Dialog as a Vehicle for Lifelong Learning of Grounded Language Understanding Systems

Aishwarya Padmakumar

Doctoral Dissertation Defense
Grounded Language Understanding

Mapping natural language to real-world entities

Bring the blue mug from Alice’s office

<table>
<thead>
<tr>
<th>3501</th>
<th>3503</th>
<th>3505</th>
<th>3507</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>3502</td>
<td>3504</td>
<td>3506</td>
</tr>
</tbody>
</table>
Applications in Service Robotics

Bring the blue mug from Alice’s office
Standard Supervised Learning Pipeline

1. Collect Labelled Data
2. Train Model
3. Test Model
Sources of Imperfect Understanding

- Domain shift:
 - Train: 🍼
 - Test: 🥽

- Missing domain specific knowledge
 - Alice’s office is missing in the directory
 - There is no category for mugs in the object detector.
Dialog - Clarification

Bring the blue mug from Alice’s office

bring(●,●)
Bring the blue mug from Alice’s office

Where should I bring a blue mug from?

Alice Ashcraft’s office

I should bring a blue mug from 3502?

Yes
Bring the blue mug from Alice’s office

Where should I bring a blue mug from?

Alice Ashcraft’s office

I should bring a blue mug from 3502?

Yes

Alice’s office

Alice Ashcraft’s office

≈

3502
Dialog - Acquiring Labels

Bring the blue mug from Alice’s office

Blue?
Bring the blue mug from Alice’s office.

Would you use the word “blue” to refer to this object?

Yes.
Lifelong Learning

Initial Task(s), Data

Train Model

Additional Task(s), Data

Test Model
Lifelong Learning

Lifelong learning can make models more

- Generalizable - adapt to a variety of test data distributions
- Versatile - same model can be shared between multiple tasks, that are not necessarily pre-defined
Dialog as a Vehicle for Lifelong Learning

- Lifelong learning systems assume that additional labelled data can be obtained from test time usage.
- Dialog systems interact with users by design - interactions can be leveraged to obtain labelled data.
My Work

Designing dialog interactions to improve grounded language understanding systems and enabling them to perform lifelong learning.
Outline

- Background
- Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
- Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
- Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
- Summary
- New Directions (Padmakumar and Mooney, RoboDial 2020)
Outline

- Background
- Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
- Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
- Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
- Summary
- New Directions (Padmakumar and Mooney, RoboDial 2020)
Outline

- Background
- Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et. al., 2017)
- Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
- Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
- Summary
- New Directions (Padmakumar and Mooney, RoboDial 2020)
Outline

• Background
 • Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
 • Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
 • Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
 • Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
• Summary
• New Directions (Padmakumar and Mooney, RoboDial 2020)
Background: Parts of a Dialog System

Bring the blue mug from Alice’s office

Semantic Understanding → Grounding

Where should I bring a blue mug from?

Natural Language Generation

Dialog Policy
Background: Semantic Understanding

Bring the blue mug from Alice’s office

Semantic Understanding → Grounding

Where should I bring a blue mug from?

Natural Language Generation

Dialog Policy
Background: Semantic Understanding

Convert natural language into a machine understandable representation
Background: Semantic Understanding

Convert natural language into a machine understandable representation

Semantic parsing -

- Converts language to a structured meaning representation
- Compositionality - meaning of “blue mug” from meaning of “blue” and meaning of “mug”

\[
\text{bring}(\lambda x. (\text{blue}(x) \land \text{mug}(x)), \\
\text{the}(\lambda y. (\text{office}(y) \land \text{owns}(\text{alice}, y))))
\]
Background: Semantic Understanding

Convert natural language into a machine understandable representation

Vector Space Representations -
- Converts words/sentences to vectors that represent meaning.
- Less initial handcrafting
- More training data

Bring the blue mug from Alice's office

[Diagram showing vector representation of the sentence]
Background: Grounding

Bring the blue mug from Alice’s office

Semantic Understanding

Grounding

Dialog Policy

Where should I bring a blue mug from?

Natural Language Generation
Background: Grounding

Bring the blue mug from Alice’s office

Semantic Understanding → Grounding

Where should I bring a blue mug from?

Natural Language Generation → Dialog Policy
Background: Grounding

Map meaning representations to real world entities
Background: Grounding

Map meaning representations to real world entities

\[\text{the}(\lambda y. (\text{office}(y) \land \text{owns}(\text{alice}, y))) \]

<table>
<thead>
<tr>
<th>Person</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>alice</td>
<td>3502</td>
</tr>
<tr>
<td>bob</td>
<td>3324</td>
</tr>
</tbody>
</table>

3502
Background: Grounding

Map meaning representations to real world entities

Perceptual Grounding

\[\lambda x. (\text{blue}(x) \land \text{mug}(x)) \]

Classifier blue/not blue

Classifier mug/not mug

blue

mug

not blue

mug
Background: Dialog Policy

Bring the blue mug from Alice’s office

Semantic Understanding

Grounding

Dialog Policy

Where should I bring a blue mug from?

Natural Language Generation
Background: Dialog Policy

Bring the blue mug from Alice’s office

Semantic Understanding → Grounding

Where should I bring a blue mug from?

Natural Language Generation

Dialog Policy
Background: Dialog Policy

Plans the next response that the system has to give.

- Bring the blue mug from Alice’s office
- Confirm
- Ask Question
- Execute
Background: Dialog Policy

• Dialog state - Information from the dialog so far
• Dialog policy - Mapping from dialog states to dialog actions (response types/responses)
• Learned using Reinforcement Learning
Background: Reinforcement Learning

Markov Decision Process (MDP)

Agent

Environment

Action

Reward

State
Background: Reinforcement Learning

Partially Observable Markov Decision Process (POMDP)

Diagram:
- Agent (Belief)
- Environment (State)
- Action
- Reward
- Observation
Background: Natural Language Generation

Bring the blue mug from Alice’s office

Where should I bring a blue mug from?

Semantic Understanding

Grounding

Dialog Policy

Natural Language Generation
Bring the blue mug from Alice’s office

Semantic Understanding

Grounding

Dialog Policy

Natural Language Generation

Where should I bring a blue mug from?
Background: Natural Language Generation

Converting an action to a natural language response

```
ask_param(
    action=bring,
    patient=\lambda x. (blue(x) \land mug(x))
    src=?
)
```

Where should I bring a blue mug from?
Outline

• Background
• Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
• Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
• Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
• Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
• Summary
• New Directions (Padmakumar and Mooney, RoboDial 2020)
Integrating Learning of Dialog Strategies and Semantic Parsing

Semantic Understanding

Grounding

Dialog Policy

Natural Language Generation

Where should I bring a blue mug from?

Bring the blue mug from Alice’s office

[Padmakumar et. al., 2017]
Prior work: Improving Semantic Parsers from Clarification Dialogs

Bring the blue mug from Alice’s office

Where should I bring a blue mug from?

Alice Ashcraft’s office

I should bring a blue mug from 3502?

Alice’s office

Alice Ashcraft’s office

3502

Yes

[Thomason et. al., 2015]
Prior Work: Dialog Policy Learning

Learns what the best next response is by modelling dialog system as a Partially Observable Markov Decision Process (POMDP)

Bring the blue mug from Alice’s office
Summary

• Jointly improving a semantic parser and dialog policy from human interactions is more effective than improving either alone.
• The training procedure needs to enable changes in components to be propagated to each other for joint learning to be effective.
Outline

• Background
• Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
• Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
• Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
• Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
• Summary
• New Directions (Padmakumar and Mooney, RoboDial 2020)
Opportunistic Active Learning for Grounding Natural Language Descriptions

Bring the blue mug from Alice’s office

Semantic Understanding

Grounding

[Thomason et al., 2017]

Where should I bring a blue mug from?

Natural Language Generation

Dialog Policy
Opportunistic Active Learning

• A framework for incorporating active learning queries into test time interactions.
• Agent asks locally convenient questions during an interactive task to collect labeled examples for supervised learning.
• Questions may not be useful for the current interaction but expected to help future tasks.
Opportunistic Active Learning

Bring the blue mug from Alice’s office

Blue?
Opportunistic Active Learning

Bring the blue mug from Alice’s office

Would you use the word “blue” to refer to this object?

Yes
Opportunistic Active Learning

Bring the blue mug from Alice’s office

bring(coffee, 3502)

Tall?

Heavy?
Opportunistic Active Learning

Bring the blue mug from Alice’s office

Would you use the word “tall” to refer to this object?

Yes
Opportunistic Active Learning

Query for labels most likely to improve the model.
Opportunistic Active Learning

Why ask off-topic queries?

• Robot may have good models for on-topic concepts.
• No useful on-topic queries.
• Some off-topic concepts may be more important because they are used in more interactions.
Opportunistic Active Learning - Challenges

Some other object might be a better candidate for the question

Purple?
Opportunistic Active Learning - Challenges

The question interrupts another task and may be seen as unnatural

Bring the blue mug from Alice’s office

Would you use the word “tall” to refer to this object?
Opportunistic Active Learning - Challenges

The information needs to be useful for a future task.
Object Retrieval Task
Object Retrieval Task

- User describes an object in the active test set
- Robot needs to identify which object is being described
Object Retrieval Task

• Robot can ask questions about objects on the sides to learn object attributes
Two Types of Questions

Would you use the word “bottle” to describe this object?

Robot
Two Types of Questions

Can you show me an object you would describe as “yellow”?

Robot
Experimental Conditions

A yellow water bottle

- Baseline (on-topic) - the robot can only ask about “yellow”, “water” and “bottle”
- Inquisitive (on and off topic) - the robot can ask about any concept it knows, possibly “red” or “heavy”
Results

• Inquisitive robot performs better at understanding object descriptions.
• Users find the robot more comprehending, fun and usable in a real-world setting, when it is opportunistic.
Outline

• Background
• Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
• Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
• Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
• Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
• Summary
• New Directions (Padmakumar and Mooney, RoboDial 2020)
Learning a Policy for Opportunistic Active Learning

Bring the blue mug from Alice’s office

Semantic Understanding

Grounding

Dialog Policy

Natural Language Generation

Where should I bring a blue mug from?

[Padmakumar et. al., 2018]
Opportunistic Active Learning

Bring the **blue mug** from Alice’s office

Would you use the word “**tall**” to refer to this object?

Yes
Dialog Policy Learning

Bring the blue mug from Alice’s office

bring(.blue.mug, 3502)

Heavy?

Tall?
Learning a Policy for Opportunistic Active Learning

Learn a dialog policy that decides how many and which questions to ask to improve grounding models.
Learning a Policy for Opportunistic Active Learning

To learn an effective policy, the agent needs to learn

- To identify good queries in the opportunistic setting.
- When a guess is likely to be successful.
- To trade off between model improvement and task completion.
Task Setup

<table>
<thead>
<tr>
<th>Active Training Set</th>
<th>Dialog</th>
<th>Active Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train_1</td>
<td>Robot</td>
<td>Test_1</td>
</tr>
<tr>
<td>Train_2</td>
<td>Human</td>
<td>Test_2</td>
</tr>
<tr>
<td>Train_3</td>
<td></td>
<td>Test_3</td>
</tr>
<tr>
<td>Train_4</td>
<td>Describe the object I should find.</td>
<td>Test_4</td>
</tr>
<tr>
<td>Train_5</td>
<td>A white umbrella</td>
<td></td>
</tr>
<tr>
<td>Train_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train_8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Target Description
Task Setup

<table>
<thead>
<tr>
<th>Active Training Set</th>
<th>Dialog</th>
<th>Active Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train_1</td>
<td>Robot</td>
<td>Test_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train_4</td>
<td>Human</td>
<td>Test_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train_2</td>
<td>Robot</td>
<td>Test_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train_5</td>
<td>Human</td>
<td>Test_4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train_6</td>
<td>Robot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train_8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dialog

- **Robot**: Describe the object I should find.
- **Human**: A white umbrella

Query

- **Robot**: Is there something in Train_6 that can be described as **yellow**?
- **Human**: No

Example

- **Robot**: Can you show me an image with something that can be described as **white**?
- **Human**: Train_1
Task Setup

<table>
<thead>
<tr>
<th>Active Training Set</th>
<th>Dialog</th>
<th>Active Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train_1</td>
<td>Robot: Describe the object I should find.</td>
<td>Test_1</td>
</tr>
<tr>
<td>Train_4</td>
<td>Human: A white umbrella</td>
<td>Test_2</td>
</tr>
<tr>
<td>Train_2</td>
<td>Robot: Is there something in Train_6 that</td>
<td></td>
</tr>
<tr>
<td></td>
<td>can be described as yellow?</td>
<td>Test_3</td>
</tr>
<tr>
<td>Train_5</td>
<td>Human: No</td>
<td></td>
</tr>
<tr>
<td>Train_6</td>
<td>Robot: Can you show me an image with</td>
<td>Test_4</td>
</tr>
<tr>
<td></td>
<td>something that can be described as white?</td>
<td></td>
</tr>
<tr>
<td>Train_7</td>
<td>Human: Train_1</td>
<td></td>
</tr>
<tr>
<td>Train_8</td>
<td>Robot: My guess is Test_4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human: Correct</td>
<td></td>
</tr>
</tbody>
</table>
Grounding Model

A white umbrella \rightarrow \{white, umbrella\}

Pretrained CNN

\[\text{SVM} \quad \text{white/ not white}\]
\[\text{SVM} \quad \text{umbrella/ not umbrella}\]
Opportunistic Active Learning

- Agent starts with no classifiers.
- Labeled examples are acquired through questions and used to train the classifiers.
- Agent needs to learn a policy to balance active learning with task completion.
MDP Model

Action:
- Label query: <yellow, train_1>
- Label query: <yellow, train_2>
- ...
- Label query: <white, train_1>
- Label query: <white, train_2>
- ...
- Example Query: yellow
- Example query: white
- ...
- Guess

State:
- Target description
- Active train and test objects
- Agent’s perceptual classifiers

Reward:
Max correct guesses with short dialogs
Challenges

Action:
- Label query: <yellow, train_1>
- Label query: <yellow, train_2>
- ...
- Label query: <white, train_1>
- Label query: <white, train_2>
- ...
- Example Query: yellow
- Example query: white
- ...
- Guess

State:
- Target description
- Active train and test objects
- Agent’s perceptual classifiers

Reward: Max correct guesses with short dialogs

How to represent classifiers for policy learning?
Challenges

How to handle a variable and growing action space?

- Label query: <yellow, train_1>
- Label query: <yellow, train_2>
- ...
- Label query: <white, train_1>
- Label query: <white, train_2>
- ...
- Example Query: yellow
- Example query: white
- ...
- Guess

Reward: Max correct guesses with short dialogs

State:
- Target description
- Active train and test objects
- Agent’s perceptual classifiers
Tackling challenges

- Features based on active learning metrics
 - Representing classifiers
- Featurize state-action pairs
 - Variable number of actions and classifiers
- Sampling a beam of promising queries
 - Large action space
Feature Groups

• Query features - Active learning metrics used to determine whether a query is useful
• Guess features - Features that use the predictions and confidences of classifiers to determine whether a guess will be correct
Experiment Setup

• Policy learning using REINFORCE.
• Baseline - A hand-coded dialog policy that asks a fixed number of questions selected using the sampling distribution that provides candidates to the learned policy.
Experiment Phases

- Initialization - Collect experience using the baseline to initialize the policy.
- Training - Improve the policy from on-policy experience.
- Testing - Policy weights are fixed, and we run a new set of interactions, starting with no classifiers, over an independent test set with different predicates.
Results

- Systems evaluated on dialog success rate and average dialog length.
Results

- Systems evaluated on dialog success rate and average dialog length.
- We prefer high success rate and low dialog length (top left corner)
Results

- Learned policy is more successful than the baseline, while also using shorter dialogs on average.
If we ablate either group of features, the success rate drops considerably but dialogs are also much shorter.

In both cases, the system chooses to ask very few queries.
Summary

• We can learn a dialog policy that learns to acquire knowledge of predicates through opportunistic active learning.

• The learned policy is more successful at object retrieval than a static baseline, using fewer dialog turns on average.
Outline

- Background
- Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
- Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
- Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
- Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
- Summary
- New Directions (Padmakumar and Mooney, RoboDial 2020)
Outline

• Dialog Policy Learning for Joint Clarification and Active Learning Queries
 – Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
 – Human Evaluation
 – Extension to Joint Embedding Based Grounding Model
Bring the blue mug from Alice’s office

Where should I bring a blue mug from?

Dialog Policy Learning for Joint Clarification and Active Learning Queries

[Padmakumar and Mooney, in submission]
Previous Work

Bring the blue mug from Alice’s office

bring(Mug, 3502)

Heavy?

Tall?
This Work

Bring the blue mug from Alice’s office

bring(●, 3502)

Heavy?

Tall?
This Work

Bring the blue mug from Alice’s office

What should I bring?

Would you use the word “tall” to refer to this object?
Dialog Policy Learning for Joint Clarification and Active Learning Queries

Clarification
Opportunistic Active Learning
This Work
Dialog Policy Learning
Dialog Policy Learning for Joint Clarification and Active Learning Queries

Learn a dialog policy to trade off -

- Model improvement with opportunistic active learning to better understand future commands
- Clarification to better understand and complete the current command
Attribute Based Clarification: Motivation

Bring the blue mug from Alice’s office

What should I bring?

bring(●, 3502)
Attribute Based Clarification:

Motivation

Bring the blue mug from Alice’s office

What should I bring?

The blue coffee mug

What should I bring?
Attribute Based Clarification: Motivation

Bring the blue mug from Alice’s office

Is this the object I should bring?

No

Is this the object I should bring?
Attribute Based Clarification: Motivation

[Das, et. al., 2017] [De Vries et. al., 2017]
Attribute Based Clarification

- More specific than a new description.
- More general than showing each possible object.
- Provide ground truth answers to questions for training in simulation.
- Attribute - any property that can be used in a description - categories, colors, shapes, domain specific properties.
Attribute Based Clarification: Motivation

Bring the blue mug from Alice’s office

Is the object I should bring a cup?
Task Setup

- Motivated by an online shopping application
- Use clarifications to help refine search queries
- Use active learning to improve the model retrieving images.
Dataset

• We simulate dialogs using the iMaterialist Fashion Attribute dataset.
• Images have associated product titles and are annotated with binary labels for 228 attributes.
• Attributes: Dress, Shirt, Red, Blue, V-Neck, Pleats, ...
Task Setup

Active Training Set

Active Test Set
A Polka Dot Chiffon Blouse

What can I help you find?

Would you like one which is black?

Would you describe this as sleeveless?

Can you show me something you would describe as chiffon?

Is this what you were searching for?

Yes

Yes

Yes
Visual Attribute Classifier

\[L = (1 - \lambda) \sum_i y_i \log p(i) + (1 - y_i) \log(1 - p(i)) + \lambda \sum_i y_i \log p'(i) \]

Cross Entropy Loss Over All Examples
Visual Attribute Classifier

Inception-V3 → FC Layer → ψ(i) → Temperature Correction → Elementwise Sigmoid → p'(i)

ϕ(i) → FC Layer → ψ(i) → f(i) → Temperature Correction → Elementwise Sigmoid → p(i)
Visual Attribute Classifier

\[L = (1 - \lambda) \sum_i y_i \log p(i) + (1 - y_i) \log(1 - p(i)) + \lambda \sum_i y_i \log p'(i) \]

Cross Entropy Loss Over Positive Labels
Grounding Model

A Polka Dot Chiffon Blouse \rightarrow \{Polka Dot, Chiffon, Blouse\}
Grounding Model

A Polka Dot Chiffon Blouse \rightarrow \{Polka Dot, Chiffon, Blouse\}

Belief: $b(i) = \prod_{w \in W_d} p_w(i)$

Attributes Mentioned in Description
Grounding Model

A Polka Dot Chiffon Blouse ➔ \{Polka Dot, Chiffon, Blouse\}

Belief:
\[b(i) = \prod_{w \in W_d} p_w(i) \]

- Classifier probability that attribute \(w \) is positive for image \(i \)
- \(w \)-th value in classifier output for image \(i \)
Grounding Model

Agent: Would you like one which is black?
User: Yes

Belief: \[b(i) = \prod_{w \in W_d} p_w(i) \prod_{w \in W_p} p_w(i) \]

Clarifications that get the answer “Yes”
Grounding Model

Agent: Would you like one which is black?
User: No

Belief: \[b(i) = \prod_{w \in W_d} p_w(i) \prod_{w \in W_p} p_w(i) \prod_{w \in W_n} (1 - p_w(i)) \]

Clarifications that get the answer “No”
Grounding Model

Best guess: Image in active test set with maximum belief $b(i)$
Information Gain

• For estimating the utility of clarifications
• Estimated using classifier probabilities
• Estimate based on Lee et. al., 2018
Information Gain

\[J(q) = \sum_{i \in O^t_A} \sum_{a \in \{0,1\}} b(i)P(a|q,i) \ln \left(\frac{P(a|q,i)}{\sum_i b(i)P(a|q,i)} \right) \]
Information Gain

\[J(q) = \sum_{i \in O^{te}_A} \sum_{a \in \{0,1\}} b(i)P(a|q,i) \ln \left(\frac{P(a|q,i)}{\sum_i b(i)P(a|q,i)} \right) \]

Objects in Active Test Set
Information Gain

\[J(q) = \sum_{i \in O^t_A} \sum_{a \in \{0,1\}} b(i) P(a \mid q, i) \ln \left(\frac{P(a \mid q, i)}{\sum_i b(i) P(a \mid q, i)} \right) \]

Possible answers to a clarification: No and Yes
Information Gain

\[J(q) = \sum_{i \in O^t_A} \sum_{a \in \{0,1\}} b(i) P(a \mid q, i) \ln \left(\frac{P(a \mid q, i)}{\sum_i b(i) P(a \mid q, i)} \right) \]

Belief of image i
Information Gain

\[J(q) = \sum_{i \in O^t_e} \sum_{a \in \{0,1\}} b(i) P(a|q, i) \ln \left(\frac{P(a|q, i)}{\sum_i b(i) P(a|q, i)} \right) \]

Probability of the answer
Information Gain

\[J(q) = \sum_{i \in O^t_A} \sum_{a \in \{0,1\}} b(i) P(a|q,i) \ln \left(\frac{P(a|q,i)}{\sum_i b(i) P(a|q,i)} \right) \]

Probability of the answer

For “Yes” Answer: \(P(1|q,i) = p_q(i) \)
Information Gain

\[
J(q) = \sum_{i \in O_A^{te}} \sum_{a \in \{0,1\}} b(i) P(a|q,i) \ln \left(\frac{P(a|q,i)}{\sum_i b(i) P(a|q,i)} \right)
\]

Probability of the answer

For “No” Answer: \(P(0|q,i) = 1 - p_q(i) \)
Dialog as MDP

Action:
- Clarifications
- Label queries
- Example queries
- Guess

State:
- Target description
- Active train and test objects
- Agent’s perceptual classifiers

Dialog Agent

Reward:
Max correct guesses with short dialogs

User
Policy Learning

- Hierarchical Dialog Policy -
 - Clarification policy - chooses best clarification
 - Active learning policy - chooses best active learning query
 - Decision Policy - chooses between guess, best clarification and best active learning query
- Featurize state-action pairs
- Q-Learning and A3C for policy learning
Policy Features

- Clarification Policy Features - Metrics about current beliefs, information gain
- Active Learning Policy Features - Margin, Fraction of previous uses and successes
- Decision Policy Features - Metrics about current beliefs, information gain, margin, dialog length
Static Baseline

- Clarification: Choose query with maximum information gain
- Active Learning: Uncertainty Sampling
- Decision Policy
 - Fixed dialog length
 - Clarification till the belief reaches a threshold
 - Active learning for the second half of the dialog
Experiment Phases

- Classifier Initialization - Train classifier using paired images and labels
- Policy Initialization - Collect experience using the baseline to initialize the policy.
- Policy Training - Improve the policy from on-policy experience.
- Policy Testing - Policy weights are fixed, and we run a new set of interactions, reset classifiers to the state at the end of classifier initialization, over an independent test set with different predicates.
Results

<table>
<thead>
<tr>
<th>Decision Type</th>
<th>Policy Type</th>
<th>Clarification Policy Type</th>
<th>Active Policy Type</th>
<th>Fraction of Successful Dialogs</th>
<th>Average Dialog Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Learning</td>
<td>A3C</td>
<td>A3C</td>
<td></td>
<td>0.33</td>
<td>9.40</td>
</tr>
<tr>
<td>Static</td>
<td>Static</td>
<td>Static</td>
<td></td>
<td>0.17</td>
<td>20.00</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Decision Type</th>
<th>Policy Type</th>
<th>Clarification Policy Type</th>
<th>Active Learning Policy Type</th>
<th>Fraction of Successful Dialogs</th>
<th>Average Dialog Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Learning</td>
<td>A3C</td>
<td>A3C</td>
<td></td>
<td>0.33</td>
<td>9.40</td>
</tr>
<tr>
<td>Static</td>
<td>Static</td>
<td>Static</td>
<td></td>
<td>0.17</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Fully learned policy is significantly more successful than the baseline, while also having significantly shorter dialogs on average.
If we replace either the clarification or active learning policies with static policies, we find that the success rate drops considerably.

<table>
<thead>
<tr>
<th>Decision Type</th>
<th>Policy Type</th>
<th>Clarification Policy Type</th>
<th>Active Learning Policy Type</th>
<th>Fraction of Successful Dialogs</th>
<th>Average Dialog Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Learning</td>
<td>A3C</td>
<td>A3C</td>
<td>0.33</td>
<td>9.40</td>
<td></td>
</tr>
<tr>
<td>Q-Learning</td>
<td>A3C</td>
<td>Static</td>
<td>0.15</td>
<td>14.16</td>
<td></td>
</tr>
<tr>
<td>Q-Learning</td>
<td>Static</td>
<td>A3C</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td>Static</td>
<td>Static</td>
<td>0.17</td>
<td>20.00</td>
<td></td>
</tr>
</tbody>
</table>
If we replace only the decision policy with a static policy, we find that it remains more successful than the baseline but is unable to shorten dialogs.
Action Types - Learned Policy

[Bar chart showing the number of system actions of each type across different numbers of dialogs completed. The chart compares 'Clarifications' and 'Active Learning Queries'.]
Utility of Clarifications

Decision = Static, Clarification = Static, Active Learning = Static

Fraction of successful dialogs in batch

Success rate without clarifications
Final success rate with clarifications

dialogs completed
Utility of Clarifications

Decision = Q-Learning, Clarification = A3C, Active Learning = A3C

Decision = Static, Clarification = Static, Active Learning = Static

- Success rate without clarifications
- Final success rate with clarifications
Summary

• We train a hierarchical dialog policy to trade off opportunistic active learning, attribute based clarification and task completion in a language based image retrieval task.
• Our learned policy is more successful than a static baseline while using fewer dialog turns on average.
• In our task setup, both good clarifications and active learning queries are necessary to improve performance over direct retrieval.
Outline

- Dialog Policy Learning for Joint Clarification and Active Learning Queries
 - Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
 - Human Evaluation
 - Extension to Joint Embedding Based Grounding Model
Human Evaluation - Experiment Changes

• Descriptions from human users contained far fewer attributes than product titles

• Changes in task setup -
 – Provide one attribute from product title as simulated description
 – Smaller and easier active test set
Experiment Interface

Describe the product in the image.
red dress
Experiment Interface

Answer the question.

Here are some examples of the property "Black"

Does the property "Black" apply to the following product?

[Images of various black clothing and accessories]

- Yes
- No
Experiment

- Initialization, training and test phases run in new simulated setup
- Run a single batch of interactions on Amazon Mechanical Turk with final policy and classifiers
The learned policy is considerably more successful in the new simulated setup but is unable to shorten dialogs compared to the baseline.
Results

<table>
<thead>
<tr>
<th>Policy</th>
<th>Simulation – Fraction of Successful Dialogs</th>
<th>Simulation – Average Dialog Length</th>
<th>AMT – Fraction of Successful Dialogs</th>
<th>AMT – Average Dialog Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>0.23</td>
<td>20.0</td>
<td>0.06</td>
<td>19.16</td>
</tr>
<tr>
<td>Learned</td>
<td>0.65</td>
<td>20.0</td>
<td>0.16</td>
<td>18.86</td>
</tr>
</tbody>
</table>

- The performance of both policies drops in AMT interactions.
- The learned policy is still somewhat more successful (p <= 0.1)
Outline

- Dialog Policy Learning for Joint Clarification and Active Learning Queries
 - Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
 - Human Evaluation
 - Extension to Grounding Model Based on Joint Embeddings
Motivation

• Independent classifiers cannot identify correlations between properties
• Multilabel classifiers assume a fixed set of properties
Grounding Model

blue mug pink mug
blue book pink book
Grounding Model

- Represent words and images as vectors in the same space.
- Words are near images they apply to and vice versa.
Grounding Model

To ground a description, such as “blue mug”, find the image which minimizes the sum of distances to the words.
Grounding Model

To ground a description, such as “blue mug”, find the image which minimizes the sum of distances to the words.
To ground a description, such as “blue mug”, find the image which minimizes the sum of distances to the words.
Grounding Model

To ground a description, such as “blue mug”, find the image which minimizes the sum of distances to the words.
Grounding Model
Grounding Model

\[d(f(\text{blue}), g(\text{blue})) \leq d(f(\text{pink}), g(\text{blue})) \]
\[d(f(\text{blue}), g(\text{blue})) \leq d(f(\text{blue}), g(\text{pink})) \]

- Constraints captured using a ranking loss
- Platt scaling parameters are trained using log loss
Preliminary Results

Clarifications with a high estimate of information gain do not necessarily increase the belief of the correct target image.
Discussion

Possible reasons why our estimate of information gain is not able to identify helpful clarifications -

- Noise in annotations used to provide responses
- Grounding model does not produce a true probability distribution
Future Work

• Better learned spaces - Possibly using pretrained models such as ViLBERT, LXMERT
• Techniques such as adversarial loss to make the learned space smoother.
Outline

• Background
• Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
• Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
• Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
• Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)

• Summary
• New Directions (Padmakumar and Mooney, RoboDial 2020)
Dialog as a Vehicle for Lifelong Learning of Grounded Language Understanding Systems
Joint Parser and Policy Learning

Bring the blue mug from Alice’s office

Semantic Understanding

Grounding

Dialog Policy

Natural Language Generation

Where should I bring a blue mug from?
Policy Learning for Opportunistic Active Learning

<table>
<thead>
<tr>
<th>Active Training Set</th>
<th>Dialog</th>
<th>Active Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train_1</td>
<td>Robot: Describe the object I should find.</td>
<td>Test_1</td>
</tr>
<tr>
<td></td>
<td>Human: A white umbrella</td>
<td></td>
</tr>
<tr>
<td>Train_4</td>
<td>Robot: Is there something in Train_6 that can be described as yellow?</td>
<td>Test_2</td>
</tr>
<tr>
<td>Train_2</td>
<td>Human: No</td>
<td></td>
</tr>
<tr>
<td>Train_3</td>
<td>Robot: Can you show me an image with something that can be described as white?</td>
<td>Test_3</td>
</tr>
<tr>
<td></td>
<td>Human: Train_1</td>
<td></td>
</tr>
<tr>
<td>Train_5</td>
<td>Robot: My guess is Test_4</td>
<td>Test_4</td>
</tr>
<tr>
<td>Train_6</td>
<td>Human: Correct</td>
<td></td>
</tr>
<tr>
<td>Train_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train_8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dialog Policy Learning for Joint Clarification and Active Learning Queries

What can I help you find?

A Polka Dot Chiffon Blouse

Would you like one which is **black**?

Yes

Would you describe this as **sleeveless**?

Yes

Can you show me something you would describe as **knit**?

Is this what you were searching for?

Yes
Outline

• Background
• Integrating Learning of Dialog Strategies and Semantic Parsing (Padmakumar et.al., 2017)
• Opportunistic Active Learning for Grounding Natural Language Descriptions (Thomason et. al., 2017)
• Learning a Policy for Opportunistic Active Learning (Padmakumar et. al., 2018)
• Dialog Policy Learning for Joint Clarification and Active Learning Queries (Padmakumar and Mooney, in submission)
• Summary
• New Directions (Padmakumar and Mooney, RoboDial 2020)
Dialog as a Vehicle for Lifelong Learning

[Padmakumar and Mooney, RoboDial 2020]

• New challenge area for dialog researchers
• Goal: Design dialog systems that can better support lifelong learning
Challenges: Active Learning

• Improving sample complexity
• Few shot adaptation of pretrained models
• Better robustness and transferability of RL policies for active learning
Challenge: Dialog Act Design

Design new dialog acts that collect labeled data or combine this with task-completion objectives

Can you show me how to open this with a knife?
Challenges:
Dataset Collection and Simulation

- Designing simulations to answer a wide range of queries.
- Providing “correct” answers in simulation.
- Sim2Real Transfer
Challenges: User Experience

- Prosodic analysis to identify urgency, stress, sarcasm and frustration in users to determine when it is appropriate to include or avoid data collection queries.
- Demonstrating few-shot learning to keep users motivated.
Dialog as a Vehicle for Lifelong Learning of Grounded Language Understanding Systems

Aishwarya Padmakumar

Doctoral Dissertation Defense