
Learning Deep Semantics for 
Test Completion

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, Milos Gligoric

ICSE 2023
partially 
supported by

CCF-1652517
CCF-2107291
IIS-2145479
CCF-221769



Motivation: Writing Tests is Tedious

• Testing is the most frequently-used technique to ensure 
software correctness

• Writing tests can take a lot of manual efforts 
(~50% of development time)

• Automatically generated tests (e.g., by random testing) have 
stylistic issues and do not replace the need of manual efforts

2

Goal: developing ML models to assist developers in writing tests



Task: Test Completion

3

public class GMOperation extends org.im4java.core.GMOperation {

public GMOperation addImage(final File file) {

if (file == null) {

throw new IllegalArgumentException("file must be defined");

}

getCmdArgs().add(file.getPath());

return this;

}

...

}

public class GMOperationTest {

@Test

public void addImage_ThrowsException_WhenFileIsNull() throws Exception {

exception.expect(IllegalArgumentException.class);

sut.addImage((File) null);

}

...

}

Example from project sharneng/gm4java, GMOperationTest.java

code under test

test signature

prior statements

next statement
...

• Complete one statement at a time



TeCo: ML + Execution for Test Completion

4

• Test completion can greatly benefit from reasoning about execution
• types, program state (local and global), callable methods, etc.

• whether the output is executable

• TeCo uses code semantics as inputs and performs reranking by test execution

TeCo
rerank by 
execution

code under test

test signature

prior statements

ML 
model

next statement
extract execution-guided 

code semantics

Wang et al., CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation. In EMNLP’21.

CodeT5



• Execution results: program state after executing prior statements

• Execution context: code fragments relevant for predicting next statement

TeCo
rerank by 
execution

Execution-Guided Code Semantics

5

code under test

test signature

prior statements

ML 
model

next statement
extract execution-guided 

code semantics

S1 local var types S2 absent types S3 uninitialized fields

S4 setup teardown S5 last called method S6 similar statement



public class GMOperation extends org.im4java.core.GMOperation {

... }

public class GMOperationTest {
GMOperation sut;
@Before public void setup() { ... sut = new GMOperation(); ... }

... }

Execution-Guided Code Semantics: Example

6

@Test 
public void addImage_ThrowsException_WhenFileIsNull() throws Exception {

exception.expect(IllegalArgumentException.class);
sut.addImage((File) null);

}

public GMOperation addImage(final File file) {...}

?

S2 absent types
types that are required by the code 
under test, but are not available 
before executing the next statement

S4 setup teardown
methods executed before/after the 
test by the testing framework

CodeT5 prediction new GMOperation().addImage(null);

TeCo prediction sut.addImage((File) null);

compilation error: addImage is overloaded
addImage(File); addImage(Object)



TeCo
rerank by 
execution

Reranking by Execution

7

code under test

test signature

prior statements

ML 
model

next statement
extract execution-guided 

code semantics

• Reranking: prioritize generating compilable and runnable statements

A: p=0.9
B: p=0.8
C: p=0.8
D: p=0.7

B: p=0.8, compilable+runnable
C: p=0.8, compilable
A: p=0.9, not compilable
D: p=0.7, not compilable

compilable runnable



Reranking by Execution: Example

8

sut.addImage(null);
sut.addImage((File) null);
...

sut.addImage((File) null);
sut.addImage(null);
...

public class GMOperation extends org.im4java.core.GMOperation {

... }

public class GMOperationTest {
GMOperation sut;
@Before public void setup() { ... sut = new GMOperation(); ... }

... }

@Test 
public void addImage_ThrowsException_WhenFileIsNull() throws Exception {

exception.expect(IllegalArgumentException.class);
sut.addImage((File) null);

}

public GMOperation addImage(final File file) {...}

?

compilable runnable



Evaluation: Dataset

• Developer-written tests from open-source Java 
projects in CodeSearchNet
• same dataset and split as used in pre-training CodeT5

• 80% of the evaluation set statements are executable
• computing additional metrics on the executability of the 

output statements

9

CodeSearchNet

training evaluation

1206 projects
136K tests

615K statements

64 projects
5K tests

30K statements

extract tests

24K 
executable 
statements

(80%) 



Evaluation: Setup

• Metrics
• syntax-level correctness: exact match accuracy (similarity-based metrics in paper)

• functional correctness: %run, %compile

• Baselines
• Codex: 175B model pre-trained on GitHub (Mar 2023)

• CodeT5: 220M model pre-trained on CodeSearchNet, fine-tuned on our dataset

• Models
• TeCo-noRr: code semantics + CodeT5

• TeCo: code semantics + CodeT5 + reranking by execution

• Configurations
• 4x Nvidia 1080Ti GPUs, Linux

• run each experiment three times with different random seeds
10



Evaluation: Test Completion

Codex
12.7

CodeT5
13.6

TeCo-
noRr
15.3

TeCo
17.6

0

5

10

15

20

ex
ac

t-
m

at
ch

 a
cc

u
ra

cy

11

Codex
19.1 CodeT5

17.6

TeCo-
noRr
19.5

TeCo
28.6

0

10

20

30

%
ru

n

Codex
38.8

CodeT5
54.8

TeCo-
noRr
60.8

TeCo
76.2

0

20

40

60

80

%
co

m
p

ile

TeCo improves the accuracy of test completion by 29%, and 
is better in generating compilable/runnable test statements



Conclusions

• TeCo: ML + execution model for test completion

• The use of code semantics and reranking by execution is important 
for increasing ML models’ performance on test completion

• Dataset: 1,270 projects, 131K tests, 645K statements

12

https://github.com/EngineeringSoftware/teco

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, Milos Gligoric

pynie@utexas.edu
joining Waterloo CS as assistant professor starting from 9/1

mailto:pynie@utexas.edu

	Slide 1: Learning Deep Semantics for Test Completion
	Slide 2: Motivation: Writing Tests is Tedious
	Slide 3: Task: Test Completion
	Slide 4: TeCo: ML + Execution for Test Completion
	Slide 5: Execution-Guided Code Semantics
	Slide 6: Execution-Guided Code Semantics: Example
	Slide 7: Reranking by Execution
	Slide 8: Reranking by Execution: Example
	Slide 9: Evaluation: Dataset
	Slide 10: Evaluation: Setup
	Slide 11: Evaluation: Test Completion
	Slide 12: Conclusions

