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ML Models for Code Summarization

• Advances in ML/NLP are helping developers to produce and maintain 
software-related artifacts, for example code summarization
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Evaluation Methodologies of Code Summarization ML Models

• extract a dataset of (code, comment) samples

• split the dataset into training, validation, test sets

• train on training + validation sets

• report automatic metrics on test set
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1 written in 2018

2 written in 2019

Temporal Relations Not Explicitly Modeled in Prior Work

misunderstanding if a model might be useful / not useful once adopted
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Our Contributions

• Study the evaluation methodologies of 18 recent papers on code summarization
• found two commonly used evaluation methodologies: mixed-project and cross-project

• define two use cases that could be evaluated by these methodologies

• Define a more practical use case: continuous-mode

• Propose an appropriate evaluation methodology for this use case: time-segmented

• Experiment several existing ML models using the three methodologies
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• Evaluation methodologies and use cases

• Experiments to study the impact of evaluation methodologies

• experiments setup

• dataset

• results and findings
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Alice’s project

Alice

Mixed-Project Evaluation Methodology &
In-Project Batch-Mode Use Case
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Alice’s project

Alice

Cross-Project Evaluation Methodology &
Cross-Project Batch-Mode Use Case
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• Used in prior work

• Randomly shuffle the projects and split them 
into training, validation, and test sets



Limitation of Batch-Mode Use Cases

Usually happen only once in the lifecycle of a project
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Continuous-Mode Use Case
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Time-Segmented Evaluation Methodology

• Not used in prior work on developing new ML models for code summarization

• Split samples in a time-aware method
• assign samples before 𝜏−2 to training set

• assign samples after 𝜏−2 and before 𝜏−1 to validation set

• assign samples after 𝜏−1 and before 𝜏 to test set
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• Evaluation methodologies and use cases

• Experiments to study the impact of evaluation methodologies

• experiments setup

• dataset

• results and findings
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Experiments Setup
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comment generation method naming

Metrics

BLEU
METEOR
ROUGE-L
EM (exact match)

Precision
Recall
F1
EM (exact match)
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Seq2Seq
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Code2Seq

Hu et al. ESE’20

Ahmad et al. ACL’20

Alon et al. POPL’19

Alon et al. ICLR’19

Task



Dataset

• 77,745 (code, comment) with timestamps from 160 popular Java projects on GitHub

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology
• common test (TestC) set to compare each pair of methodologies
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Results and Findings (1/4)

• Different methodologies may lead to conflicting evaluation results
• Code2Vec is better than Code2Seq under the mixed-project and time-segmented methodologies, but is 

worse under the cross-project methodology
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Results and Findings (2/4)
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• Different methodologies may lead to conflicting evaluation results
• Transformer is statistically significantly better than Seq2Seq under the time-segmented methodology, but 

not under the cross-project methodology

task: comment generation
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* *

*no significant difference between the models



Results and Findings (3/4)

• Evaluation results from prior work do not represent the ML models’ performance 
in the continuous-mode use case

• Results under the mixed-project methodology are inflated

• Results under the cross-project methodology may be an under-estimation
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Results and Findings (4/4)

• Evaluation results from prior work do not represent the ML models’ performance 
in the continuous-mode use case

• Results under the mixed-project methodology are inflated

• Results under the cross-project methodology may be an under-estimation
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Conclusions

• We need to more diligently choose evaluation methodology and 
report results of ML models according to the intended use cases

• Time-segmented evaluation methodology should be adopted in the 
evaluation of ML models for code summarization
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data and code: https://github.com/EngineeringSoftware/time-segmented-evaluation
preprint: https://arxiv.org/abs/2108.09619

Pengyu Nie <pynie@utexas.edu>

https://github.com/EngineeringSoftware/time-segmented-evaluation
https://arxiv.org/abs/2108.09619


backup slides
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Evaluation Methodologies of ML Models

• Evaluation paradigm based on automatic metrics: 
• split a dataset of (code, comment) samples into training, validation, and test sets

• train ML models on training + validation sets

• report automatic metrics (e.g., BLEU, F1) on test set
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• What is the intended use cases of the ML model?
• How to split the dataset, such that the evaluation results represent 

the ML model’s performance in the intended use cases?
• In the context of code summarization: should we consider the 

timestamps of code and comments?
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Timestamps of Code and Comments

C

A B

D𝜏

𝜏−1

time

• Developers iteratively add/edit code and comments
• the style of newer code and comments written can be affected by older code and comments

• Temporal relations among samples are not explicitly modeled in the evaluation of 
prior work

• can lead to inflated values for automatic metrics

• can lead to misunderstanding if a model might be useful once adopted

22

training

B C …

validation
…

test

A D …

split



Experiments Setup

• Dataset
• (code, comment) with timestamps from popular Java

projects on GitHub using English for summaries

• collected samples before 𝜏 = 2021.1.1
time-segmented on 𝜏−2 = 2019.1.1 and 𝜏−1 = 2020.1.1

• splitting ratios for in-project and cross-project: 70%,10%,20%

• Models
• comment generation: DeepComHybrid, Transformer, Seq2Seq

• method naming: Code2Vec, Code2Seq

• Automatic metrics
• comment generation: BLEU, METEOR, ROUGE-L, EM (exact match)

• method naming: precision, recall, F1, EM (exact match)

• Run each model 3 times & perform statistical significance tests
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Results and Findings (1/3)

• Depending on the methodology, one model can perform better or worse than another
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Results and Findings (2/3)

• Depending on the methodology, the differences between models may or may not be observable
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not significant not significant



Results and Findings (3/3)

• Results under the mixed-project methodology are inflated

• Results under the cross-project methodology may be an under-estimation of the more realistic 
continuous-mode use case
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Conclusions

• We need to more diligently choose evaluation methodology and 
report results of ML models according to the intended use cases

• Time-segmented evaluation methodology should be adopted in the 
evaluation of ML models for code summarization

• Misuse of evaluation methodologies can lead to inflated values for automatic 
metrics and misunderstanding if a model might be useful once adopted
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data and code: https://github.com/EngineeringSoftware/time-segmented-evaluation
preprint: https://arxiv.org/abs/2108.09619

Pengyu Nie <pynie@utexas.edu>

https://github.com/EngineeringSoftware/time-segmented-evaluation
https://arxiv.org/abs/2108.09619


Application of Methodologies: Goals

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies
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Application of Methodologies: Step 1/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies
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1. time-segment samples in each project



Application of Methodologies: Step 2/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies
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1. time-segment samples in each project

2. perform in-project split

splitting ratios

𝑟𝑥 = 70%
𝑟𝑦 = 10%

𝑟𝑧 = 20%



Application of Methodologies: Step 3/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies
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1. time-segment samples in each project

2. perform in-project split

3. perform cross-project split

splitting ratios

𝑟𝑥 = 70%
𝑟𝑦 = 10%

𝑟𝑧 = 20%



Application of Methodologies: Step 4/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies
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1. time-segment samples in each project

2. perform in-project split

3. perform cross-project split

4. group into Train, Val, and TestS sets

MP = mixed-project    CP = cross-project    T = time-segmented



Application of Methodologies: Step 5/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies

33

1. time-segment samples in each project

2. perform in-project split

3. perform cross-project split

4. group into Train, Val, and TestS sets

5. intersect TestS sets to get TestC sets

MP = mixed-project    CP = cross-project    T = time-segmented



Application of Methodologies: Step 6/6

• Given a dataset of (code, comment) with timestamps, split it to get
• training (Train), validation (Val), and standard test (TestS) sets for each methodology

• common test (TestC) set to compare each pair of methodologies
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1. time-segment samples in each project

2. perform in-project split

3. perform cross-project split

4. group into Train, Val, and TestS sets

5. intersect TestS sets to get TestC sets

6. perform post-processing

• downsample Train sets to the same size
• remove duplicates from Val, TestS, and TestC sets

MP = mixed-project    CP = cross-project    T = time-segmented



Mixed-Project Evaluation Methodology

Randomly shuffle the samples and split them into training, validation, and test sets
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In-Project Batch-Mode Use Case
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Cross-Project Evaluation Methodology

Randomly shuffle the projects and split them into training, validation, and test sets
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Cross-Project Batch-Mode Use Case
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Not Considering Temporal Relations During Evaluation

• Temporal relations among samples are not explicitly modeled

• Can lead to misunderstanding if a model might be useful / not useful once adopted
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Experiments Setup
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