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ML Models for Code Summarization

« Advances in ML/NLP are helping developers to produce and maintain
software-related artifacts, for example code summarization

public static String selectText(XPathExpression expr, Node context) {

try {
return (String)expr.evaluate(context, XPathConstants.STRING );
} catch (XPathExpressionException e) { - /** Evaluates the xpath expression as text. */
throw new XmlException(e);
} comment generation
¥

int ?(String str, char ch) {
int num = 0;

int index = -1;
do {
index = str.index0f(ch, index + 1); mm) countOccurrences
if (index >= 0) num++;
} while (index >= 0); method naming
return num;
}




Evaluation Methodologies of Code Summarization ML Models

extract a dataset of (code, comment) samples

split the dataset into training, validation, test sets

train on training + validation sets

report automatic metrics on test set
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Temporal Relations Not Explicitly Modeled in Prior Work

@ written in 2018

/** Returns total number of connections in the pool. */
public synchronized int connectionCount() {
return connections.size();

}

( L. N\ ( L. N\
training training
900 | | 00O -
( validation ) ( validation )
@O0 O - | OO0 0 - |
4 N\ 4 N\
test test
000 | (00O -
mixed-project cross-project
using future to predict past too strong assumption

evaluation methodologies in prior work

misunderstanding if a model might be useful / not useful once adopted

€) written in 2019

/** Returns the number of idle connections in the pool.
public synchronized int idleConnectionCount() {
int total = 0;
for (RealConnection connection : connections) {
if (connection.allocations.isEmpty()) total++;
¥
return total;

}

train model on

use model on

timev 9 ‘ .

== use case of ML model
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Our Contributions

Study the evaluation methodologies of 18 recent papers on code summarization

- found two commonly used evaluation methodologies: mixed-project and cross-project
- define two use cases that could be evaluated by these methodologies

Define a more practical use case: continuous-mode

Propose an appropriate evaluation methodology for this use case: time-segmented

- Experiment several existing ML models using the three methodologies

evaluation methodology use case
mixed-project (used by 15/18) in-project batch-mode
cross-project (used by 4/18) cross-project batch-mode

time-segmented (proposed) continuous-mode




Outline

* Evaluation methodologies and use cases

mixed-project in-project batch-mode
cross-project cross-project batch-mode
time-segmented continuous-mode




Mixed-Project Evaluation Methodology &

In-Project Batch-Mode Use Case

& Alice
« Used in prior work _ _ .
Alice’s project other projects
- Randomly shuffle the samples and split them G,
into training, validation, and test sets X3
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Cross-Project Evaluation Methodology &

Cross-Project Batch-Mode Use Case

« Used in prior work

- Randomly shuffle the projects and split them

into training, validation, and test sets =, Alice
other projects

Alice’s project
@00 | (000 | (000 | | 000 l
0000 0000 0000 - 0DV - m@
000 | | 000 | 000 | 000

project 1 project 2 project 3 project m project n

@ Training (]) Validation & Test




Limitation of Batch-Mode Use Cases

Usually happen only once in the lifecycle of a project

other projects other projects

o s @

ML model
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use ML model at 771 use ML model at t
in-project batch-mode temporal relations among samples exists




Continuous-Mode Use Case

& Alice other projects
- ~ Alice’s project
write comments for each method around the o
_same time as the method itself ) ML model m 2X3
1 download the latest model
apply it on each newly written method 6
(5X%) other projects

Alice’s project

® 0
Cimodel ¥ = JICK

_ [apply it on each newly written method %
time) Q¢ ©

—

T [download the latest model

—
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Time-Segmented Evaluation Methodology

- Not used in prior work on developing new ML models for code summarization

« Split samples in a time-aware method
. assign samples before 772 to training set
- assign samples after 772 and before 7! to validation set

- assign samples after ™! and before T to test set
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Outline

e Experiments to study the impact of evaluation methodologies
* experimentssetup
* dataset

* results and findings
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Experiments Setup

Task

Models

Metrics

comment generation

DeepComHybrid  Huetal ESE'20
Transformer
Seq2Seq

Ahmad et al. ACL'20

BLEU

METEOR
ROUGE-L

EM (exact match)

method naming

Code2Vec Alon et al. POPL'19
Code2Seq  Alon etal. ICLR'19

Precision

Recall

F1

EM (exact match)




Dataset

- 77,745 (code, comment) with timestamps from 160 popular Java projects on GitHub

- Given a dataset of (code, comment) with timestamps, split it to get
- training (Train), validation (Val), and standard test (TestS) sets for each methodology
- common test (TestC) set to compare each pair of methodologies
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O Task\ Train  Val TestS TestC
® e o1 \T‘H = 5 |MP 50,879 7,569 14,956 o~ MPN CP 3362 |
Al T E =
502111 —» : S | CP 50,879 8,938 15,661 MPNT 2013 J )
o8| T 50879 11,312 9,870 CPNT 2220

CP 50.879 8,811 15,332 MPNT 2011
T 50,879 11,223 9,807 CPNT 2211

MP 50,879 7,523 14,796 MPNCP 3,344
MP = mix

Method
Naming
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Results and Findings (1/4)

- Different methodologies may lead to conflicting evaluation results

Code2Vec is better than Code2Seq under the mixed-project and time-segmented methodologies, but is
worse under the cross-project methodology

task: method naming

metric: F1
100 100
75 75
50 % 39.8 50 m
0 0
mixed-project cross-project time-segmented cross-project
B Code2Vec M Code2Seq B Code2Vec ™ Code2Seq
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Results and Findings (2/4)

- Different methodologies may lead to conflicting evaluation results

- Transformer is statistically significantly better than Seq25Seq under the time-segmented methodology, but
not under the cross-project methodology

task: comment generation
metric: METEOR

100
75

50

L E» |

cross-project time-segmented

B Seq2Seq M Transformer

*no significant difference between the models
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Results and Findings (3/4)

- Evaluation results from prior work do not represent the ML models’ performance

in the continuous-mode use case
« Results under the mixed-project methodology are inflated
« Results under the cross-project methodology may be an under-estimation

task: method naming

metric: F1
100 100
7> 562 ©37 4es 7> 53.9
50 42.9 : 50 40.6
28.8
0 0 I
Code2Vec Code2Seq Code2Vec Code2Seq
B time-segmented M mixed-project B time-segmented M cross-project
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Results and Findings (4/4)

- Evaluation results from prior work do not represent the ML models’ performance

in the continuous-mode use case
« Results under the mixed-project methodology are inflated
« Results under the cross-project methodology may be an under-estimation

task: comment generation

metric: BLEU
100 100
75 65.6 61.7 75
56.3 53.2 52.6 56.1 53.3 456
25 I I I 25 14.3 13.4 11
0 0 ] ] ]
Transformer Seq2Seq DeepComHybrid Transformer Seq2Seq DeepComHybrid
B time-segmented M mixed-project B time-segmented M cross-project
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Conclusions

- We need to more diligently choose evaluation methodology and
report results of ML models according to the intended use cases

- Time-segmented evaluation methodology should be adopted in the
evaluation of ML models for code summarization

data and code: https://github.com/EngineeringSoftware/time-segmented-evaluation
preprint: https://arxiv.org/abs/2108.09619

Pengyu Nie <pynie@utexas.edu> TEXA

The University of Texas at Austin
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Evaluation Methodologies of ML Models

 Evaluation paradigm based on automatic metrics:

- split a dataset of (code, comment) samples into training, validation, and test sets

- train ML models on training + validation sets
- reportautomatic metrics (e.g., BLEU, F1) on test set

public static String selectText(XPathExpression
try {
return (String)ex
} catch (XPz th

expr, Node context) {

proj(estl proj(estz
0|09 Emp

aluate(context, XPathConstants.STRIN 3
nExceptio e) {
throw new XmlExcept ( )
¥
}

e Whatis the intended use cases of the ML model?

* How to split the dataset, such that the evaluation results represent

the ML model’s performance in the intended use cases?
* In the context of code summarization: should we consider the
timestamps of code and comments?

Ve
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Timestamps of Code and Comments

-« Developers iteratively add/edit code and comments
- the style of newer code and comments written can be affected by older code and comments

- Temporal relations among samples are not explicitly modeled in the evaluation of
prior work
- can lead to inflated values for automatic metrics
« can lead to misunderstandingif a model might be useful once adopted

training

4 )
- ® @ evﬁ?at.e’n

m\QOQ---,

T é é test )
time v \_ y 000 |

\
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Experiments Setup

Dataset Task | Train Val TestS TestC
+ (code, comment) with timestamps from popular Java MP 50.879 7.569 14.956 g MP N CP 3362

projects on GitHub using English for summaries CP 50,879 8,938 15,661 MPNT 2013

- collected samples before T = 2021.1.1 T 5087 11312 9870 cPnT 2220
time-segmented on 772 =2019.1.1 and 77! = 2020.1.1 MP 50.879 7,523 14,796 g MP N CP 3,344

Comment
Generation

Method
Naming

. splitting ratios for in-projectand cross-project: 70%,10%,20% CP 50879 8811 15332 MPNT 2,011
T 50879 11223 9,807 CPNT 2211

Models
- comment generation: DeepComHybrid, Transformer, Seq2Seq
- method naming: Code2Vec, Code2Seq

Automatic metrics
- comment generation: BLEU, METEOR, ROUGE-L, EM (exact match)
- method naming: precision, recall, F1, EM (exact match)

Run each model 3 times & perform statistical significance tests
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Results and Findings (1/3)

Train MP Cp MP T Cp T
Test MP N CP MPNT CPNT

Precision

Recall

0 25 50 75 100 O 25 50 75 100

F1

EM

B Code2Vec B Code2Seq

- Depending on the methodology, one model can perform better or worse than another
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Results and Findings (2/3)

Train |MP CP | MP T | CP T
Test TMPACP | MPNT | CPNT

v METEOR [%]

Seq2Seq £21.2 59.6

Transformer / €21.6 62.1 \

not significant not significant

- Depending on the methodology, the differences between models may or may not be observable
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Results and Findings (3/3)

Train [ ' i Train
Test : Test
Precision BLEU
Recall METEOR
F1 ROUGE-L
EM EM

B Code2Vec mmm Code2Seq mmm DeepComHybrid . Seq2Seq mmm Transformer

- Results under the mixed-project methodology are inflated

-« Results under the cross-project methodology may be an under-estimation of the more realistic
continuous-mode use case
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Conclusions

- We need to more diligently choose evaluation methodology and
report results of ML models according to the intended use cases

- Time-segmented evaluation methodology should be adopted in the
evaluation of ML models for code summarization

- Misuse of evaluation methodologies can lead to inflated values for automatic
metrics and misunderstanding if a model might be useful once adopted

data and code: https://github.com/EngineeringSoftware/time-segmented-evaluation
preprint: https://arxiv.org/abs/2108.09619

Pengyu Nie <pynie@utexas.edu> TEXA

The University of Texas at Austin
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https://github.com/EngineeringSoftware/time-segmented-evaluation
https://arxiv.org/abs/2108.09619

Application of Methodologies: Goals

« Given a dataset of (code, comment) with timestamps, split it to get
- training (Train), validation (Val), and standard test (TestS) sets for each methodology
- common test (TestC) set to compare each pair of methodologies

<

v

D

(@)

av]
N\ )
UL

project 1 mﬂ» Cp \ \ MPNT
. \__J |;_ \ v E E E) ;
@@ G G
(00T T
= =

. Train UIDJ Val . TestS @ TestC

MP = mixed-project CP = cross-project T =time-segmented
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Application of Methodologies: Step 1/6

« Given a dataset of (code, comment) with timestamps, split it to get

- training (Train), validation (Val), and standard test (TestS) sets for each methodology
- common test (TestC) set to compare each pair of methodologies

[ 1. time-segment samples in each project ]
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Application of Methodologies: Step 2/6

« Given a dataset of (code, comment) with timestamps, split it to get

- training (Train), validation (Val), and standard test (TestS) sets for each methodology
- common test (TestC) set to compare each pair of methodologies

Tz Ty Tz
1. time-segment samples in each project ( ) o _
9 splitting ratios
T e =70%
2. perform in-project split 1 r, = 10%
\ J r, = 20%
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Application of Methodologies: Step 3/6

« Given a dataset of (code, comment) with timestamps, split it to get

- training (Train), validation (Val), and standard test (TestS) sets for each methodology
- common test (TestC) set to compare each pair of methodologies

e Ty Tz
1. time-segment samples in each project ( N ( h [ h ( h . _
) splitting ratios
N - L . . L rx : 70%
2. perform in-project split 1 = 10%
- \ J J \. J \ Y, r,=20%
[ 3. perform cross-project split ] . ~ )

31



Application of Methodologies: Step 4/6

« Given a dataset of (code, comment) with timestamps, split it to get
- training (Train), validation (Val), and standard test (TestS) sets for each methodology
- common test (TestC) set to compare each pair of methodologies

2. perform in-project split PR N, N N N
2 e -
cp \ \
3. perform cross-project split .\ J )\ )\ y o o | —
T IHHHIAIHHHHHM" LT
=

\= >,

1. time-segment samples in each project MP i

|
_

[ 4. group into Train, Val, and TestS sets ]

. Train [UID Val . TestS @ TestC

MP = mixed-project CP = cross-project T =time-segmented
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Application of Methodologies: Step 5/6

« Given a dataset of (code, comment) with timestamps, split it to get

- training (Train), validation (Val), and standard test (TestS) sets for each methodology
- common test (TestC) set to compare each pair of methodologies

)l i l ﬂ ‘ \ v \ vy
2. perform in-project split \ —
CP H (| mpAT
3. perform cross-project split o \ ) ' & 5 L ) L
4. group into Train, Val, and TestS sets T [t - T -
=

= =)

-l

2

®

-
N
- ~
\ J
LT

1. time-segment samples in each project MP i

~
J
'
J
~
J
N\
J

Ul
Ul
U
Ul

~
v,

CPNT

[ 5. intersect TestS sets to get TestC sets ]

. Train [UID Val . TestS @ TestC

MP = mixed-project CP = cross-project T =time-segmented
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Application of Methodologies: Step 6/6

« Given a dataset of (code, comment) with timestamps, split it to get

- training (Train), validation (Val), and standard test (TestS) sets for each methodology
- common test (TestC) set to compare each pair of methodologies

) ' ™ s ~ ’ \ -
ﬂ i l ﬂ i N ‘ ﬂ MPOCP - N
=/ & \ J \ J/ \ J \
2. perform in-project split ) Cm— ( N ( ) f ) f
cp H |  wmPOT
3. perform cross-project split o \ ) —— & 5 L ) L g
4. group into Train, Val, and TestS sets T [t - T - “mm%
= =

= =)

Wi

1. time-segment samples in each project MP i

J

!

Ul

~
v,

CPNT

5. intersect TestS sets to get TestC sets
. Train []:l:l]] Val . TestS @ TestC

MP = mixed-project CP = cross-project T =time-segmented

[ 6. perform post-processing ]

* downsample Train sets to the same size

* remove duplicates from Val, TestS, and TestC sets
34



Mixed-Project Evaluation Methodology

Randomly shuffle the samples and split them into training, validation, and test sets

@0® 00e S0 000 @S0
080D e0ee| 000 - e00e |00
00e =0 O0® 0Se @D®

project 1 project 2 project 3 project n-1 project n

@ Training (]) Validation € Test
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In-Project Batch-Mode Use Case

e0e | | e0e | | @00 0ee | | ece
eSeD| ([enee eece - eeDe 000
@0e | | 200 | | DO® 00 | | 000
project 1 project 2 project 3 project n-1 project n
_ Alice’s project other projects
& Alice
[write comments for only a part of methods }
T [time to add documentations, with ML model }

timey
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Cross-Project Evaluation Methodology

Randomly shuffle the projects and split them into training, validation, and test sets

OO
OO

project 1 project 2 project 3 project m project n

@ Training (]) Validation € Test
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Cross-Project Batch-Mode Use Case

time,

000 000 00 O] eee
0000 0000 0000 000D - ceee
00 000 000 W) eee
project 1 project 2 project 3 project m project n
A Alice
. other projects
do not write comments for any method Alice’s project

[time to add documentations, with ML model } mw ll



Not Considering Temporal Relations During Evaluation

- Temporal relations among samples are not explicitly modeled

« Can lead to misunderstanding if a model might be useful / not useful once adopted

evaluation methodology intended use case
o ( training ) train model on
2 00600 .| =
5. ) . use model on
time v O © o'e . {9 6 6 }
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Experiments Setup

Task comment generation ‘ method naming
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