case

38

time

do not write comments for any method Alice’s project

time to add documentations, with ML modelτ

other projects

ML model trainapply

Alice



Not Considering Temporal Relations During Evaluation

• Temporal relations among samples are not explicitly modeled

• Can lead to misunderstanding if a model might be useful / not useful once adopted

39

2
1

4

time 6
5

3

training

2 4 …

validation

1 6 …

test

3 5 …

evaluation methodology

train model on

1 2 3 …

use model on

4 5 6 …

intended use case



Experiments Setup

40

comment generation method naming

Models

DeepComHybrid
Transformer
Seq2Seq

Code2Vec
Code2Seq

Metrics

BLEU
METEOR
ROUGE-L
EM (exact match)

Precision
Recall
F1
EM (exact match)

Hu et al. ESE’20

Ahmad et al. ACL’20

Alon et al. POPL’19

Alon et al. ICLR’19

Task


