1

Improved Models and Queries for Grounded Human-Robot Dialog

Aishwarya Padmakumar

Doctoral Dissertation Proposal

Natural Language Interaction with Robots

Understanding Commands

Bring the blue mug from Alice's office

Sources of Imperfect Understanding

• Language is inherently ambiguous

– Mug: 👕 vs 🌾 vs 👘

- Imperfect models
 - Fail to detect the mug
- Missing domain specific knowledge
 Alice's office is missing in the directory

Dialog - Acquiring Labels

Bring the blue mug from Alice's office

Yes

Would you use the word "blue" to refer to this object?

This Proposal

Improving grounded human-robot dialog by

- Learning dialog policies from interactions
- Improved queries to be used in dialogs
- Improved models for perceptual grounding

Outline

- Background
- Completed Work
 - Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
 - Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
 - Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Proposed Work
- Conclusion

Outline

• Background

- Completed Work
 - Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
 - Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
 - Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Proposed Work
- Conclusion

Convert natural language into a machine understandable representation

Convert natural language into a machine understandable representation

Semantic parsing -

- Converts language to a structured meaning representation
- Compositionality meaning of "blue mug" from meaning of "blue" and meaning of "mug"

Convert natural language into a machine understandable representation

Vector Space Representations -

- Converts words/sentences to vectors that represent meaning.
- Typically non compositional.
- Less initial handcrafting
- More training data

Background: Grounding

Background: Grounding

Map meaning representations to real world entities

Background: Grounding

Map meaning representations to real world entities

```
\texttt{the}(\lambda y.(\texttt{office}(y) \land \texttt{owns}(\texttt{alice}, y)))
```

Knowledge Base Grounding

Background: Dialog Policy

Background: Dialog Policy

- Decides each response type clarification, label queries, task completion
- Dialog state Information from the dialog so far
- Dialog policy Mapping from dialog states to dialog actions (response types/ responses)
- Learned using Reinforcement Learning

Background: Reinforcement Learning

Markov Decision Process (MDP)

Background: Reinforcement Learning

Partially Observable Markov Decision Process (POMDP)

Background: Natural Language Generation

Background: Natural Language Generation

Converting an action to a natural language response

Background: Active Learning

Query for labels most likely to improve the model.

Background: Active Learning

Bring the blue mug from Alice's office

Yes

Would you use the word "blue" to refer to this object?

Outline

- Background
- Completed Work
 - Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
 - Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
 - Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Proposed Work
- Conclusion

Integrating Learning of Dialog Strategies and Semantic Parsing

Prior Work: Dialog Policy Learning

Modelling dialog system as a Partially Observable Markov Decision Process (POMDP)

Why is joint learning challenging?

The University of Texas at Austin

Why is joint learning challenging?

Choosing a Policy Learning Algorithm

- Robust to non-stationary environment to allow simultaneous learning of a semantic parser
- Learns how the mapping from states and actions to observations varies with time
- Low Sample Complexity Learn a good policy from a small number of dialogs
- Kalman Temporal Differences (KTD) Q Learning (Geist and Pietquin, 2010)

Experiments - Mechanical Turk

TASK TO COMPLETE

Dave Daniel wants the item in slot 5.

ROBOT	How can I help?
YOU	please bring the item in slot 5 to dave daniel
ROBOT	To whom should I bring something?
YOU	dave daniel
ROBOT	What action did you want me to take involving dave daniel?
YOU	5
ROBOT	What should I bring to dave daniel?
YOU	a calander
ROBOT	I'm sorry, but I couldn't pinpoint what you meant by that.
ROBOT	What should I bring to dave daniel?
YOU	a day planner
ROBOT	I'm sorry, but I couldn't pinpoint what you meant by that.
ROBOT	What should I bring to dave daniel?
YOU	calendar
ROBOT	You want me to bring calendar to dave daniel?
YOU	yes
ROBOT	I thought so
ROBOT	Happy to help
YOU	
Final Task	

DIRECTORY

People:

Alice Ashcraft; Secretary Francis ("Frannie") Foster Robert ("Bob") Brown Carol Clark, PhD Dave Daniel, PhD George Green; Intern Evelyn ("Eve") Eckhart Mallory Morgan; Director Peggy Parker, PhD Walter Ward; Supervisor

Items available to robot:

Experimental Conditions

Experimental Conditions

Parser and Dialog Learning - Full (Naive)

Parser and Dialog Learning - Batchwise (Ours)

Hypotheses

1. Combined parser and dialog learning is more useful than either alone.

Hypotheses

2. Changes in the parser need to be seen by the dialog management module.

Results - Dialog Success

% of Sucessful Dialogs

- Higher is better
- Parser learning is mostly responsible for improvement in dialog success rate
- Best system: parser and dialog learning - batchwise

Results - Dialog Length

Avg # dialog turns

- Lower is better
- Dialog learning is mostly responsible for lowering dialog length
- Best system: parser and dialog learning - batchwise

Conclusion

- Jointly learning a parser and dialog policy is more effective than learning either alone qualitative and quantitative.
- Changes in other components need to be propagated to the policy.

Outline

- Background
- Completed Work
 - Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
 - Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
 - Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Proposed Work
- Conclusion

- Asking locally convenient questions during an interactive task.
- Questions may not be useful for the current interaction but expected to help future tasks.

Bring the blue mug from Alice's office

Yes

Would you use the word "blue" to refer to this object?

Bring the **blue mug** from Alice's office

Yes

Would you use the word "**tall**" to refer to this object?

Still query for labels most likely to improve the model.

Why?

- Robot may have good models for on-topic concepts.
- No useful on-topic queries.
- Some off-topic concepts may be more important because they are used in more interactions.

Opportunistic Active Learning -Challenges

Some other object might be a better candidate for the question

Purple?

Opportunistic Active Learning -Challenges

The question interrupts another task and may be seen as unnatural

Bring the **blue mug** from Alice's office

Would you use the word "**tall**" to refer to this object?

Opportunistic Active Learning -Challenges

The information needs to be useful for a future

task.

Object Retrieval Task

Object Retrieval Task

- User describes an object in the active test set
- Robot needs to identify which object is being described

Object Retrieval Task

 Robot can ask questions about objects on the sides to learn object attributes

Experimental Conditions

This is a yellow bottle with water filled in it

- Baseline (on-topic) the robot can only ask about "yellow", "bottle", "water", "filled"
- Inquisitive (opportunistic) the robot can ask about any concept it knows, possibly "red" or "heavy"

Results

- Inquisitive robot performs better at understanding object descriptions.
- Users find the robot more comprehending, fun and usable in a real-world setting, when it is opportunistic.

Outline

- Background
- Completed Work
 - Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
 - Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
 - Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Proposed Work
- Conclusion

Learning a Policy for Opportunistic Active Learning

- Goal of this work Learn a dialog policy that decides how many and which questions to ask to improve grounding models.
- To learn an effective policy, the agent needs to learn
 - To identify good queries in the opportunistic setting.
 - When a guess is likely to be successful.
 - To trade off between model improvement and task completion.

Task Setup

Task Setup

Active Training Set			Dialog		Active Test Set	
Train	Train_1 Train_4		Robot Human	Describe the object I should find. A white umbrella	Test_1	Test_2
Train_2			Robot	Is there something in Train_6 that \leftarrow Label can be described as yellow? Query		
		Train_5	Human	No	Test_3	
Train_3			Robot	Can you show me an image with <i>Example</i> something that can be described as <i>Query</i> white?		-
Train_6	Train_7 Train_3		Human	Train_1	Test_4	

Task Setup

Active Training Set			Dialog		Active Test Set	
Train		Train_4	Robot Human	Describe the object I should find. A white umbrella	Test_1	Test_2
Train_2		B	Robot	Is there something in Train_6 that can be described as yellow?		
		Train_5	Human	No	Test_3	1
Train_3			Robot	Can you show me an image with something that can be described as white?	- Comment	
Train_6	Train_7	Train_8	Human	Train_1	Test_4	
		T m	Robot Human	My guess is Test_4		

Active Learning

- Agent starts with no classifiers.
- Labeled examples are acquired through questions and used to train the classifiers.
- Agent needs to learn a policy to balance active learning with task completion.

Challenges

- What information about classifiers should be represented?
- Variable number of actions
- Size of action space increases over time
- Number of classifiers increases over time
- Very large action space after initial interactions.

Tackling challenges

- Features based on active learning methods
 - Representing classifiers
- Featurize state-action pairs
 - Variable number of actions and classifiers
- Sampling a beam of promising queries
 - Large action space

Feature Groups

- Query features Active learning metrics used to determine whether a query is useful
- Guess features Features that use the predictions and confidences of classifiers to determine whether a guess will be correct

Experiment Setup

- Policy learning using REINFORCE.
- Baseline A hand-coded dialog policy that asks a fixed number of questions selected using the same sampling distribution.

Experiment Phases

- Initialization Collect experience using the baseline to initialize the policy.
- Training Improve the policy from on-policy experience.
- Testing Policy weights are fixed, and we run a new set of interactions, starting with no classifiers, over an independent test set with different predicates.

Results

Results

Average Dialog Length - Number of System Turns

Summary

- We can learn a dialog policy that learns to acquire knowledge of predicates through opportunistic active learning.
- The learned policy is more successful at object retrieval than a static baseline, using fewer dialog turns on average.

Outline

- Background
- Completed Work
 - Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
 - Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
 - Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)

• Proposed Work

Conclusion

Outline

- Proposed Work
 - Learning to Ground Natural Language Object Descriptions Using Joint Embeddings
 - Identifying Useful Clarification Questions for Grounding Object Descriptions
 - Learning a Policy for Clarification Questions using Uncertain Models
 - Bonus Contributions

Perceptual Grounding Using Classifiers

- Represent words and images as vectors in the same space.
- Words are near images they apply to and vice versa.

Related prior work

- Word vectors in learned joint spaces are more useful for many tasks, eg: semantic relatedness [Lazaridou et. al., 2015]
- Neural networks that score an image-description pair perform well at grounding but use sentence embeddings [Hu et. al. 2016, Xiao et. al. 2017].
- We expect that words would generalize better than phrases/ sentences.

Learning the Joint Space

Learning the Joint Space

$d(f(\bigcirc), g(blue)) \le d(f(\bigcirc), g(blue))$ $d(f(\bigcirc), g(blue)) \le d(f(\bigcirc), g(pink))$

Constraints captured using a ranking loss

Outline

• Proposed Work

- Learning to Ground Natural Language Object Descriptions Using Joint Embeddings
- Identifying Useful Clarification Questions for Grounding Object Descriptions
- Learning a Policy for Clarification Questions using Uncertain Models
- Bonus Contributions

Identifying Useful Clarification Questions for Grounding Object Descriptions

Identifying Useful Clarification Questions for Grounding Object Descriptions

Yes

Recent Related Work

[Das, et. al., 2017]

[De Vries et. al., 2017]

Is it the turquoise and purple one?

Identifying Useful Clarification Questions for Grounding Object Descriptions

- Clarification questions that help narrow down an object being referred to.
- More specific than a new description.
- More general than showing each possible object.
- Provide ground truth answers to questions at training time to learn human semantics.

Attribute Based Queries

Bring the blue mug from Alice's office

Yes

Is the object I should bring a cup?

Choosing a Good Query

- Query that is most likely to reduce the search space.
- Choose the attribute with respect to which the dataset has highest entropy

Challenge

In a joint embedding space how do you determine whether an attribute is applicable?

Possible solutions

- Distance threshold, clustering to get classifier-like predictions.
- Might be possible to formulate an optimization problem using distances.

Outline

• Proposed Work

- Learning to Ground Natural Language Object Descriptions Using Joint Embeddings
- Identifying Useful Clarification Questions for Grounding Object Descriptions
- Learning a Policy for Clarification Questions using Uncertain Models
- Bonus Contributions

- Proposed method for identifying good queries assumes that the learned space is "good".
- If predictions for some attribute are especially unreliable, it might be preferable to choose another attribute that is less informative but more reliable.

Challenge

- The policy needs features that measure "how good" the space is.
 - Number of training examples
 - How often are the space constraints satisfied?

 $d(f(\bigcirc), g(blue)) \le d(f(\bigcirc), g(blue))$ $d(f(\bigcirc), g(blue)) \le d(f(\bigcirc), g(pink))$

Outline

• Proposed Work

- Learning to Ground Natural Language Object Descriptions Using Joint Embeddings
- Identifying Useful Clarification Questions for Grounding Object Descriptions
- Learning a Policy for Clarification Questions using Uncertain Models
- Bonus Contributions

Incorporating Linguistic and Visual Context

Using Multimodal Object Representations

Drop

Press

Lower

Push

Outline

- Background
- Completed Work
 - Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
 - Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
 - Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Proposed Work
- Conclusion

Improving Natural Language Understanding Through Dialog

Bring the blue mug from Alice's office

Yes

Would you use the word "blue" to refer to this object?

Joint Parser and Policy Learning

Policy Learning for Opportunistic Active Learning

Active Training Set		Dialog		Active Test Set	
Train_1	Train_4	Robot	Describe the object I should find.	Test_1	Test_2
Train_2		Human Robot	A white umbrella Is there something in Train_6 that can be described as yellow?		X
Train_3		Human	No	Test_3	
		Robot	Can you show me an image with something that can be described as white?		
Train_6 Train_7	Train_8	Human	Train_1	Test_4	
		Robot Human	My guess is Test_4 Correct	Í	

Improved Perceptual Grounding Model

Improved Models and Queries for Grounded Human-Robot Dialog

Aishwarya Padmakumar

Doctoral Dissertation Proposal

Incorporating Context

- Visual Context
 - Representations of other objects
 - Representation of the entire scene and the object's bounding box
- Linguistic Context ELMo embeddings

Learning Joint Embeddings with Multimodal Object Representations

- Not all modalities are equally informative for each object-word pair.
- Not all modalities may be available for each object.
- Project features of each modality to the same space and combine during grounding.

Computing Distance

- Average distance of the word to object representation in all modalities.
- Distance of the word to nearest object representation - allows only one modality to be relevant.