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Markov Logic [Richardson & Domingos (2006)]

◮ A probabilistic first-order logic (FOL)

◮ Knowledge Base (KB) is a set of weighted FOL formulas
W = {(w1, F1) . . . , (wi , Fi ), . . . , (wN , FN)}

◮ The probability of a truth assignment x to the ground atoms:

Pr(X = x) = (1/Z ) exp(
N

∑

i=1

wini (x))

where wi is the weight of Fi (the ith formula in the KB) and
ni (x) is the number of true groundings of Fi under truth
assignment x
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Markov Logic

◮ Evidence corresponds to a truth assignment to a subset of
ground atoms

◮ The goal typically is to find the marginal probabilities of the
truth assignments to each individual ground atoms or find the
most likely truth assignment given the evidence
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Example

◮ KB = {(w , P(x) ∨ Q(x))}

◮ Let x come from the domain: {a, b}

◮ There are 2 ground formulas: P(a) ∨ Q(a), P(b) ∨ Q(b)

◮ Evidence: ¬P(a)

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Example

◮ KB = {(w , P(x) ∨ Q(x))}, evidence: ¬P(a)

◮ The distribution defined by the KB:
P(a) F F F F F F F F
Q(a) F T F T F T F T
P(b) F F T T F F T T
Q(b) F F F F T T T T
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Soft and Hard Constraints

◮ Markov logic theory consists of hard and soft constraints

◮ Soft constraints (FS) are the Fi formulas with finite weights

◮ Hard constraints (FH) have infinite weights

◮ A truth assignment to the atoms can only have non-zero
probability if it does not violate any of the hard constraints

◮ FH can be equivalently represented using a set of clauses
without changing the probability distribution

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Use Hard Constraints to Create New Evidence

◮ The more evidence we have the easier it is to perform
marginal inference, or to find the truth assignment with the
highest probability

◮ We can remove all the weighted formulas the truth value of
which are already determined

◮ We only have to consider one truth value for every evidence
atom

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Example

◮ Assume we have FH = {H(x) ∨ O(x)} and
FS = {H(x) ∨ H1(x , y1) ∨ H2(x , y2)}

◮ H, H1, H2 are hidden and O is observed

◮ If O(c) is false then H(c) has to be true

◮ When H(c) is true we do not have to create a grounding for
the soft clause

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Notations

◮ Let L denote a predicate or its negation (¬¬L = L)

◮ Let D(L) denote the set of tuples from which the argument of
L can take its values

◮ Let N(L) ⊆ D(L) be the set of those tuples s.t.
∀t ∈ N(L) : L(t) has to be true in all models

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Example

◮ FH = {H(x) ∨ O(x)}

◮ E.g. let D(H) = D(O) = {a, b, c}

◮ ¬O(a), O(b) and O(c) are given as evidence

◮ N(O) = {b, c}, N(¬O) = {a}

◮ N(H) = {a}, N(¬H) = {}

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Goal

◮ For every L literal find the maximal N(L) set

◮ For every L and t ∈ N(L), add L(t) to the evidence atoms

◮ Näıve approach would ground all the formulas in the KB -
expensive

◮ Do the computations in a lifted way

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Generalized Arc Consistency Algorithm

◮ When the domain is large solving the constraints globally is
expensive

◮ We chose a hyper-arc / generalized arc consistency algorithm,
where the hyper-arcs are based on the clauses, and the nodes
are the L literals to which we want to determine N(L)

◮ Consider, e.g.:

C = L1(x) ∨ . . . ∨ Lk(x)

◮

N(Li ) ← N(Li )
⋃





⋂

i 6=j ,1≤j≤k

N(¬Lj)




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Join/Project

◮ Si - set of tuples (i = 1, 2), Xi - corresponding variables

Join{〈Xi , Si 〉} =

〈X , {c |c ∈ D(X ) ∧ ∀i∃s ∈ Si ∀x ∈ Xi : s[x ] = c[x ]}〉

corresponds to taking a cross product of the Si tuples and
selecting the terms with same values for the shared arguments

Project(Y , 〈S , X 〉) =

{c |c ∈ D(Y ) ∧ ∃s ∈ S ∀y ∈ (Y ∩ X ) : s[y ] = c[y ]}

corresponds to projecting a tuple onto a subset of its
arguments

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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General Update Rule

◮ Xj denotes the variables in the arguments of Lj

N(Li ) ←

N(Li )
⋃

[Project(Xi , Joinj 6=i{〈Xj , N(¬Lj)〉}]

◮ Example:
P(x , y) ∨ Q(x , z) ∨ R(y , z)

◮ N(¬P) = {(a, b)}, N(¬R) = {(b, c), (c , d)}

◮ Join{〈(x , y), {(a, b)}〉 , 〈(y , z), {(b, c), (c , d)}〉} =
〈(x , y , z), {(a, b, c)}〉

◮ N(Q) = Project((x , z), 〈(x , y , z), {(a, b, c)}〉) = {(a, c)}

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Lifted Unit Propagation

◮ Unit propagation: O(a, b) ∨ H(b, c),¬O(a, b) |= H(b, c)

◮ Lifted unit propagation:

O(x , y) ∨ H(y , z),

∀(x , y) ∈ N(¬O) : ¬O(x , y) |=

∀y ∈ Project(y , 〈(x , y), N(¬O)〉) : H(y , z)

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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More on Savings

◮ We can project after some joins if a variable is guaranteed not
to occur later in any join

◮ E.g.,
H(x) ∨ O1(x , y1) ∨ . . . ∨ On(x , yn)

We can project the tuples in N(¬Oi ) to x before performing
any joins, reducing the space complexity of the algorithm to
O(M2) from O(Mn+1) if |D(Oi )| = M2 and |D(H)| = M

◮ The update rule with this modification is sensitive to the order
we perform the joins

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Generalization

◮ Existential quantifier

P(x , z) ∨ ∃y [Q(x , y) ∧ R(z , y)]

◮ Handling constants and equality can be done by adding
auxiliary predicates

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Algorithm

◮ Iterate through all the hard constraints

◮ In each hard constraint update N(Li ) for every Li literal

◮ Repeat until at least one of the N(Li ) sets were updated

◮ Add the final N(Li ) sets to the evidence

◮ The algorithm is sound and always terminates

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Datasets

◮ CTF - capture the flag [Sadilek & Kautz (2010)] 17 formulas
(15 hard and 2 soft)

◮ Cora - a standard benchmark problem for MLNs 52 formulas
(6 hard and 46 soft)

◮ Library - synthetic dataset 4 formulas (3 hard and 1 soft)
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Experiments

◮ Measured the running time of taking 1000 samples using
MC-SAT (time includes creation of the ground network)

◮ As a space cost, we measured the maximum number of
ground tuples needed at any point by the generalized arc
consistency algorithm

◮ We do not report accuracy because the results are guaranteed
to be the same at convergence
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Time costs comparing the two inference approaches

Dataset Time (in minutes)
Constraint Probabilistic Net

Propagation Inference Reduction
Standard CPI Standard CPI

CTF 0 0.37 1536.6 528.0 66%
Cora 0 0.07 181.1 26.2 85%

Library 0 0.20 286.4 23.0 92%

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Memory costs comparing the two inference approaches

Dataset No. of Ground Tuples (in 1000’s)
Constraint Probabilistic Net

Propagation Inference Reduction
Standard CPI Standard CPI

CTF 0 585.5 2107.8 1308.7 41%
Cora 0 153.6 488.2 81.4 78%

Library 0 318.5 366.2 45.9 13%
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Next Steps

◮ Experimenting with other domains

◮ Trying out other forms of consistency requirements

◮ Symbolic manipulation of the theory

◮ Combining with lifted inference

Tivadar Papai, Parag Singla, Henry Kautz CP for Efficient Inference in ML
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Thank you for your attention!
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