Learning Statistical Scripts with LSTM Recurrent Neural Networks

Karl Pichotta & Raymond J. Mooney
Department of Computer Science
The University of Texas at Austin

AAAI 2016
Motivation

- Following the Battle of Actium, Octavian invaded Egypt. As he approached Alexandria, Antony's armies deserted to Octavian on August 1, 30 BC.

- Did Octavian defeat Antony?
Motivation

- Following the Battle of Actium, Octavian invaded Egypt. As he approached Alexandria, Antony's armies deserted to Octavian on August 1, 30 BC.

- Did Octavian defeat Antony?
Motivation

• Antony’s armies deserted to Octavian
 \[\Rightarrow \]
 Octavian defeated Antony

• Not simply a paraphrase rule!

• Need world knowledge.
Scripts

- **Scripts**: models of events in sequence.

- “**Event**”: verb + arguments.

- Events don’t appear in text randomly, but according to world dynamics.

- Scripts try to capture these dynamics.

- Enable automatic inference of implicit events, given events in text (e.g. *Octavian defeated Antony*).
Outline

• Background
• Methods
• Experiments
• Conclusion
Outline

• Background

• Statistical Scripts

• Recurrent Neural Nets
Background: Statistical Scripts

• **Statistical Scripts**: Statistical Models of Event Sequences.

• Non-statistical scripts date back to the 1970s [Schank & Abelson 1977].

• Statistical script learning is a small-but-growing subcommunity [e.g. Chambers & Jurafsky 2008].

• Model the probability of an event given prior events.
Background: Statistical Script Learning

Millions of Documents → NLP Pipeline
- Syntax
- Coreference → Millions of Event Sequences

Train a Statistical Model
Background: Statistical Script Inference

New Test Document → NLP Pipeline
 • Syntax
 • Coreference → Single Event Sequence

Inferred Probable Events → Query Trained Statistical Model
Outline

• Background

• Statistical Scripts

• Recurrent Neural Nets
Background: RNNs

• **Recurrent Neural Nets (RNNs):** Neural Nets with cycles in computation graph.

• RNN Sequence Models: Map inputs x_1, \ldots, x_t to outputs o_1, \ldots, o_t via learned latent vector states z_1, \ldots, z_t.
Background: RNNs

[Elman 1990]

\[
\begin{align*}
&x_1, x_2, \ldots, x_t, \\
&z_1, z_2, \ldots, z_t, \\
&o_1, o_2, \ldots, o_t,
\end{align*}
\]
Hidden Unit can be arbitrarily complicated, as long as we can calculate gradients!
Background: LSTMs

• **Long Short-Term Memory (LSTM):** More complex hidden RNN unit. [Hochreiter & Schmidhuber, 1997]

• Explicitly addresses two issues:
 • Vanishing Gradient Problem.
 • Long-Range Dependencies.
Background: LSTMs

- LSTMs recently successful on many hard NLP tasks:
 - Machine Translation [Kalchbrenner & Blunsom 2013, Bahdanau et al. 2015].
 - Captioning Images/Videos [Donahue et al. 2015, Venugopalan et al. 2015].
 - Question Answering [Hermann et al. 2015, Gao et al. 2015].
 - Parsing [Vinyals et al. 2015].
Outline

• Background
• Methods
• Experiments
• Conclusion
Outline

• Background
• Methods
• Experiments
• Conclusion
LSTM Script models

• Train LSTM sequence model on event sequences.

• Events are (verbs + arguments).

• Arguments can have noun info, coref info, or both.

• To infer events, the model generates likely events from sequence.
LSTM Script models

- Mary’s late husband Matthew, whom she married at 21 because she loved him, ...

[marry, mary, matthew, at, 21]; [love, she, him]
LSTM Script models

- Mary’s late husband Matthew, whom she married at 21 because she loved him, ...

[marry, mary, matthew, at, 21]; [love, she, him]
LSTM Script models

- Mary’s late husband Matthew, whom she married at 21 because she loved him, ...
Outline

• Background
• Methods
• Experiments
• Conclusion
Experimental Setup

• Train on English Wikipedia.

• Use Stanford CoreNLP to extract event sequences.

• Train LSTM using Batch Stochastic Gradient Descent with Momentum.

• To infer next events, have the LSTM generate additional events with highest probability.
Evaluation

• “Narrative Cloze” (Chambers & Jurafsky, 2008): from an unseen document, hold one event out, try to infer it given remaining document.

• “Recall at k” (Jans et al., 2012): make k top inferences, calculate recall of held-out events.

• (More metrics in the paper.)
Evaluation

• Three Systems:

 • **Unigram**: Always guess most common events.

 • **Bigram**: Variations of Pichotta & Mooney (2014)

 • Uses event co-occurrence counts.

 • Best-published system on task.

 • **LSTM**: LSTM script system (this work).
Results: Predicting Verbs & Coreference Info

Recall at 25 for inferring Verbs & Coref info
Results: Predicting Verbs & Nouns

Recall at 25 for inferring Verbs & Nouns

- Unigram: 0.025
- Bigram: 0.037
- LSTM: 0.061
Human Evaluations

• Solicit judgments on individual inferences on Amazon Mechanical Turk.

• Have annotators rate inferences from 1-5 (or mark “Nonsense,” scored 0).

• More interpretable.
Results: Crowdsourced Eval

- Random: 0.87
- Bigram: 2.87
- LSTM: 3.67

Categories:
- "Nonsense"
- "Very Unlikely"
- "Unlikely"
- "Neutral"
- "Likely"
Generated “Story”

Generated event tuples
(bear, ., ., kingdom, into)
(attend, she, brown, graduation, after)
(earn, she, master, university, from)
(admit, ., she, university, to)
(receive, she, bachelor, university, from)
(involve, ., she, production, in)
(represent, she, company, ., .)

English Descriptions
Born into a kingdom,…
…she attended Brown after graduation
She earned her Masters from the University
She was admitted to a University
She had received a bachelors from a University
She was involved in the production
She represented the company.
Conclusion

- Presented a method for inferring implicit events with LSTMs.
- Superior performance on reconstructing held-out events and inferring novel events.
Thanks!