Spherical Admixture Models

Joseph Reisinger*, Austin Waters, Bryan Silverthorn, and Raymond J. Mooney

June 22nd, 2010

* Supported by an NSF Graduate Research Fellowship and a Google Research Award.

- "I want to use LDA..."
- Want to use some set of feature weights capturing semantic content (tf-idf, pmi, etc)
- Empirical benefits to cosine distance in classical IR tasks.

Dhillon and Modha (2001), Strehl et al. (2000), Salton and McGill (1983)

- Topic modeling is basically the same story as dimensionality reduction, e.g. SVD, PCA, NMF, ...
- Differences:
 - Bayesian
 - More emphasis on interpreting topics
 - Generative models offer more flexibility

 We can explicitly represent the multinomial distribution that a document is drawn from integrating out z instead of theta:

$$w_{id} \sim \operatorname{Mult}(\theta_d^{\top} \Phi)$$

i.e. a weighted average over the topics.

Spherical mixture modeling intuition

spherical mixture model

$oldsymbol{\phi}_k$	\sim	$\mathrm{vMF}(\mathbf{m}_0)$	$k \in K$	(clusters)
z_i	\sim	H	$i \in D$	(assignments)
$oldsymbol{d}_i$	\sim	$\mathrm{vMF}(oldsymbol{\phi}_{z_i})$	$i \in D$	(documents)

 $\begin{array}{ll} \text{von Mises-Fisher} & f(\mathbf{x}; \boldsymbol{\mu}, \kappa) = c_d(\kappa) \exp\left(\kappa \boldsymbol{\mu}^\top \mathbf{x}\right) \\ \text{Distribution} & ||\boldsymbol{\mu}|| = 1, \kappa \geq 0 \end{array}$

- Generalization of spherical k-means / cosine distance
- Embed documents in the unit-hypersphere (L2 norm)
- Cosine distance has been quite successful in IR / document modeling (less sensitive to any one single feature)

(Banerjee et al. 2006)

$$d_i \sim \operatorname{vMF}(\phi_{z_i}) \quad i \in D$$
 (documents)

	Spl
$oldsymbol{\mu} \kappa_0$	\sim
$oldsymbol{\phi}_t oldsymbol{\mu}, \xi $	\sim
$ar{oldsymbol{ heta}}_d oldsymbol{lpha}$	\sim
$oldsymbol{\phi}_d oldsymbol{\phi}, oldsymbol{ heta}_d$	=
$\mathbf{v}_{d} ar{oldsymbol{\phi}}_{d},\kappa$	\sim

- LDA
- This whe
- So w

۲

Drawing documents

Latent Dirichlet Allocation

Spherical Admixture Model

Drawing documents

- Variational EM for inference
- Tractable: ~10k docs in
 O(hours)

http://www.cs.utexas.edu/~austin

Topic interpretability

Human studies: topic coherence

male, mammals, <u>empire</u>, plants, species, birds

court, crimes, police, law, security, jazz

SAM

vishnu, tamil, kerala, singh, <u>meteorologist</u>, nadu

oxidation, <u>footballers</u>, protein, potassium, hydrogen, symptoms

- Measure semantic coherence of the highest weighted terms in each topic via a "word intrusion" task
- Human raters were recruited using Mechanical Turk
- Quality control: (1) manually constructed tasks, (2) screening for low LOO inter-annotator agreement

Human studies: topic coherence

- 8 raters per question (632 unique), 50 questions per model
- LDA: 52%, SAM tf 80%, SAM tf-idf 82% identification rate

(Chang et al. 2009)

Human studies: topic relevance

- Forced choice: "which set of words best describes the main theme of the article?"
- Discarded 47 articles with low kappa; SAM results preferred 62%

(Chang et al. 2009)

Results: 20 newsgroups

- Three classification tasks:
 - Different: rec.sport.baseball, sci.space, alt.atheism
 - Similar: rec.sport.baseball, talk.politics.guns, talk.politics.misc
 - Same: comp.os.ms-windows.misc, comp.windows.x comp.graphics

(Banerjee and Basu 2007)

Results: 20 newsgroups

- Three classification tasks:
 - Different: rec.sport.baseball, sci.space, alt.atheism
 - Similar: rec.sport.baseball, talk.politics.guns, talk.politics.misc
 - Same: comp.os.ms-windows.misc, comp.windows.x comp.graphics

(Banerjee and Basu 2007)

Results: 20 newsgroups

- Three classification tasks:
 - Different: rec.sport.baseball, sci.space, alt.atheism
 - Similar: rec.sport.baseball, talk.politics.guns, talk.politics.misc
 - Same: comp.os.ms-windows.misc, comp.windows.x comp.graphics

(Banerjee and Basu 2007)

Results: il principe

- Short, singly-authored, thematically tight
- 4 main themes corresponding to 4 sections:
 - Types of Principalities, Ch I-I I
 - Types of Armies, Ch 12-14
 - The Conduct of Princes, Ch I5-23
 - Political Situation in Italy, Ch 24-26

Why does it work?

- Feature weighting helps dimensionality reduction (less for interpretability).
- Dense topic vectors can account for missing terms.
- Cosine distance may better measure document / topic similarity.

Conclusions

- Replacing multinomial likelihood of LDA with vMF (spherical); inference is tractable
- Cosine distance; dense topic vectors
- Better results as a dimensionality reduction method
- Top weighted terms are more semantically coherent (human raters)
- Benefits are less pronounced for denser data sets (e.g. vision)
- Negative weight terms capture some useful structure.

Thanks!

ty Judgements

Acknowledgements:

esearch Fellowship and a Google

semantically similar).