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Event Inference: Motivation

• Suppose we want to build a Question Answering 
system…
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Event Inference: Motivation
• The Convention ordered the arrest of Robespierre.… 

Troops from the Commune, under General Coffinhal, 
arrived to free the prisoners and then marched 
against the Convention itself. 
 
  –Wikipedia 

• Was Robespierre arrested? 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Event Inference: Motivation
• The Convention ordered the arrest of Robespierre.… 

Troops from the Commune, under General Coffinhal, 
arrived to free the prisoners and then marched 
against the Convention itself. 
 
  –Wikipedia 

• Was Robespierre arrested? Very probably!"

• …But this needs to be inferred.
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Event Inference: Motivation

• Question answering requires inference of probable 
implicit events. 

• We’ll investigate such event inference systems.
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Event Sequence Learning
• [Schank & Abelson 1977] gave a non-statistical 

account of scripts (events in sequence). 

• [Chambers & Jurafsky (ACL 2008)] provided a 
statistical model of (verb, dependency) events. 

• A recent body of work focuses on learning statistical 
models of event sequences [e.g. P. & Mooney (AAAI 2016)]. 

• Events are, for us, verbs with multiple NP arguments.
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Event Sequence Learning
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Event Sequence Inference
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Event Sequence Inference
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Sentence-Level  
Language Models

• [Kiros et al. NIPS 2015]: “Skip-Thought Vectors” 

• Encode whole sentences into low-dimensional 
vectors… 

• …trained to decode previous/next sentences.
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Sequence-Level Language 
Models
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Sequence-Level Language 
Models

• [Kiros et al. 2015] use sentence-embeddings for 
other tasks. 

• We use them directly for inferring text. 

• Central Question: How well can sentence-level 
language models infer events?
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Systems

• Two Tasks: 

• Inferring Events from Events 
  

• Inferring Text from Text 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Systems

• Two Tasks: 

• Inferring Events from Events 
…and optionally expanding into text. 

• Inferring Text from Text 
…and optionally parsing into events. 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Systems

• Two Tasks: 

• Inferring Events from Events 
…and optionally expanding into text. 

• Inferring Text from Text 
…and optionally parsing into events."

• How do these tasks relate to each other?
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Event Systems

32

jumped(jim, from plane); 
opened(he, parachute)

Predict an event from a sequence of events.

LSTM

landed(jim, on ground)

LSTM

“Jim landed on the ground.”

8
>>>
><

>>>
>:

≈ [P. & Mooney (2016)]



Text Systems
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“Jim jumped from the plane and  
opened his parachute.”

Predict text from text.

LSTM

“Jim landed on the ground.”

Parser

landed(jim, on ground)
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>>>
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>:

≈ [Kiros et al. 2015]
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Experimental Setup
• Train + Test on English Wikipedia. 

• LSTM encoder-decoders trained with batch SGD 
with momentum. 

• Parse events with Stanford CoreNLP. 

• Events are verbs with head noun arguments. 

• Evaluate on Event Prediction & Text Prediction.
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Predicting Events: 
Evaluation

• Narrative Cloze [Chambers & Jurafsky 2008]: Hold out an 
event, judge a system on inferring it. 

• Accuracy: “For what percentage of the 
documents is the top inference the gold standard 
answer?” 

• Partial credit: “What is the average percentage 
of the components of argmax inferences that are 
the same as in the gold standard?”
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Predicting Events: Systems

• Most Common: Always guess the most common 
event. 

• e1 -> e2: events to events. 

• t1 -> t2 -> e2: text to text to events.
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Results: Predicting Events
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Predicting Text: Evaluation

• BLEU: Geometric mean of modified ngram 
precisions. 

• Word-level analog to Narrative Cloze.

40



Predicting Text: Systems

• t1 -> t1: Copy/paste a sentence as its predicted 
successor. 

• e1 -> e2 -> t2: events to events to text. 

• t1 -> t2: text to text.

41



Results: Predicting Text
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Takeaways

• In LSTM encoder-decoder event prediction… 

• Raw text models predict events about as well as 
event models. 

• Raw text models predict tokens better than event 
models.
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Example Inferences
• Input: “White died two days after Curly Bill shot 

him.” 

• Gold:  “Before dying, White testified that he 
thought the pistol had accidentally discharged and 
that he did not believe that Curly Bill shot him on 
purpose.” 

• Inferred: “He was buried at <UNK> Cemetery.”
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Example Inferences

• Input: “As of October 1 , 2008 , <UNK> changed 
its company name to Panasonic Corporation.” 

• Gold:  “<UNK> products that were branded 
‘National’ in Japan are currently marketed under 
the ‘Panasonic’ brand.” 

• Inferred: “The company’s name is now <UNK>.”
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Conclusions

• For inferring events in text, text is about as good a 
representation as events (and doesn’t require a 
parser!). 

• Relation of sentence-level LM inferences to other 
NLP tasks is an exciting open question.
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Thanks!
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