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• Distributional lexical semantics

• Inadequacies of standard “centroid” representation

• Richer representations of homonymy using mixture models

• A “tiered clustering” model for polysemy:
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• Represent “meaning” as a point/vector in a high-
dimensional space

• Word relatedness correlates with some distance metric

• Attributional / relational / resource-based, Almuhareb 
and Poesio (2004), Baroni and Lenci (2009), Bullinaria and 
Levy (2007), Erk (2007), Griffiths et al. (2007), Landauer and 
Dumais (1997), Moldovan (2006), Padó and Lapata (2007), 
Pantel and Pennacchiotti (2006), Sahlgren (2006), Turney and 
Pantel (2010)

Distributional Lexical Semantics
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(Some of) Distributional Lexical Semantics

The history of Oz prior to The Wonderful Wizard of Oz (often called the

Rowling describes the beloved wizard Dumbledore as Machiavellian and says

Merlin is a legendary figure best known as the wizard featured in the Arthurian legend

A wizard comedian is known to have survived eating this plant on a bet, though he is still purple

True Image is known for its simple, wizard driven interface, and received positive

Thunder did a cover of "Pinball Wizard" to be featured on "Hollywood Rocks"
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compute centroid

evil, powerful, magic, wizard, Merlin, spells, Harry

word occurrences / context vectors



One Word One Prototype

Ω =

• Find the centroid of the individual word occurrence 
context vectors

• Conflates senses / doesn’t reliably account for thematic 
variability in usage  
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Multi-Prototype

pasta

chicken
(food) elephant

chicken
(animal)

• Use a mixture model to cluster occurrences of each target 
word separately.

• Doesn’t find lexicographic senses; captures contextual 
variance directly.

Ω =
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wizard
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WS-353 Correlation with Human Relatedness Judgements

• 353 words, biased towards pairs with high similarity

• High polysemy subset generated by counting WN senses

Dataset: Finkelstein et. al 2001
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football - soccer 9.03

doctor - personnel 5.00

delay - news 3.31

Mars - water 2.94
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“Shared Structure Matters”

• Selectional Preference: Predict typical arguments for verbs (e.g. 
things that can eat or things that can be shot)

• Background cluster captures commonalities between argument 
fillers.

 Dataset: Padó et. al 2007
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20

30

All High-Polysemy

Single Prototype
Multi Prototype
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brother hit 4.7

hit brother 4.1

quake hit 3.4

hit quake 1.2



• There are cases where is a high degree of overlap between 
“senses”

• e.g. polysemous words like line or raise

• or i.e. in selectional preference where argument fillers may 
have some common structure

• MP models homonymy but not polysemy- it cannot account for 
“shared” structure

• Tiered Clustering introduces a background component to 
account for this

Tiered Clustering

= +

word senses background sense-specific deltas
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Tiered Clustering

14

(cluster proportions)

vector-space lexical semantics (Pantel, 2003; Pantel

et al., 2007; Reisinger and Mooney, 2010). In this

section we briefly introduce a version of the multi-

prototype model based on the Dirichlet Process Mix-

ture Model (DPMM), capable of inferring automat-

ically the number of prototypes necessary for each

word (Rasmussen, 2000). Similarity between two

DPMM word-representations is then computed as a

function of their cluster centroids (§5), instead of the

centroid of all the word’s occurrences.

Multiple prototypes for each word w are gener-

ated by clustering feature vectors v c derived from

each occurrence c C w in a large textual cor-

pus and collecting the resulting cluster centroids

πk w , k 1,Kw . This approach is commonly

employed in unsupervised word sense discovery;

however, we do not assume that clusters correspond

to word senses. Rather, we only rely on clusters to

capture meaningful variation in word usage.

Instead of assuming all words can be repre-

sented by the same number of clusters, we allocate

representational flexibility dynamically using the

DPMM. The DPMM is an infinite capacity model

capable of assigning data to a variable, but finite

number of clusters Kw, with probability of assign-

ment to cluster k proportional to the number of data

points previously assigned to k. A single parameter

η controls the degree of smoothing, producing more

uniform clusterings as η . Using this model,

the number of clusters no longer needs to be fixed

a priori, allowing the model to allocate expressivity

dynamically to concepts with richer structure. Such

a model naturally allows the word representation to

allocate additional capacity for highly polysemous

words, with the number of clusters growing loga-

rithmically with the number of occurrences. The

DPMM has been used for rational models of con-

cept organization (Sanborn et al., 2006), but to our

knowledge has not yet been applied directly to lexi-

cal semantics.

4 Tiered Clustering

Tiered clustering allocates features between two

submodels: a (context-dependent) DPMM and a sin-

gle (context-independent) background component.

This model is similar structurally to the feature se-

lective clustering model proposed by Law et al.

(2002). However, instead of allocating entire feature

dimensions between model and background compo-
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Figure 1: Plate diagram for the tiered clustering model

with cluster indicators drawn from the Chinese Restau-

rant Process.

nents, assignment is done at the level of individual

feature occurrences, much like topic assignment in

Latent Dirichlet Allocation (LDA; Griffiths et al.,

2007). At a high level, the tiered model can be

viewed as a combination of a multi-prototype model

and a single-prototype back-off model. However,

by leveraging both representations in a joint frame-

work, uninformative features can be removed from

the clustering, resulting in more semantically tight

clusters.

Concretely, each word occurrence wd first selects

a cluster φd from the DPMM; then each feature wi,d

is generated from either the background model φback

or the selected cluster φd, determined by the tier

indicator zi,d. The full generative model for tiered

clustering is given by

θd α Beta α d D,
φd β, G0 DP β, G0 d D,

φ
back

β
back

Dirichlet β
back

zi,d θd Bernoulli θd i wd ,

wi,d φd, zi,d

Mult φ
back

zi,d 1
Mult φd

otherwise

i wd ,

where α controls the per-data tier distribution

smoothing and β controls the uniformity of the DP

cluster allocation. The DP is parameterized by a

base measure G0, controlling the per-cluster term

distribution smoothing; which use a Dirichlet with

hyperparameter η, as is common (Figure 1).

Since the background topic is shared across all oc-

currences, it can account for features with context-
independent variance, such as stop words and other

high-frequency noise, as well as the central tendency

of the collection (Table 1). Furthermore, it is possi-

ble to put an asymmetric prior on η, yielding more

fine-grained control over the assumed uniformity of

the occurrence of noisy features, unlike in the model

proposed by Law et al. (2002).

(clusters)
(background / shared)
(tier indicator)

(features)
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Latent Dirichlet Allocation

Spherical Topic Models

2. Background
2.1. Spherical Mixture Models

In this section and those subsequent, we adopt the terminol-
ogy of topic models: data consists of D individual “doc-
uments,” where each document is a sequence of “words”
from a known vocabulary V . Probabilistic models of text
have been built around the multinomial distribution and
the von Mises-Fisher (vMF) distribution (Mardia & Jupp,
2000), and these distributions are associated with different
representations of textual data.

The multinomial distribution is the most straightforward
model of discrete data. It assigns probabilities to integer
vectors of event counts, which, for textual data, are typi-
cally raw non-normalized word counts in N|V |.

The vMF distribution instead has its support on Sd−1,
the unit (d−1)-sphere embedded in Rd. Its density is
f(x;µ, κ) = cd(κ) exp

�
κµ�x

�
, where µ is the mean di-

rection with ||µ|| = 1, κ ≥ 0 is the concentration parame-
ter, cd(κ) = κd/2−1

(2π)d/2Id/2−1(κ)
is a normalization factor, and

Ir(·) is the modified Bessel function of the first kind and
order r. vMF distributions have been used to model tf and
tf-idf representations of text documents �2-normalized onto
S|V |−1 (Banerjee et al., 2005), and other directional data
(Mardia & Jupp, 2000).

The vMF distribution can be thought of as an Sd−1 analog
of the multivariate Gaussian with spherical covariance, pa-
rameterized by cosine distance rather than Euclidean dis-
tance. Cosine distance computes similarity in terms of
the directions of �2-normalized feature vectors and corre-
sponds to the normalized correlation coefficient. Evidence
suggests that this type of directional measure is often supe-
rior to Euclidean distance in high dimensions (Manning &
Schütze, 2000; Zhong & Ghosh, 2005).

Inspired by the role of cosine distance in information
retrieval, Banerjee et al. (2005) introduced the mix-
ture of von Mises-Fisher distributions (movMF). The
movMF model treats each normalized document tf or
tf-idf vector as drawn from a single vMF distribu-
tion centered on one cluster mean, selected by a com-
mon multinomial distribution. The likelihood of a
document d is f(d|Θ)=

�T
t=1 αtvMF(d|µt, κt), where

Θ=(α,µ1, κ1, . . . ,µT , κT ), α is the parameterization of
the multinomial over topics, and each µ and κ parame-
terizes the vMF distribution for a cluster. movMF gener-
alizes classic clustering methods parameterized by cosine
distance: when each cluster concentration κ is taken to
infinity, movMF becomes equivalent to spherical k-means
(Banerjee et al., 2005).

The movMF model successfully integrates a directional
measure of similarity into a probabilistic setting, but its

z
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Figure 1. Graphical models for LDA and SAM.

mixture model assumption—that each document is asso-
ciated with a single cluster—is fundamentally restrictive.

2.2. Latent Dirichlet Allocation

Admixture models such as LDA relax the assumption that
each documents is drawn exclusively from a single mixture
component; instead, documents are drawn from a weighted
average over all components. In LDA, this weighted av-
erage is implicit in the model structure (Blei et al., 2003).
Each document wd maintains a separate multinomial dis-
tribution θd over topics φ. For each word wi,d a topic index
zi,d is drawn from θd and then wi,d is drawn from the cor-
responding topic multinomial φzi,d

. The generative model
is given by

θd|α ∼ Dirichlet(α), d ∈D, (topic proportions)
φt|β ∼ Dirichlet(β), t ∈ T, (topics)
zid|θd ∼ Mult(θd), i ∈ |wd|, (topic indicators)
wid|φzid

∼ Mult(φzid
), i ∈ |wd|, (words)

where α and β are hyperparameters smoothing the per-
document topic distributions and per-topic word distribu-
tions respectively. As an admixture model, LDA relaxes the
assumption that each document is drawn exclusively from
a single mixture component. This flexibility allows it to
uncover more fine-grained document structure than tradi-
tional mixture models. Furthermore, by marginalizing the
topic indicators zi,d out of the model, LDA can be shown to
draw each document from a multinomial whose parameters
are a weighted average of the topics. The same intuition
will be used to develop SAM as a weighted average over
�2-normalized topic means.

3. The Spherical Admixture Model
The Spherical Admixture Model (SAM), developed below,
is a topic model for arbitrary �2-normalized data. Like the
movMF model, it is built on a probability distribution pa-
rameterized by cosine distance and capable of taking into
account the absence of words; like LDA, it decomposes in-
dividual documents over multiple topics.

3.1. Model Definition

SAM is a Bayesian admixture model of normalized vectors
on S|V |−1. It is not therefore possible to define the ad-
mixture in terms of topic indicators for individual words
in each document, as is done by LDA. SAM instead uses a

(cluster proportions)
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Multiple prototypes for each word w are gener-

ated by clustering feature vectors v c derived from

each occurrence c C w in a large textual cor-

pus and collecting the resulting cluster centroids

πk w , k 1,Kw . This approach is commonly

employed in unsupervised word sense discovery;

however, we do not assume that clusters correspond

to word senses. Rather, we only rely on clusters to

capture meaningful variation in word usage.

Instead of assuming all words can be repre-

sented by the same number of clusters, we allocate

representational flexibility dynamically using the

DPMM. The DPMM is an infinite capacity model

capable of assigning data to a variable, but finite

number of clusters Kw, with probability of assign-

ment to cluster k proportional to the number of data

points previously assigned to k. A single parameter

η controls the degree of smoothing, producing more

uniform clusterings as η . Using this model,

the number of clusters no longer needs to be fixed

a priori, allowing the model to allocate expressivity

dynamically to concepts with richer structure. Such

a model naturally allows the word representation to

allocate additional capacity for highly polysemous

words, with the number of clusters growing loga-

rithmically with the number of occurrences. The

DPMM has been used for rational models of con-

cept organization (Sanborn et al., 2006), but to our

knowledge has not yet been applied directly to lexi-

cal semantics.

4 Tiered Clustering

Tiered clustering allocates features between two

submodels: a (context-dependent) DPMM and a sin-

gle (context-independent) background component.

This model is similar structurally to the feature se-

lective clustering model proposed by Law et al.

(2002). However, instead of allocating entire feature

dimensions between model and background compo-
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nents, assignment is done at the level of individual

feature occurrences, much like topic assignment in

Latent Dirichlet Allocation (LDA; Griffiths et al.,

2007). At a high level, the tiered model can be

viewed as a combination of a multi-prototype model

and a single-prototype back-off model. However,

by leveraging both representations in a joint frame-

work, uninformative features can be removed from

the clustering, resulting in more semantically tight

clusters.

Concretely, each word occurrence wd first selects

a cluster φd from the DPMM; then each feature wi,d

is generated from either the background model φback

or the selected cluster φd, determined by the tier

indicator zi,d. The full generative model for tiered

clustering is given by

θd α Beta α d D,
φd β, G0 DP β, G0 d D,

φ
back

β
back

Dirichlet β
back

zi,d θd Bernoulli θd i wd ,

wi,d φd, zi,d

Mult φ
back

zi,d 1
Mult φd

otherwise

i wd ,

where α controls the per-data tier distribution

smoothing and β controls the uniformity of the DP

cluster allocation. The DP is parameterized by a

base measure G0, controlling the per-cluster term

distribution smoothing; which use a Dirichlet with

hyperparameter η, as is common (Figure 1).

Since the background topic is shared across all oc-

currences, it can account for features with context-
independent variance, such as stop words and other

high-frequency noise, as well as the central tendency

of the collection (Table 1). Furthermore, it is possi-

ble to put an asymmetric prior on η, yielding more

fine-grained control over the assumed uniformity of

the occurrence of noisy features, unlike in the model

proposed by Law et al. (2002).

(clusters)
(background / shared)
(tier indicator)

(features)

Tiered Clustering
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ing the typical filler of an argument slot of a verb,
and (2) word-relatedness in the presence of highly
polysemous words. The former case exhibits a high
degree of explicit structure, especially for more se-
lectionally restrictive verbs (e.g. the set of things that
can be eaten or can shoot).

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on the
methods compared, Section 3 outlines the multi-
prototype model based on the Dirichlet Process mix-
ture model, Section 4 derives the tiered cluster-
ing model, Section 5 discusses similarity metrics,
Section 6 details the experimental setup and in-
cludes a micro-analysis of feature selection, Section
7 presents results applying tiered clustering to word
relatedness and selectional preference, Section 8 dis-
cusses future work, and Section 9 concludes.

2 Background

Models of the attributional similarity of concepts,
i.e. the degree to which concepts overlap based on
their attributes (Turney, 2006), are commonly imple-
mented using vector-spaces derived from (1) word
collocations (Schütze, 1998), directly leveraging the
distributional hypothesis (Miller and Charles, 1991),
(2) syntactic relations (Padó and Lapata, 2007), (3)
structured corpora (e.g. Gabrilovich and Markovitch
(2007)) or (4) latent semantic spaces (Finkelstein
et al., 2001; Landauer and Dumais, 1997). Such
models can be evaluated based on their correlation
with human-reported lexical similarity judgements
using e.g. the WordSim-353 collection (Finkelstein
et al., 2001). Distributional methods exhibit a high
degree of scalability (Gorman and Curran, 2006) and
have been applied broadly in information retrieval
(Manning et al., 2008), large-scale taxonomy induc-
tion (Snow et al., 2006), and knowledge acquisition
(Van Durme and Paşca, 2008).

Reisinger and Mooney (2010) introduced a multi-

prototype approach to vector-space lexical seman-
tics where individual words are represented as col-
lections of “prototype” vectors. This representation
is capable of accounting for homonymy and poly-
semy, as well as other forms of variation in word
usage, like similar context-dependent methods (Erk
and Pado, 2008). The set of vectors for a word
is determined by unsupervised word sense discov-

ery (Schütze, 1998), which clusters the contexts in
which a word appears. Average prototype vectors

LIFE
all, about, life, would, death
my, you, real, your, about
spent, years, rest, lived, last
sentenced, imprisonment, sentence, prison
insurance, peer, Baron, member, company
Guru, Rabbi, Baba, la, teachings

RADIO
station, radio, stations, television
amateur, frequency, waves, system
show, host, personality, American
song, single, released, airplay
operator, contact, communications, message

WIZARD
evil, powerful, magic, wizard
Merlin, King, Arthur, Arthurian
fairy, wicked, scene, tale
Harry, Potter, Voldemort, Dumbledore

STOCK
stock, all, other, company, new
market, crash, markets, price, prices
housing, breeding, fish, water, horses
car, racing, cars, NASCAR, race, engine
card, cards, player, pile, game, paper
rolling, locomotives, line, new, railway

Table 1: Example tiered clustering representation of
words with varying degrees of polysemy. Each boxed
set shows the most common background (shared) fea-
tures, and each prototype captures one thematic usage
of the word. For example, wizard is broken up into a
background cluster describing features common to all us-
ages of the word (e.g., magic and evil) and several genre-
specific usages (e.g. Merlin, fairy tales and Harry Potter).

are then computed separately for each cluster, pro-
ducing a distributed representation for each word.

Distributional methods have also proven to be a
powerful approach to modeling selectional prefer-

ence (Padó et al., 2007; Pantel et al., 2007), rivaling
methods based on existing semantic resources such
as WordNet (Clark and Weir, 2002; Resnik, 1997)
and FrameNet (Padó, 2007) and performing nearly
as well as supervised methods (Herdaǧdelen and Ba-
roni, 2009). Selectional preference has been shown
to be useful for, e.g., resolving ambiguous attach-
ments (Hindle and Rooth, 1991), word sense disam-
biguation (McCarthy and Carroll, 2003) and seman-
tic role labeling (Gildea and Jurafsky, 2002).

3 Multi-Prototype Models

Representing words as mixtures over several pro-
totypes has proven to be a powerful approach to

ing the typical filler of an argument slot of a verb,
and (2) word-relatedness in the presence of highly
polysemous words. The former case exhibits a high
degree of explicit structure, especially for more se-
lectionally restrictive verbs (e.g. the set of things that
can be eaten or can shoot).

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on the
methods compared, Section 3 outlines the multi-
prototype model based on the Dirichlet Process mix-
ture model, Section 4 derives the tiered cluster-
ing model, Section 5 discusses similarity metrics,
Section 6 details the experimental setup and in-
cludes a micro-analysis of feature selection, Section
7 presents results applying tiered clustering to word
relatedness and selectional preference, Section 8 dis-
cusses future work, and Section 9 concludes.

2 Background

Models of the attributional similarity of concepts,
i.e. the degree to which concepts overlap based on
their attributes (Turney, 2006), are commonly imple-
mented using vector-spaces derived from (1) word
collocations (Schütze, 1998), directly leveraging the
distributional hypothesis (Miller and Charles, 1991),
(2) syntactic relations (Padó and Lapata, 2007), (3)
structured corpora (e.g. Gabrilovich and Markovitch
(2007)) or (4) latent semantic spaces (Finkelstein
et al., 2001; Landauer and Dumais, 1997). Such
models can be evaluated based on their correlation
with human-reported lexical similarity judgements
using e.g. the WordSim-353 collection (Finkelstein
et al., 2001). Distributional methods exhibit a high
degree of scalability (Gorman and Curran, 2006) and
have been applied broadly in information retrieval
(Manning et al., 2008), large-scale taxonomy induc-
tion (Snow et al., 2006), and knowledge acquisition
(Van Durme and Paşca, 2008).

Reisinger and Mooney (2010) introduced a multi-

prototype approach to vector-space lexical seman-
tics where individual words are represented as col-
lections of “prototype” vectors. This representation
is capable of accounting for homonymy and poly-
semy, as well as other forms of variation in word
usage, like similar context-dependent methods (Erk
and Pado, 2008). The set of vectors for a word
is determined by unsupervised word sense discov-

ery (Schütze, 1998), which clusters the contexts in
which a word appears. Average prototype vectors

LIFE
all, about, life, would, death
my, you, real, your, about
spent, years, rest, lived, last
sentenced, imprisonment, sentence, prison
insurance, peer, Baron, member, company
Guru, Rabbi, Baba, la, teachings

RADIO
station, radio, stations, television
amateur, frequency, waves, system
show, host, personality, American
song, single, released, airplay
operator, contact, communications, message

WIZARD
evil, powerful, magic, wizard
Merlin, King, Arthur, Arthurian
fairy, wicked, scene, tale
Harry, Potter, Voldemort, Dumbledore

STOCK
stock, all, other, company, new
market, crash, markets, price, prices
housing, breeding, fish, water, horses
car, racing, cars, NASCAR, race, engine
card, cards, player, pile, game, paper
rolling, locomotives, line, new, railway

Table 1: Example tiered clustering representation of
words with varying degrees of polysemy. Each boxed
set shows the most common background (shared) fea-
tures, and each prototype captures one thematic usage
of the word. For example, wizard is broken up into a
background cluster describing features common to all us-
ages of the word (e.g., magic and evil) and several genre-
specific usages (e.g. Merlin, fairy tales and Harry Potter).

are then computed separately for each cluster, pro-
ducing a distributed representation for each word.

Distributional methods have also proven to be a
powerful approach to modeling selectional prefer-

ence (Padó et al., 2007; Pantel et al., 2007), rivaling
methods based on existing semantic resources such
as WordNet (Clark and Weir, 2002; Resnik, 1997)
and FrameNet (Padó, 2007) and performing nearly
as well as supervised methods (Herdaǧdelen and Ba-
roni, 2009). Selectional preference has been shown
to be useful for, e.g., resolving ambiguous attach-
ments (Hindle and Rooth, 1991), word sense disam-
biguation (McCarthy and Carroll, 2003) and seman-
tic role labeling (Gildea and Jurafsky, 2002).

3 Multi-Prototype Models

Representing words as mixtures over several pro-
totypes has proven to be a powerful approach to

multi-prototype

tiered

LIFE
my, you, real, about, your, would
years, spent, rest, lived, last
sentenced, imprisonment, sentence, prison
years, cycle, life, all, expectancy, other
all, life, way, people, human, social, many

RADIO
station, FM, broadcasting, format, AM
radio, station, stations, amateur,
show, station, host, program, radio
stations, song, single, released, airplay
station, operator, radio, equipment, contact

WIZARD
evil, magic, powerful, named, world
Merlin, King, Arthur, powerful, court
spells, magic, cast, wizard, spell, witch
Harry, Dresden, series, Potter, character

STOCK
market, price, stock, company, value, crash
housing, breeding, all, large, stock, many
car, racing, company, cars, summer, NASCAR
stock, extended, folded, card, barrel, cards
rolling, locomotives, new, character, line

Table 4: Example DPMM multi-prototype representation
of words with varying degrees of polysemy. Compared to
the tiered clustering results in Table 1 the multi-prototype
clusters are significantly less pure for thematically poly-
semous words such as radio and wizard.

ilarity is a sparse relation (Figure 2 top). Further-
more, it contains proportionally more highly polyse-
mous words relative to WS-353 (Figure 2 bottom).

On WN-Evocation, the single prototype and
multi-prototype do not differ significantly in terms
of correlation (ρ 0.198 and ρ 0.201 respectively;
Table 5), while SP+MP yields significantly lower
correlation (ρ 0.176), and the tiered model yields
significantly higher correlation (ρ 0.224). Restrict-
ing to the top 20% of pairs with highest human
similarity judgements yields similar outcomes, with
single prototype, multi-prototype and SP+MP sta-
tistically indistinguishable (ρ 0.239, ρ 0.227 and
ρ 0.235), and tiered clustering yielding signifi-
cantly higher correlation (ρ 0.277). Likewise tiered
clustering achieves the most significant gains on the
high polysemy subset.

7.3 Selectional Preference
Tiered clustering is a natural model for verb selec-
tional preference, especially for more selectionally
restrictive verbs: the set of words that appear in a
particular argument slot naturally have some kind of

Method ρ 100 E C background

Single prototype 19.8 0.6 1.0 -
high similarity 23.9 1.1 1.0 -
high polysemy 11.5 1.2 1.0 -

Multi-prototype 20.1 0.5 14.8 -
high similarity 22.7 1.2 14.1 -
high polysemy 13.0 1.3 13.2 -

MP+SP 17.6 0.5 14.8 -
high similarity 23.5 1.2 14.1 -
high polysemy 11.4 1.0 13.2 -

Tiered 22.4 0.6 29.7 46.6%
high similarity 27.7 1.3 29.9 47.2%
high polysemy 15.4 1.1 27.4 46.6%

Table 5: Spearman’s correlation on the Evocation data
set. The high similarity subset contains the top 20% of
pairs sorted by average rater score.

Method ρ 100 E C background

Single prototype 25.8 0.8 1.0 -
high polysemy 17.3 1.7 1.0 -

Multi-prototype 20.2 1.0 18.5 -
high polysemy 14.1 2.4 17.4 -

MP+SP 19.7 1.0 18.5 -
high polysemy 10.5 2.5 17.4 -

Tiered 29.4 1.0 37.9 41.7%
high polysemy 28.5 2.4 37.4 43.2%

Table 6: Spearman’s correlation on the Padó data set.

commonality (i.e. they can be eaten or can promise).
The background component of the tiered clustering
model can capture such general argument structure.
We model each verb argument slot in the Padó set
with a separate tiered clustering model, separating
terms co-occurring with the target verb according to
which slot they fill.

On the Padó set, the performance of the DPMM
multi-prototype approach breaks down and it yields
significantly lower correlation with human norms
than the single prototype (ρ 0.202 vs. ρ 0.258;
Table 6), due to its inability to capture the shared
structure among verb arguments. Furthermore com-
bining with the single prototype does not signif-
icantly change its performance (ρ 0.197). Mov-
ing to the tiered model, however, yields significant
improvements in correlation over the other models
(ρ 0.294), primarily improving correlation in the
case of highly polysemous verbs and arguments.
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commonality (i.e. they can be eaten or can promise).
The background component of the tiered clustering
model can capture such general argument structure.
We model each verb argument slot in the Padó set
with a separate tiered clustering model, separating
terms co-occurring with the target verb according to
which slot they fill.

On the Padó set, the performance of the DPMM
multi-prototype approach breaks down and it yields
significantly lower correlation with human norms
than the single prototype (ρ 0.202 vs. ρ 0.258;
Table 6), due to its inability to capture the shared
structure among verb arguments. Furthermore com-
bining with the single prototype does not signif-
icantly change its performance (ρ 0.197). Mov-
ing to the tiered model, however, yields significant
improvements in correlation over the other models
(ρ 0.294), primarily improving correlation in the
case of highly polysemous verbs and arguments.
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ing the typical filler of an argument slot of a verb,
and (2) word-relatedness in the presence of highly
polysemous words. The former case exhibits a high
degree of explicit structure, especially for more se-
lectionally restrictive verbs (e.g. the set of things that
can be eaten or can shoot).

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on the
methods compared, Section 3 outlines the multi-
prototype model based on the Dirichlet Process mix-
ture model, Section 4 derives the tiered cluster-
ing model, Section 5 discusses similarity metrics,
Section 6 details the experimental setup and in-
cludes a micro-analysis of feature selection, Section
7 presents results applying tiered clustering to word
relatedness and selectional preference, Section 8 dis-
cusses future work, and Section 9 concludes.

2 Background

Models of the attributional similarity of concepts,
i.e. the degree to which concepts overlap based on
their attributes (Turney, 2006), are commonly imple-
mented using vector-spaces derived from (1) word
collocations (Schütze, 1998), directly leveraging the
distributional hypothesis (Miller and Charles, 1991),
(2) syntactic relations (Padó and Lapata, 2007), (3)
structured corpora (e.g. Gabrilovich and Markovitch
(2007)) or (4) latent semantic spaces (Finkelstein
et al., 2001; Landauer and Dumais, 1997). Such
models can be evaluated based on their correlation
with human-reported lexical similarity judgements
using e.g. the WordSim-353 collection (Finkelstein
et al., 2001). Distributional methods exhibit a high
degree of scalability (Gorman and Curran, 2006) and
have been applied broadly in information retrieval
(Manning et al., 2008), large-scale taxonomy induc-
tion (Snow et al., 2006), and knowledge acquisition
(Van Durme and Paşca, 2008).

Reisinger and Mooney (2010) introduced a multi-

prototype approach to vector-space lexical seman-
tics where individual words are represented as col-
lections of “prototype” vectors. This representation
is capable of accounting for homonymy and poly-
semy, as well as other forms of variation in word
usage, like similar context-dependent methods (Erk
and Pado, 2008). The set of vectors for a word
is determined by unsupervised word sense discov-

ery (Schütze, 1998), which clusters the contexts in
which a word appears. Average prototype vectors

LIFE
all, about, life, would, death
my, you, real, your, about
spent, years, rest, lived, last
sentenced, imprisonment, sentence, prison
insurance, peer, Baron, member, company
Guru, Rabbi, Baba, la, teachings

RADIO
station, radio, stations, television
amateur, frequency, waves, system
show, host, personality, American
song, single, released, airplay
operator, contact, communications, message

WIZARD
evil, powerful, magic, wizard
Merlin, King, Arthur, Arthurian
fairy, wicked, scene, tale
Harry, Potter, Voldemort, Dumbledore

STOCK
stock, all, other, company, new
market, crash, markets, price, prices
housing, breeding, fish, water, horses
car, racing, cars, NASCAR, race, engine
card, cards, player, pile, game, paper
rolling, locomotives, line, new, railway

Table 1: Example tiered clustering representation of
words with varying degrees of polysemy. Each boxed
set shows the most common background (shared) fea-
tures, and each prototype captures one thematic usage
of the word. For example, wizard is broken up into a
background cluster describing features common to all us-
ages of the word (e.g., magic and evil) and several genre-
specific usages (e.g. Merlin, fairy tales and Harry Potter).

are then computed separately for each cluster, pro-
ducing a distributed representation for each word.

Distributional methods have also proven to be a
powerful approach to modeling selectional prefer-

ence (Padó et al., 2007; Pantel et al., 2007), rivaling
methods based on existing semantic resources such
as WordNet (Clark and Weir, 2002; Resnik, 1997)
and FrameNet (Padó, 2007) and performing nearly
as well as supervised methods (Herdaǧdelen and Ba-
roni, 2009). Selectional preference has been shown
to be useful for, e.g., resolving ambiguous attach-
ments (Hindle and Rooth, 1991), word sense disam-
biguation (McCarthy and Carroll, 2003) and seman-
tic role labeling (Gildea and Jurafsky, 2002).

3 Multi-Prototype Models

Representing words as mixtures over several pro-
totypes has proven to be a powerful approach to
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structured corpora (e.g. Gabrilovich and Markovitch
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models can be evaluated based on their correlation
with human-reported lexical similarity judgements
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semy, as well as other forms of variation in word
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show, host, personality, American
song, single, released, airplay
operator, contact, communications, message
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fairy, wicked, scene, tale
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STOCK
stock, all, other, company, new
market, crash, markets, price, prices
housing, breeding, fish, water, horses
car, racing, cars, NASCAR, race, engine
card, cards, player, pile, game, paper
rolling, locomotives, line, new, railway

Table 1: Example tiered clustering representation of
words with varying degrees of polysemy. Each boxed
set shows the most common background (shared) fea-
tures, and each prototype captures one thematic usage
of the word. For example, wizard is broken up into a
background cluster describing features common to all us-
ages of the word (e.g., magic and evil) and several genre-
specific usages (e.g. Merlin, fairy tales and Harry Potter).

are then computed separately for each cluster, pro-
ducing a distributed representation for each word.

Distributional methods have also proven to be a
powerful approach to modeling selectional prefer-

ence (Padó et al., 2007; Pantel et al., 2007), rivaling
methods based on existing semantic resources such
as WordNet (Clark and Weir, 2002; Resnik, 1997)
and FrameNet (Padó, 2007) and performing nearly
as well as supervised methods (Herdaǧdelen and Ba-
roni, 2009). Selectional preference has been shown
to be useful for, e.g., resolving ambiguous attach-
ments (Hindle and Rooth, 1991), word sense disam-
biguation (McCarthy and Carroll, 2003) and seman-
tic role labeling (Gildea and Jurafsky, 2002).

3 Multi-Prototype Models

Representing words as mixtures over several pro-
totypes has proven to be a powerful approach to

multi-prototype

tiered

LIFE
my, you, real, about, your, would
years, spent, rest, lived, last
sentenced, imprisonment, sentence, prison
years, cycle, life, all, expectancy, other
all, life, way, people, human, social, many

RADIO
station, FM, broadcasting, format, AM
radio, station, stations, amateur,
show, station, host, program, radio
stations, song, single, released, airplay
station, operator, radio, equipment, contact

WIZARD
evil, magic, powerful, named, world
Merlin, King, Arthur, powerful, court
spells, magic, cast, wizard, spell, witch
Harry, Dresden, series, Potter, character

STOCK
market, price, stock, company, value, crash
housing, breeding, all, large, stock, many
car, racing, company, cars, summer, NASCAR
stock, extended, folded, card, barrel, cards
rolling, locomotives, new, character, line

Table 4: Example DPMM multi-prototype representation
of words with varying degrees of polysemy. Compared to
the tiered clustering results in Table 1 the multi-prototype
clusters are significantly less pure for thematically poly-
semous words such as radio and wizard.

ilarity is a sparse relation (Figure 2 top). Further-
more, it contains proportionally more highly polyse-
mous words relative to WS-353 (Figure 2 bottom).

On WN-Evocation, the single prototype and
multi-prototype do not differ significantly in terms
of correlation (ρ 0.198 and ρ 0.201 respectively;
Table 5), while SP+MP yields significantly lower
correlation (ρ 0.176), and the tiered model yields
significantly higher correlation (ρ 0.224). Restrict-
ing to the top 20% of pairs with highest human
similarity judgements yields similar outcomes, with
single prototype, multi-prototype and SP+MP sta-
tistically indistinguishable (ρ 0.239, ρ 0.227 and
ρ 0.235), and tiered clustering yielding signifi-
cantly higher correlation (ρ 0.277). Likewise tiered
clustering achieves the most significant gains on the
high polysemy subset.

7.3 Selectional Preference
Tiered clustering is a natural model for verb selec-
tional preference, especially for more selectionally
restrictive verbs: the set of words that appear in a
particular argument slot naturally have some kind of

Method ρ 100 E C background

Single prototype 19.8 0.6 1.0 -
high similarity 23.9 1.1 1.0 -
high polysemy 11.5 1.2 1.0 -

Multi-prototype 20.1 0.5 14.8 -
high similarity 22.7 1.2 14.1 -
high polysemy 13.0 1.3 13.2 -

MP+SP 17.6 0.5 14.8 -
high similarity 23.5 1.2 14.1 -
high polysemy 11.4 1.0 13.2 -

Tiered 22.4 0.6 29.7 46.6%
high similarity 27.7 1.3 29.9 47.2%
high polysemy 15.4 1.1 27.4 46.6%

Table 5: Spearman’s correlation on the Evocation data
set. The high similarity subset contains the top 20% of
pairs sorted by average rater score.

Method ρ 100 E C background

Single prototype 25.8 0.8 1.0 -
high polysemy 17.3 1.7 1.0 -

Multi-prototype 20.2 1.0 18.5 -
high polysemy 14.1 2.4 17.4 -

MP+SP 19.7 1.0 18.5 -
high polysemy 10.5 2.5 17.4 -

Tiered 29.4 1.0 37.9 41.7%
high polysemy 28.5 2.4 37.4 43.2%

Table 6: Spearman’s correlation on the Padó data set.

commonality (i.e. they can be eaten or can promise).
The background component of the tiered clustering
model can capture such general argument structure.
We model each verb argument slot in the Padó set
with a separate tiered clustering model, separating
terms co-occurring with the target verb according to
which slot they fill.

On the Padó set, the performance of the DPMM
multi-prototype approach breaks down and it yields
significantly lower correlation with human norms
than the single prototype (ρ 0.202 vs. ρ 0.258;
Table 6), due to its inability to capture the shared
structure among verb arguments. Furthermore com-
bining with the single prototype does not signif-
icantly change its performance (ρ 0.197). Mov-
ing to the tiered model, however, yields significant
improvements in correlation over the other models
(ρ 0.294), primarily improving correlation in the
case of highly polysemous verbs and arguments.

LIFE
my, you, real, about, your, would
years, spent, rest, lived, last
sentenced, imprisonment, sentence, prison
years, cycle, life, all, expectancy, other
all, life, way, people, human, social, many

RADIO
station, FM, broadcasting, format, AM
radio, station, stations, amateur,
show, station, host, program, radio
stations, song, single, released, airplay
station, operator, radio, equipment, contact

WIZARD
evil, magic, powerful, named, world
Merlin, King, Arthur, powerful, court
spells, magic, cast, wizard, spell, witch
Harry, Dresden, series, Potter, character

STOCK
market, price, stock, company, value, crash
housing, breeding, all, large, stock, many
car, racing, company, cars, summer, NASCAR
stock, extended, folded, card, barrel, cards
rolling, locomotives, new, character, line

Table 4: Example DPMM multi-prototype representation
of words with varying degrees of polysemy. Compared to
the tiered clustering results in Table 1 the multi-prototype
clusters are significantly less pure for thematically poly-
semous words such as radio and wizard.

ilarity is a sparse relation (Figure 2 top). Further-
more, it contains proportionally more highly polyse-
mous words relative to WS-353 (Figure 2 bottom).

On WN-Evocation, the single prototype and
multi-prototype do not differ significantly in terms
of correlation (ρ 0.198 and ρ 0.201 respectively;
Table 5), while SP+MP yields significantly lower
correlation (ρ 0.176), and the tiered model yields
significantly higher correlation (ρ 0.224). Restrict-
ing to the top 20% of pairs with highest human
similarity judgements yields similar outcomes, with
single prototype, multi-prototype and SP+MP sta-
tistically indistinguishable (ρ 0.239, ρ 0.227 and
ρ 0.235), and tiered clustering yielding signifi-
cantly higher correlation (ρ 0.277). Likewise tiered
clustering achieves the most significant gains on the
high polysemy subset.

7.3 Selectional Preference
Tiered clustering is a natural model for verb selec-
tional preference, especially for more selectionally
restrictive verbs: the set of words that appear in a
particular argument slot naturally have some kind of

Method ρ 100 E C background

Single prototype 19.8 0.6 1.0 -
high similarity 23.9 1.1 1.0 -
high polysemy 11.5 1.2 1.0 -

Multi-prototype 20.1 0.5 14.8 -
high similarity 22.7 1.2 14.1 -
high polysemy 13.0 1.3 13.2 -

MP+SP 17.6 0.5 14.8 -
high similarity 23.5 1.2 14.1 -
high polysemy 11.4 1.0 13.2 -

Tiered 22.4 0.6 29.7 46.6%
high similarity 27.7 1.3 29.9 47.2%
high polysemy 15.4 1.1 27.4 46.6%

Table 5: Spearman’s correlation on the Evocation data
set. The high similarity subset contains the top 20% of
pairs sorted by average rater score.

Method ρ 100 E C background

Single prototype 25.8 0.8 1.0 -
high polysemy 17.3 1.7 1.0 -

Multi-prototype 20.2 1.0 18.5 -
high polysemy 14.1 2.4 17.4 -

MP+SP 19.7 1.0 18.5 -
high polysemy 10.5 2.5 17.4 -

Tiered 29.4 1.0 37.9 41.7%
high polysemy 28.5 2.4 37.4 43.2%

Table 6: Spearman’s correlation on the Padó data set.
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with a separate tiered clustering model, separating
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which slot they fill.

On the Padó set, the performance of the DPMM
multi-prototype approach breaks down and it yields
significantly lower correlation with human norms
than the single prototype (ρ 0.202 vs. ρ 0.258;
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ing the typical filler of an argument slot of a verb,
and (2) word-relatedness in the presence of highly
polysemous words. The former case exhibits a high
degree of explicit structure, especially for more se-
lectionally restrictive verbs (e.g. the set of things that
can be eaten or can shoot).

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on the
methods compared, Section 3 outlines the multi-
prototype model based on the Dirichlet Process mix-
ture model, Section 4 derives the tiered cluster-
ing model, Section 5 discusses similarity metrics,
Section 6 details the experimental setup and in-
cludes a micro-analysis of feature selection, Section
7 presents results applying tiered clustering to word
relatedness and selectional preference, Section 8 dis-
cusses future work, and Section 9 concludes.

2 Background

Models of the attributional similarity of concepts,
i.e. the degree to which concepts overlap based on
their attributes (Turney, 2006), are commonly imple-
mented using vector-spaces derived from (1) word
collocations (Schütze, 1998), directly leveraging the
distributional hypothesis (Miller and Charles, 1991),
(2) syntactic relations (Padó and Lapata, 2007), (3)
structured corpora (e.g. Gabrilovich and Markovitch
(2007)) or (4) latent semantic spaces (Finkelstein
et al., 2001; Landauer and Dumais, 1997). Such
models can be evaluated based on their correlation
with human-reported lexical similarity judgements
using e.g. the WordSim-353 collection (Finkelstein
et al., 2001). Distributional methods exhibit a high
degree of scalability (Gorman and Curran, 2006) and
have been applied broadly in information retrieval
(Manning et al., 2008), large-scale taxonomy induc-
tion (Snow et al., 2006), and knowledge acquisition
(Van Durme and Paşca, 2008).

Reisinger and Mooney (2010) introduced a multi-

prototype approach to vector-space lexical seman-
tics where individual words are represented as col-
lections of “prototype” vectors. This representation
is capable of accounting for homonymy and poly-
semy, as well as other forms of variation in word
usage, like similar context-dependent methods (Erk
and Pado, 2008). The set of vectors for a word
is determined by unsupervised word sense discov-

ery (Schütze, 1998), which clusters the contexts in
which a word appears. Average prototype vectors

LIFE
all, about, life, would, death
my, you, real, your, about
spent, years, rest, lived, last
sentenced, imprisonment, sentence, prison
insurance, peer, Baron, member, company
Guru, Rabbi, Baba, la, teachings

RADIO
station, radio, stations, television
amateur, frequency, waves, system
show, host, personality, American
song, single, released, airplay
operator, contact, communications, message

WIZARD
evil, powerful, magic, wizard
Merlin, King, Arthur, Arthurian
fairy, wicked, scene, tale
Harry, Potter, Voldemort, Dumbledore

STOCK
stock, all, other, company, new
market, crash, markets, price, prices
housing, breeding, fish, water, horses
car, racing, cars, NASCAR, race, engine
card, cards, player, pile, game, paper
rolling, locomotives, line, new, railway

Table 1: Example tiered clustering representation of
words with varying degrees of polysemy. Each boxed
set shows the most common background (shared) fea-
tures, and each prototype captures one thematic usage
of the word. For example, wizard is broken up into a
background cluster describing features common to all us-
ages of the word (e.g., magic and evil) and several genre-
specific usages (e.g. Merlin, fairy tales and Harry Potter).

are then computed separately for each cluster, pro-
ducing a distributed representation for each word.

Distributional methods have also proven to be a
powerful approach to modeling selectional prefer-

ence (Padó et al., 2007; Pantel et al., 2007), rivaling
methods based on existing semantic resources such
as WordNet (Clark and Weir, 2002; Resnik, 1997)
and FrameNet (Padó, 2007) and performing nearly
as well as supervised methods (Herdaǧdelen and Ba-
roni, 2009). Selectional preference has been shown
to be useful for, e.g., resolving ambiguous attach-
ments (Hindle and Rooth, 1991), word sense disam-
biguation (McCarthy and Carroll, 2003) and seman-
tic role labeling (Gildea and Jurafsky, 2002).

3 Multi-Prototype Models

Representing words as mixtures over several pro-
totypes has proven to be a powerful approach to

ing the typical filler of an argument slot of a verb,
and (2) word-relatedness in the presence of highly
polysemous words. The former case exhibits a high
degree of explicit structure, especially for more se-
lectionally restrictive verbs (e.g. the set of things that
can be eaten or can shoot).

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on the
methods compared, Section 3 outlines the multi-
prototype model based on the Dirichlet Process mix-
ture model, Section 4 derives the tiered cluster-
ing model, Section 5 discusses similarity metrics,
Section 6 details the experimental setup and in-
cludes a micro-analysis of feature selection, Section
7 presents results applying tiered clustering to word
relatedness and selectional preference, Section 8 dis-
cusses future work, and Section 9 concludes.
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ducing a distributed representation for each word.

Distributional methods have also proven to be a
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ence (Padó et al., 2007; Pantel et al., 2007), rivaling
methods based on existing semantic resources such
as WordNet (Clark and Weir, 2002; Resnik, 1997)
and FrameNet (Padó, 2007) and performing nearly
as well as supervised methods (Herdaǧdelen and Ba-
roni, 2009). Selectional preference has been shown
to be useful for, e.g., resolving ambiguous attach-
ments (Hindle and Rooth, 1991), word sense disam-
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3 Multi-Prototype Models

Representing words as mixtures over several pro-
totypes has proven to be a powerful approach to

multi-prototype

tiered

LIFE
my, you, real, about, your, would
years, spent, rest, lived, last
sentenced, imprisonment, sentence, prison
years, cycle, life, all, expectancy, other
all, life, way, people, human, social, many

RADIO
station, FM, broadcasting, format, AM
radio, station, stations, amateur,
show, station, host, program, radio
stations, song, single, released, airplay
station, operator, radio, equipment, contact

WIZARD
evil, magic, powerful, named, world
Merlin, King, Arthur, powerful, court
spells, magic, cast, wizard, spell, witch
Harry, Dresden, series, Potter, character

STOCK
market, price, stock, company, value, crash
housing, breeding, all, large, stock, many
car, racing, company, cars, summer, NASCAR
stock, extended, folded, card, barrel, cards
rolling, locomotives, new, character, line

Table 4: Example DPMM multi-prototype representation
of words with varying degrees of polysemy. Compared to
the tiered clustering results in Table 1 the multi-prototype
clusters are significantly less pure for thematically poly-
semous words such as radio and wizard.

ilarity is a sparse relation (Figure 2 top). Further-
more, it contains proportionally more highly polyse-
mous words relative to WS-353 (Figure 2 bottom).

On WN-Evocation, the single prototype and
multi-prototype do not differ significantly in terms
of correlation (ρ 0.198 and ρ 0.201 respectively;
Table 5), while SP+MP yields significantly lower
correlation (ρ 0.176), and the tiered model yields
significantly higher correlation (ρ 0.224). Restrict-
ing to the top 20% of pairs with highest human
similarity judgements yields similar outcomes, with
single prototype, multi-prototype and SP+MP sta-
tistically indistinguishable (ρ 0.239, ρ 0.227 and
ρ 0.235), and tiered clustering yielding signifi-
cantly higher correlation (ρ 0.277). Likewise tiered
clustering achieves the most significant gains on the
high polysemy subset.

7.3 Selectional Preference
Tiered clustering is a natural model for verb selec-
tional preference, especially for more selectionally
restrictive verbs: the set of words that appear in a
particular argument slot naturally have some kind of

Method ρ 100 E C background

Single prototype 19.8 0.6 1.0 -
high similarity 23.9 1.1 1.0 -
high polysemy 11.5 1.2 1.0 -

Multi-prototype 20.1 0.5 14.8 -
high similarity 22.7 1.2 14.1 -
high polysemy 13.0 1.3 13.2 -

MP+SP 17.6 0.5 14.8 -
high similarity 23.5 1.2 14.1 -
high polysemy 11.4 1.0 13.2 -

Tiered 22.4 0.6 29.7 46.6%
high similarity 27.7 1.3 29.9 47.2%
high polysemy 15.4 1.1 27.4 46.6%

Table 5: Spearman’s correlation on the Evocation data
set. The high similarity subset contains the top 20% of
pairs sorted by average rater score.

Method ρ 100 E C background

Single prototype 25.8 0.8 1.0 -
high polysemy 17.3 1.7 1.0 -

Multi-prototype 20.2 1.0 18.5 -
high polysemy 14.1 2.4 17.4 -

MP+SP 19.7 1.0 18.5 -
high polysemy 10.5 2.5 17.4 -

Tiered 29.4 1.0 37.9 41.7%
high polysemy 28.5 2.4 37.4 43.2%

Table 6: Spearman’s correlation on the Padó data set.

commonality (i.e. they can be eaten or can promise).
The background component of the tiered clustering
model can capture such general argument structure.
We model each verb argument slot in the Padó set
with a separate tiered clustering model, separating
terms co-occurring with the target verb according to
which slot they fill.

On the Padó set, the performance of the DPMM
multi-prototype approach breaks down and it yields
significantly lower correlation with human norms
than the single prototype (ρ 0.202 vs. ρ 0.258;
Table 6), due to its inability to capture the shared
structure among verb arguments. Furthermore com-
bining with the single prototype does not signif-
icantly change its performance (ρ 0.197). Mov-
ing to the tiered model, however, yields significant
improvements in correlation over the other models
(ρ 0.294), primarily improving correlation in the
case of highly polysemous verbs and arguments.
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model can capture such general argument structure.
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Prototype Comparison

(more polysemous) (more homonymous)



• Features: Unigram context features, 10 word windows; 
frequency-based pruning

• Model Training: Gibbs sampling; convergence when # of 
cluster swaps falls below a fixed threshold 

• Evaluation: Spearman’s ρ with human similarity judgements

• Inferred similarity is cosine using tf-idf features, adapted for 
tiered clustering:
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Experimental Setup
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WS-353 Correlation with Human Relatedness Judgements
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• 353 words, biased towards pairs with high similarity

• High polysemy subset generated by counting WN senses

Dataset: Finkelstein et. al 2001

football - soccer 9.03

doctor - personnel 5.00

delay - news 3.31

Mars - water 2.94
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WN-Evocation Relatedness Correlation
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• Much higher degree of unrelated words than WS-353, more 
uniform sample over word pairs

• High similarity set restricts to pairs in the top quartile by 
human rating

Dataset: Ma et. al 2009

social - urban 3.3

human - old 0.9

jealous - abundant 0.2

retired - ethical 0.03
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Padó Selectional Preference
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• Predict typical arguments for verbs (e.g. things that can eat or 
things that can be shot)

• Separate model for each argument slot

• Background cluster captures commonalities between argument 
fillers.

Dataset: Padó et. al 2007

brother hit 4.7

hit brother 4.1

quake hit 3.4

hit quake 1.2



• Introduced a latent variable model explicitly 
accounting for shared structure when clustering

• A priori assumption that features can be separated 
into shared and idiosyncratic components

• Showed significant improvement over baseline for 
word-relatedness and selectional preference 
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Conclusion



Thanks!
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Questions
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WS-353 Correlation with Human Relatedness Judgements
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Multi Prototype
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• 353 words, biased towards pairs with abnormally high similarity

• High polysemy subset generated by counting WN senses

 (Finkelstein et. al 2001)
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WN-Evocation Relatedness Correlation
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Padó Selectional Preference
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• Background cluster captures commonalities between argument 
fillers, e.g. things that can eat or things that can be shot.

 (Padó et. al 2007)


