Learning Statistical Scripts with LSTM Recurrent Neural Networks

Karl Pichotta & Raymond J. Mooney Department of Computer Science The University of Texas at Austin

AAAI 2016

Motivation

- Following the Battle of Actium, Octavian invaded Egypt. As he approached Alexandria, Antony's armies deserted to Octavian on August 1, 30 BC.
 - Did Octavian defeat Antony?

Motivation

- Following the Battle of Actium, Octavian invaded Egypt. As he approached Alexandria, Antony's armies deserted to Octavian on August 1, 30 BC.
 - Did Octavian defeat Antony?

Motivation

Antony's armies deserted to Octavian
 ⇒

Octavian defeated Antony

- Not simply a paraphrase rule!
- Need world knowledge.

Scripts

- Scripts: models of events in sequence.
 - "Event": verb + arguments.
 - Events don't appear in text randomly, but according to world dynamics.
 - Scripts try to capture these dynamics.
 - Enable automatic inference of implicit events, given events in text (e.g. *Octavian defeated Antony*).

Outline

- Background
- Methods
- Experiments
- Conclusion

Outline

- Background
 - Statistical Scripts
 - Recurrent Neural Nets

Background: Statistical Scripts

- **Statistical Scripts**: Statistical Models of Event Sequences.
- Non-statistical scripts date back to the 1970s [Schank & Abelson 1977].
- Statistical script learning is a small-but-growing subcommunity [e.g. Chambers & Jurafsky 2008].
- Model the probability of an event given prior events.

Background: Statistical Script Learning

Background: Statistical Script Inference

Outline

- Background
 - Statistical Scripts
 - Recurrent Neural Nets

Background: RNNs

- Recurrent Neural Nets (RNNs): Neural Nets with cycles in computation graph.
- RNN Sequence Models: Map inputs

$$X_1, \ldots, X_t$$

to outputs

*O*₁, ..., *O*_t

via learned latent vector states

 $Z_1, \ldots, Z_t.$

Background: RNNs [Elman 1990]

Background: RNNs

 Hidden Unit can be arbitrarily complicated, as long as we can calculate gradients!

Background: LSTMs

- Long Short-Term Memory (LSTM): More complex hidden RNN unit. [Hochreiter & Schmidhuber, 1997]
- Explicitly addresses two issues:
 - Vanishing Gradient Problem.
 - Long-Range Dependencies.

Background: LSTMs

- LSTMs recently successful on many hard NLP tasks:
 - Machine Translation [Kalchbrenner & Blunsom 2013, Bahdanau et al. 2015].
 - Captioning Images/Videos [Donahue et al. 2015, Venugopalan et al. 2015].
 - Language Modeling [Sundermeyer et al. 2012, Kim et al. 2016].
 - Question Answering [Hermann et al. 2015, Gao et al. 2015].
 - Parsing [Vinyals et al. 2015].

Outline

- Background
- Methods
- Experiments
- Conclusion

Outline

- Background
- Methods
- Experiments
- Conclusion

- Train LSTM sequence model on event sequences.
 - Events are (verbs + arguments).
 - Arguments can have noun info, coref info, or both.
- To infer events, the model generates likely events from sequence.

• Mary's late husband Matthew, whom she married at 21 because she loved him, ...

[marry, mary, matthew, at, 21]; [love, she, him]

• Mary's late husband Matthew, whom she married at 21 because she loved him, ...

[marry, mary, matthew, at, 21]; [love, she, him]

• Mary's late husband Matthew, whom she married at 21 because she loved him, ...

Outline

- Background
- Methods
- Experiments
- Conclusion

Experimental Setup

- Train on English Wikipedia.
- Use Stanford CoreNLP to extract event sequences.
- Train LSTM using Batch Stochastic Gradient Descent with Momentum.
- To infer next events, have the LSTM generate additional events with highest probability.

Evaluation

- "Narrative Cloze" (Chambers & Jurafsky, 2008): from an unseen document, hold one event out, try to infer it given remaining document.
- "Recall at k" (Jans et al., 2012): make k top inferences, calculate recall of held-out events.
- (More metrics in the paper.)

Evaluation

- Three Systems:
 - Unigram: Always guess most common events.
 - **Bigram:** Variations of Pichotta & Mooney (2014)
 - Uses event co-occurrence counts.
 - Best-published system on task.
 - **LSTM:** LSTM script system (this work).

Results: Predicting Verbs & Coreference Info

Recall at 25 for inferring Verbs & Coref info

Results: Predicting Verbs & Nouns

Recall at 25 for inferring Verbs & Nouns

Human Evaluations

- Solicit judgments on individual inferences on Amazon Mechanical Turk.
 - Have annotators rate inferences from 1-5 (or mark "Nonsense," scored 0).
 - More interpretable.

Results: Crowdsourced Eval

Generated "Story"

Generated event tuples

(bear, ., ., kingdom, into)
(attend, she, brown, graduation, after)
(earn, she, master, university, from)
(admit, ., she, university, to)
(receive, she, bachelor, university, from)
(involve, ., she, production, in)
(represent, she, company, ., .)

English Descriptions

Born into a kingdom,...

...she attended Brown after graduation She earned her Masters from the University She was admitted to a University She had received a bachelors from a University She was involved in the production She represented the company.

Conclusion

- Presented a method for inferring implicit events with LSTMs.
- Superior performance on reconstructing held-out events and inferring novel events.

Thanks!