Continually Improving Grounded Natural Language Understanding through Human-Robot Dialog

Jesse Thomason University of Texas at Austin Ph.D. Defense

Human-Robot Dialog

Human-Robot Dialog

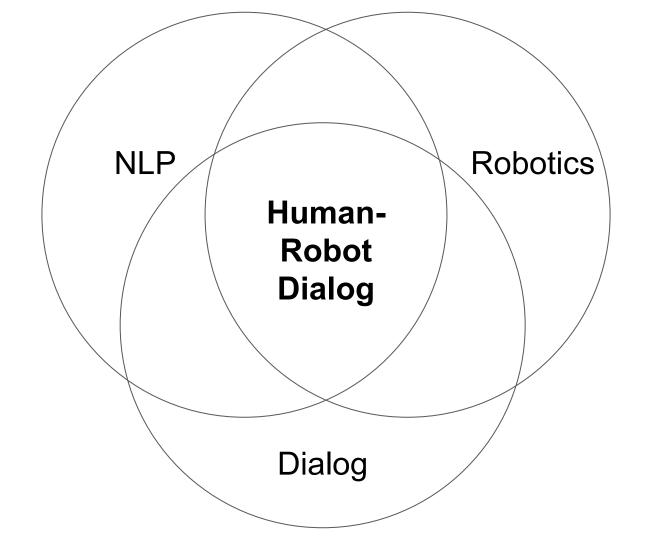
"alert me if her heart rate decreases"

"bring me his chart"

"go and get the family"

"scalpel"

"text me when the speaker arrives"
"grab the empty, green bottle"
"lead him to alice's office"
"get out of the way"



Natural
Language
Understanding
Corpus of
Language
Commands

NLP Human-Robot Dialog

Robotics

Robot Behavior

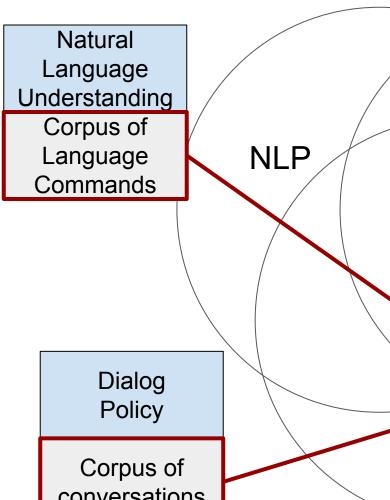
Algorithms for this Platform

Robot Perception

Dialog Policy

Corpus of conversations

Dialog



Human-Robot Dialog

Robot **Behavior**

Algorithms for this Platform

Robotics

Robot Perception

conversations

Dialog

Robot Dialog has Multiple Low-Resource Problems

• My work:

- Develop algorithms for human-robot understanding that overcome sparse training data.
- Use dialog to correctly perform user requests and better understand future requests.

Polysemy
Induction and
Synonymy Detection
(IJCAl'17)

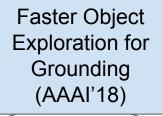
Robotics

Human-Robot Dialog Papers before proposal

Improving
Semantic Parsing
through Dialog
(IJCAI'15)

Dialog

Learning
Groundings with
Human Interaction
(IJCAI'16)



Robotics

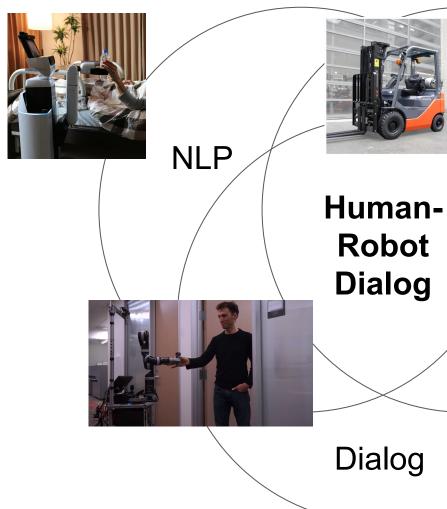
Papers since proposal

NLP

Jointly Improving
Parsing & Perception
(in submission)

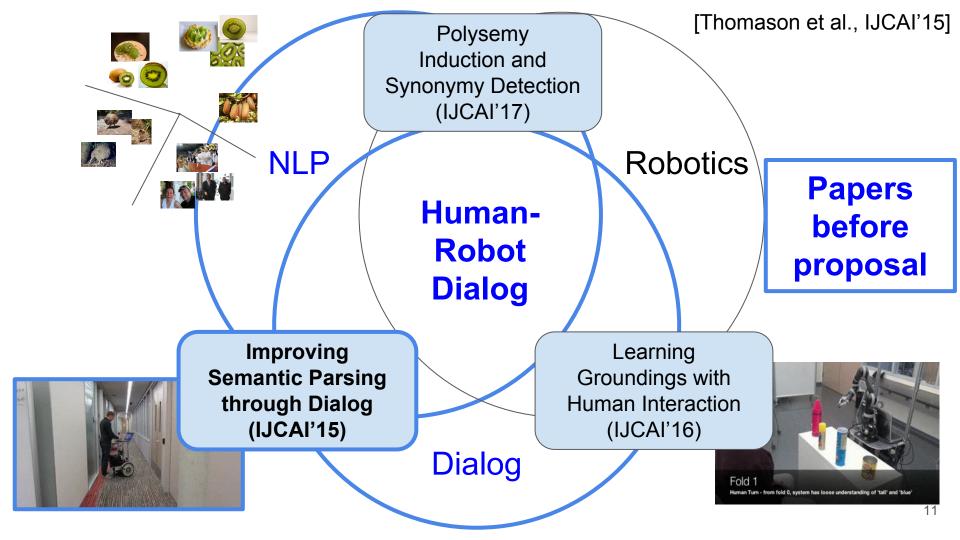
Learning Groundings with Opportunistic Active Learning (CoRL'17)

Dialog

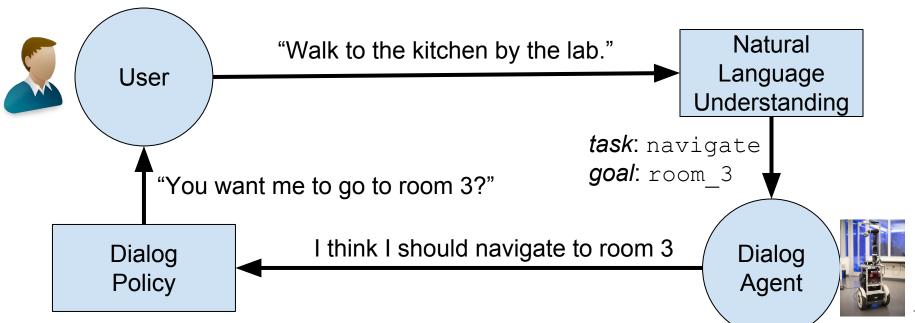


Robotics

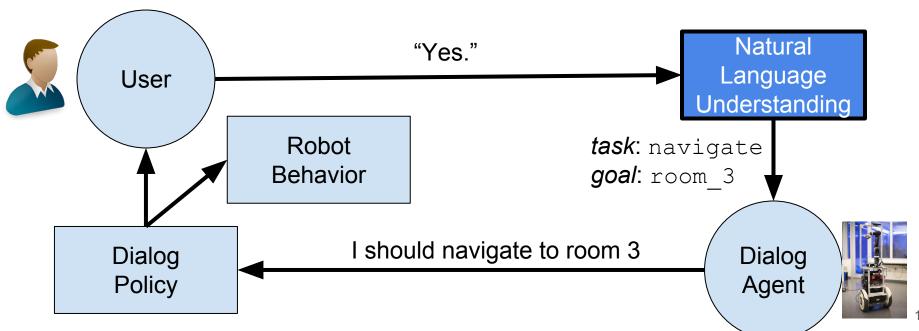
Next Directions



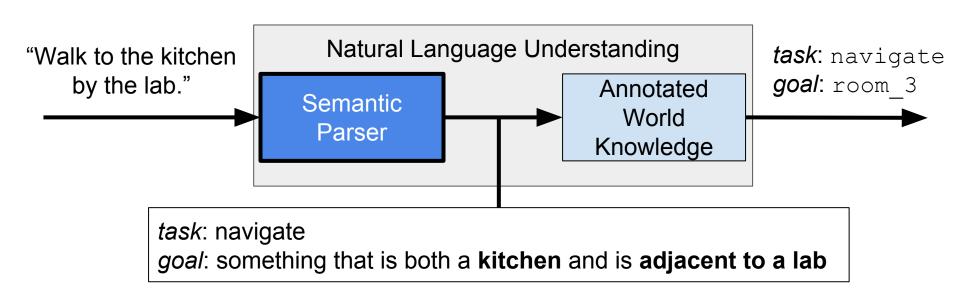
Dialog for Robots



Dialog for Robots



Natural Language Understanding



Semantic Parser

- The parser can be initialized with low annotator effort.
 - In our experiments, we annotate five sentences.
 - Satisfies the low-resource constraints of human-robot dialog.
- But, more training data will improve performance.

TASK TO COMPLETE

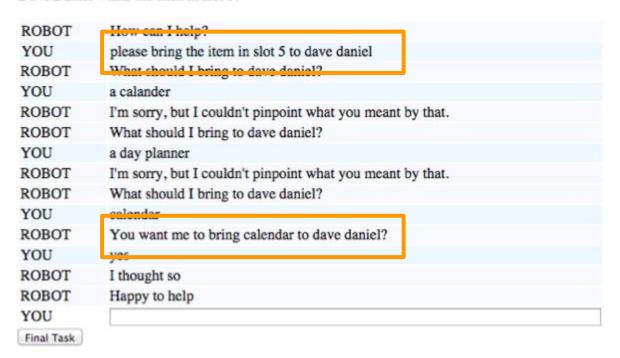
Dave Daniel wants the item in slot 5.

ROBOT	How can I help?		
YOU	please bring the item in slot 5 to dave daniel		
ROBOT	What should I bring to dave daniel?		
YOU	a calander		
ROBOT	I'm sorry, but I couldn't pinpoint what you meant by that.		
ROBOT	What should I bring to dave daniel?		
YOU	a day planner		
ROBOT	I'm sorry, but I couldn't pinpoint what you meant by that.		
ROBOT	What should I bring to dave daniel?		
YOU	calendar		
ROBOT	You want me to bring calendar to dave daniel?		
YOU	yes		
ROBOT	I thought so		
ROBOT	Happy to help		
YOU			
Final Task			

Items available to robot:

TASK TO COMPLETE

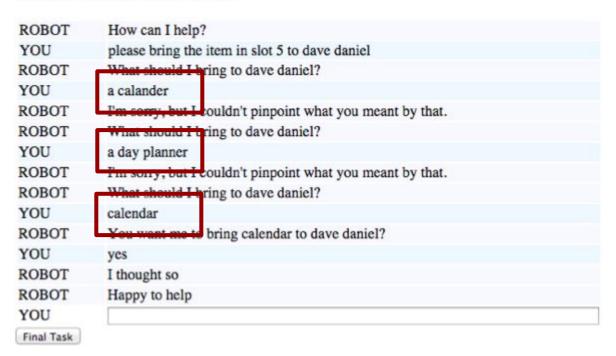
Dave Daniel wants the item in slot 5.



Items available to robot:

TASK TO COMPLETE

Dave Daniel wants the item in slot 5.



Items available to robot:

Dialogs that Clarify Meaning and Provide Supervision

Agent Belief (task, goal, item, person)	Request	Question
(?, ?, ?, ?)	all	"How can I help?" / "Can you reword your original request?"
(navigate, ?, _, _)	goal	"Where should I walk?"
(deliver, _, ?, p)	item	"What should I bring to p?"
(navigate, r, _, _)	confirm	"You want me to walk to r?"
• • •		24

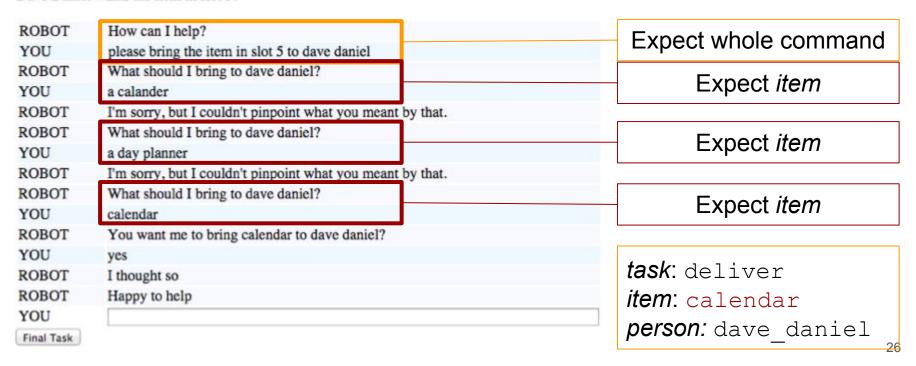
Dialogs that Clarify Meaning and Provide Supervision

Agent Belief (task, goal, item, person)	Request	Question
(?, ?, ?, ?)	all	"How can I help?" / "Can you reword your original request?"
(navigate, ?, _, _)	goal	"Where should I walk?"
(deliver, _, ?, p)	item	"What should I bring to p?"
(navigate, r, _, _)	confirm	"You want me to walk to r?"
• • •		28

Dialogs that Clarify Meaning and Provide Supervision

TASK TO COMPLETE

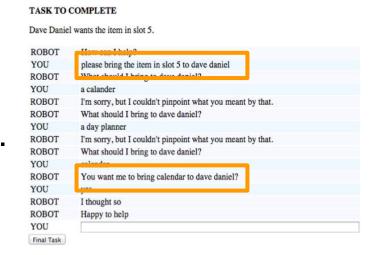
Dave Daniel wants the item in slot 5.



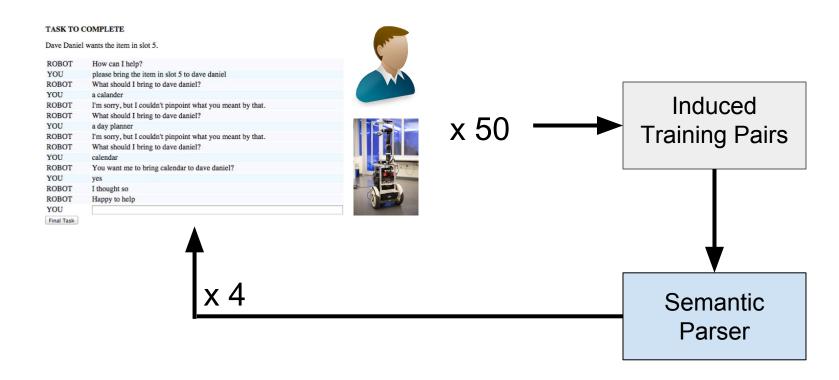
Technical Contributions

 Design a dialog policy that allows us to pair human language with latent meaning representations.

 Improve semantic parsing given very little initial in-domain data.

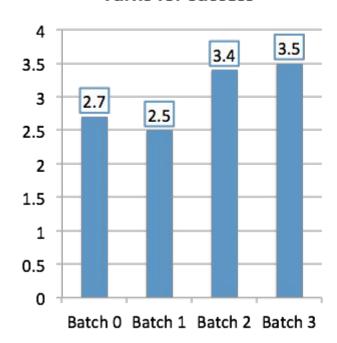


Experiments via Amazon Mechanical Turk



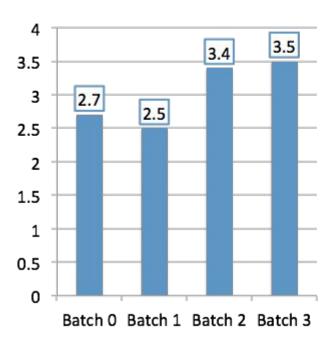
Navigation Dialog Turns

Navigation task average Turker Turns for success



Navigation Dialog Turns

Navigation task average Turker Turns for success

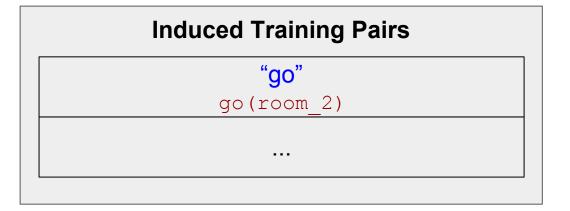


Robot: How can I help?

Human: go

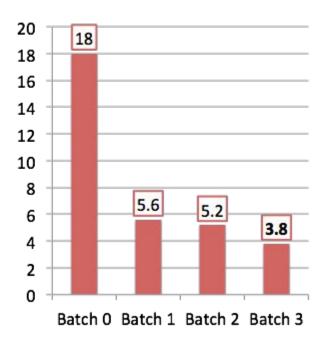
. . .

Human: go to dave daniel's office



Delivery Dialog Turns

Delivery task average Turker turns for success

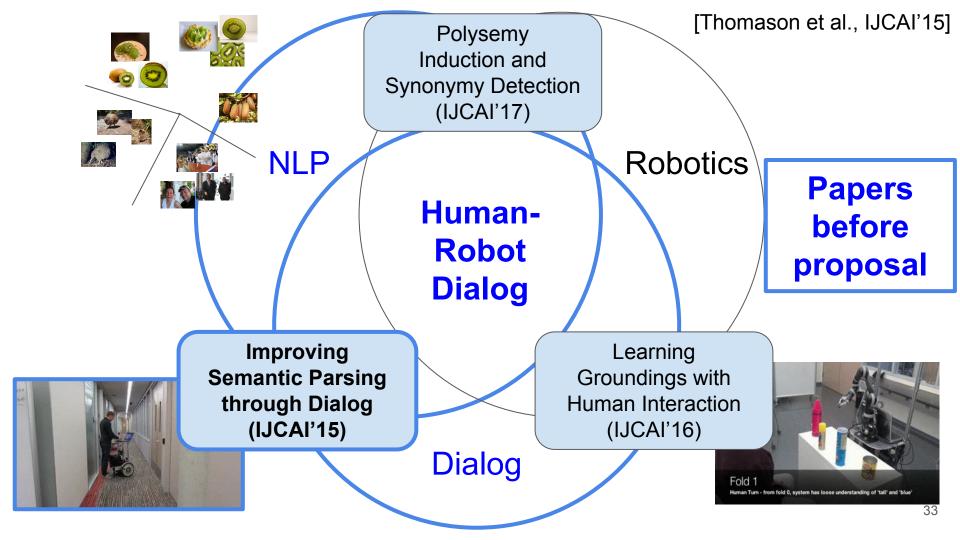


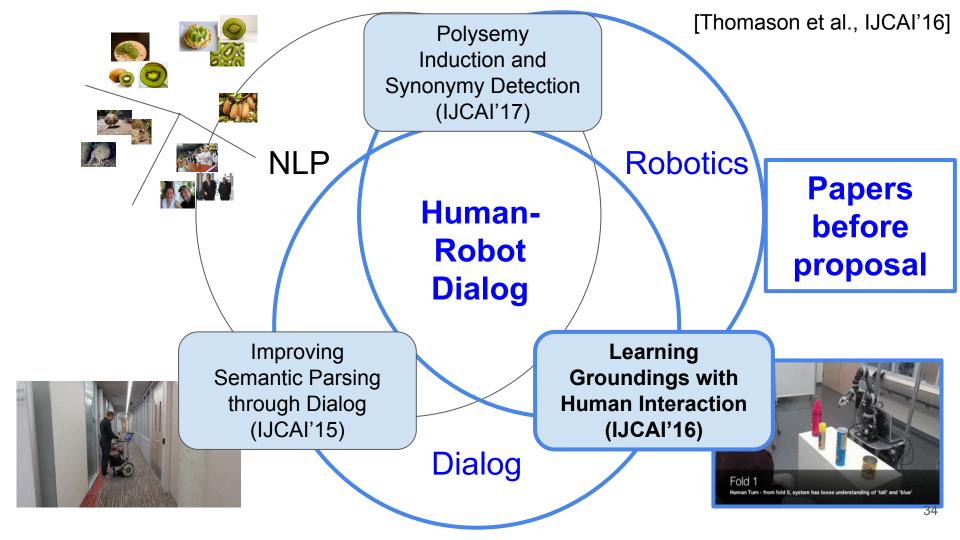
- Statistically significant decrease.
- More arguments:
 harder to understand, so more to gain from parser training.

Qualitative: One user wrote "the robot even fixed my typo when I mispelled calendar!"

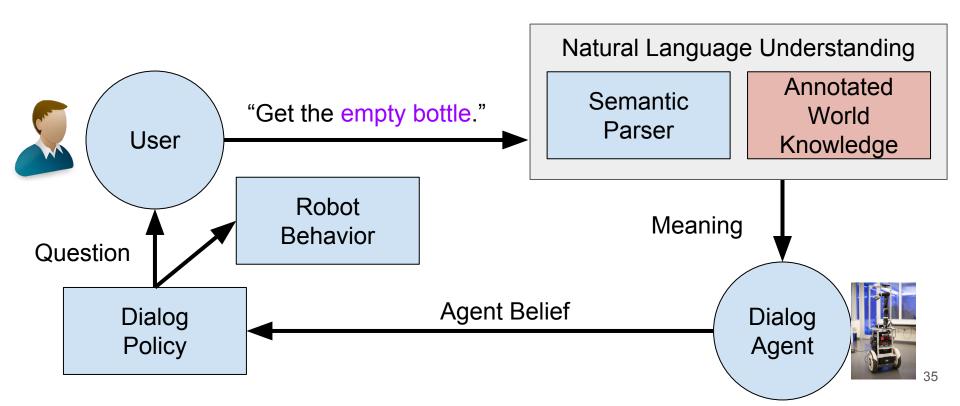
Other Findings

- Users rate system more understanding and less frustrating.
- Results replicable on physical platform.

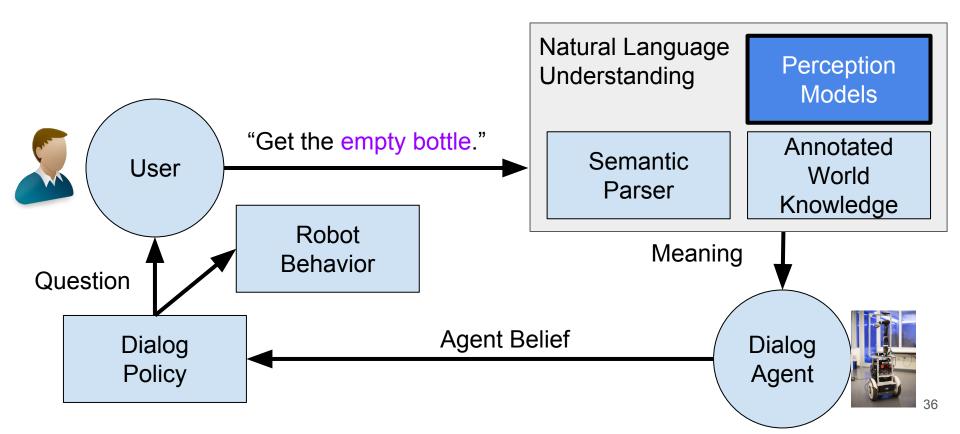




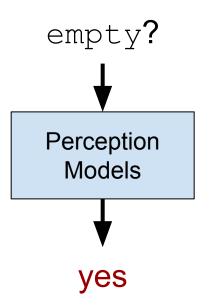
We do not yet handle perception information



We need to perform language grounding



Language Grounding



Language Grounding

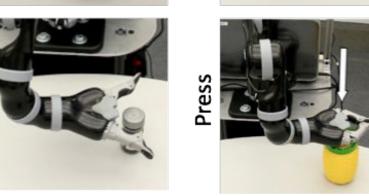
- Symbol grounding problem.
- Historically use visual space.
- We use more than vision.

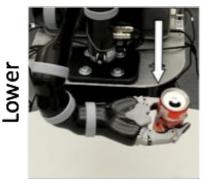
Language Grounding

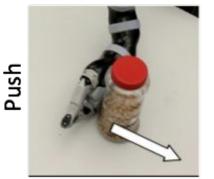
Haptic sensors from arm give force information.

Audio signals from mic give sound information.

Perceptual Grounding





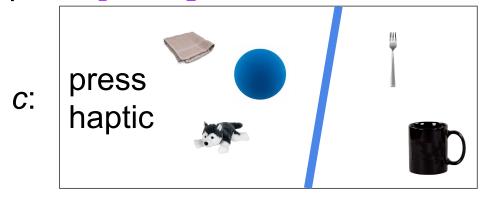


color, shape,and deepVGG features.

 $G_{p,c}(o)$

SVM trained for predicate *p* and sensorimotor context *c* result on object *o*

p: squishy



Few labeled examples, but SVMs can operate on this sparse data.

 $G_{p,c}(o)$ SVM trained for predicate p and sensorimotor context c result on object o

$$d(p, o) = sgn\left(\sum_{c \in C} w_{p,c} G_{p,c}(o)\right)$$

Decision

 $G_{p,c}(o)$ SVM trained for predicate p and sensorimotor context c result on object o

$$d(p,o) = sgn\left(\sum_{c \in C} w_{p,c} G_{p,c}(o)\right)$$

Decision Sensorimotor Contexts

 $\mathrm{G}_{p,c}(o)$ | SVM trained for predicate p and sensorimotor context c result on object o

$$d(p,o) = sgn\left(\sum_{c \in C} w_{p,c} \mathbf{G}_{p,c}(o)\right)$$

Decision

Sensorimotor Contexts

Context SVM result

 $\mathbf{G}_{p,c}(o)$ | SVM trained for predicate p and sensorimotor context c result on object o

$$d(p,o) = sgn\left(\sum_{c \in C} w_{p,c} G_{p,c}(o)\right)$$

Decision

Sensorimotor Reliability Context Contexts Weight SVM result

$$G_{p,c}(o)$$

 $G_{p,c}(o)$ SVM trained for predicate p and sensorimotor context c result on object o

$$d(p, o) = sgn\left(\sum_{c \in C} w_{p, c} G_{p, c}(o)\right)$$

Reliability weights estimated from xval

squishy		
sensorimotor context	$w_{p,c}$	
press-haptics	0.5	
grasp-haptics	0.3	
look-VGG	0.01	

 $G_{p,c}(o)$

SVM trained for predicate *p* and sensorimotor context *c* result on object *o*

Reliability weights estimated from xval

squishy		
sensorimotor context	$w_{p,c}$	
press-haptics	0.5	
grasp-haptics	0.3	
look-VGG	0.01	

 $G_{p,c}(o)$

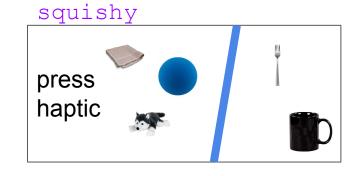
SVM trained for predicate *p* and sensorimotor context *c* result on object *o*

Reliability weights estimated from xval

squishy		
sensorimotor context	$w_{p,c}$	
press-haptics	0.5	
grasp-haptics	0.3	
look-VGG	0.01	

Technical Contributions

 Ensemble SVMs over multi-modal object features to perform language grounding.



Get language labels from natural
 language game with human users

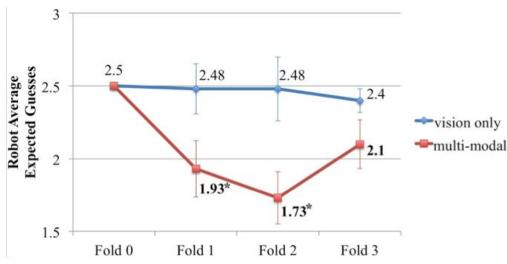
[Thomason et al., IJCAI'16]

Experiments Playing I Spy

multi-modal vision only

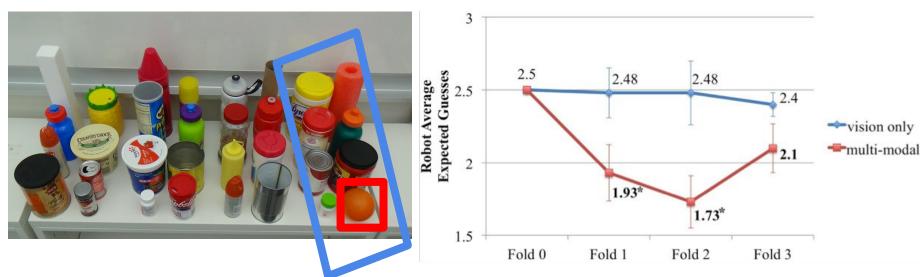
Experiments Playing I Spy

Four folds of objects for four rounds of training.



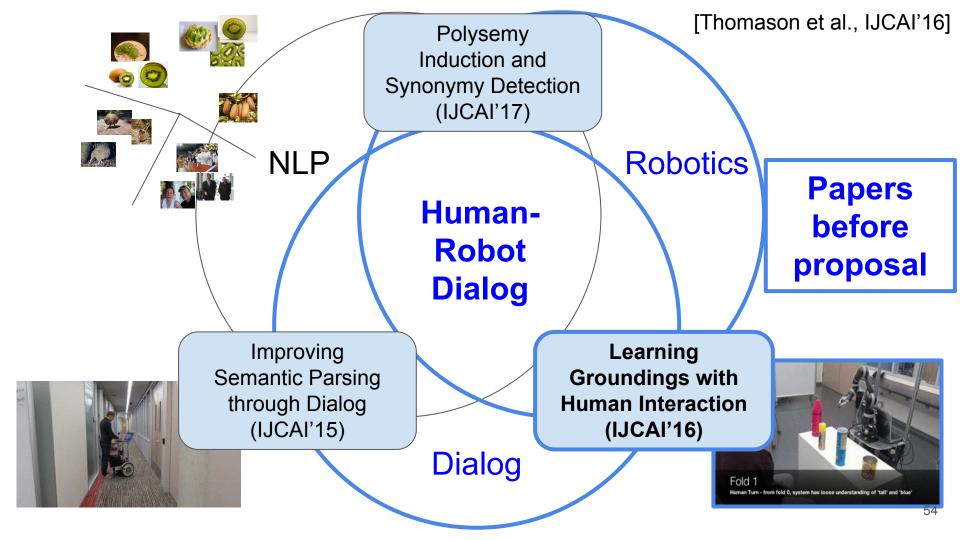
Bold: Lower than fold 0 average. *: Lower than vision only baseline

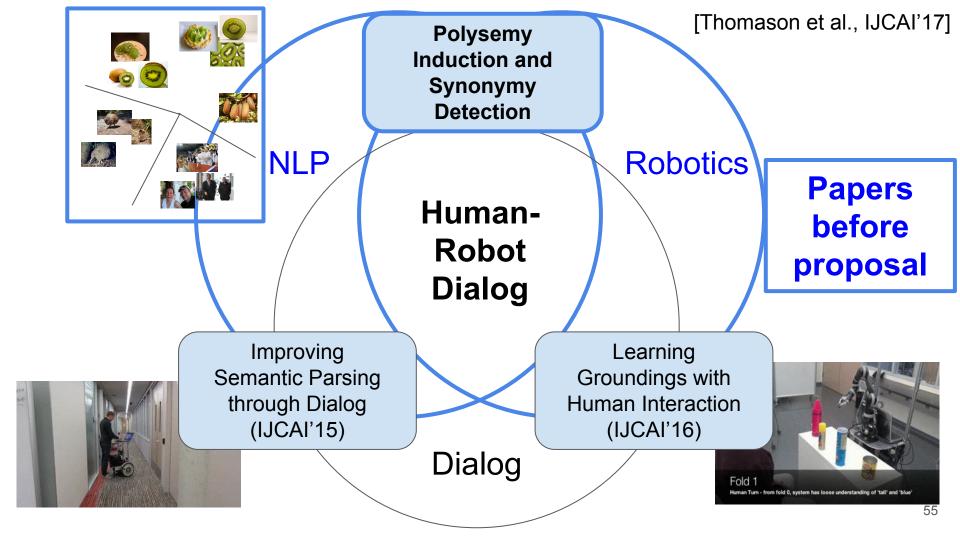
Problematic *I Spy* Object



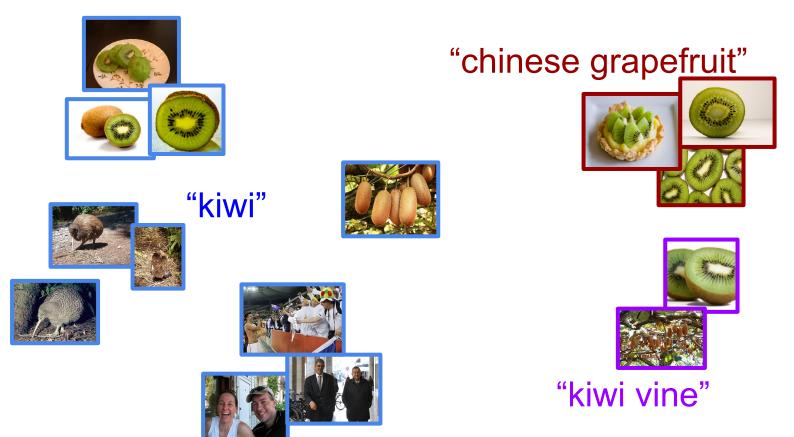
Bold: Lower than fold 0 average. *: Lower than vision only baseline

Future: Be mindful of object *novelty* both for the learning algorithm and for human users.

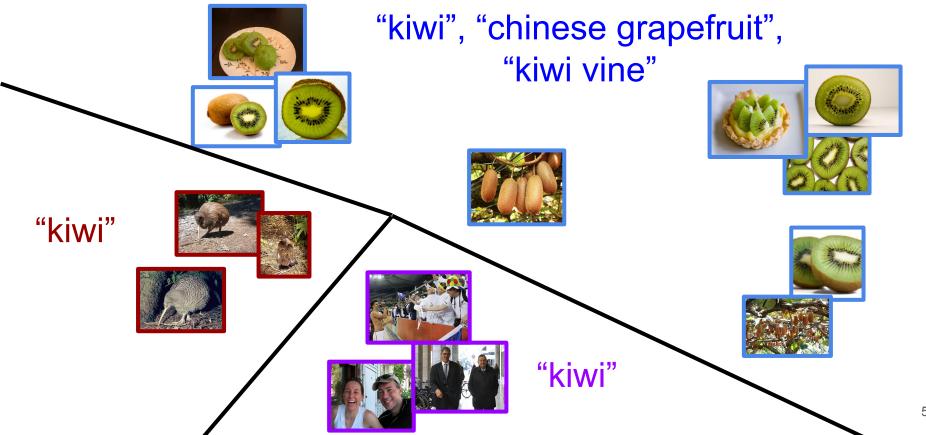


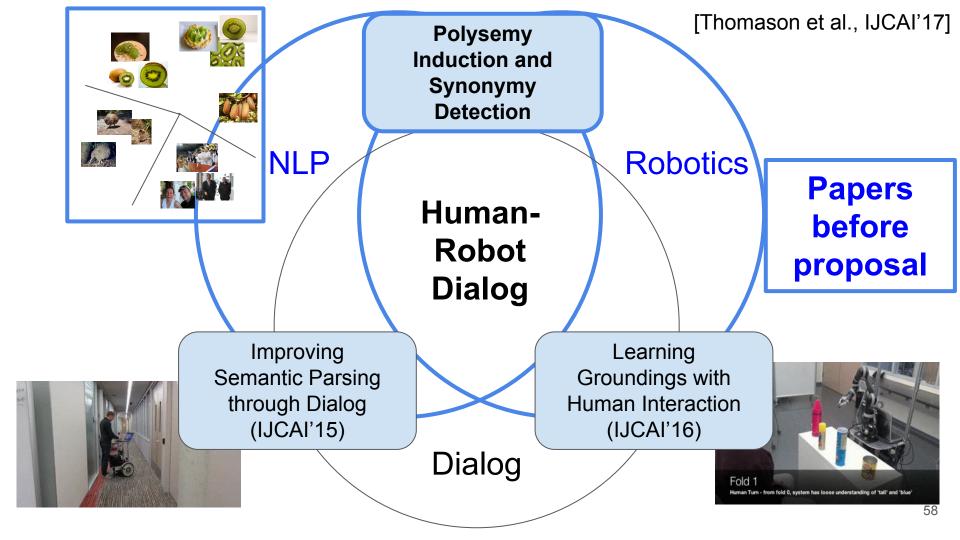


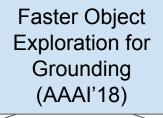
Unsupervised Word Synset Induction



Unsupervised Word Synset Induction







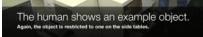
NLP Robotics

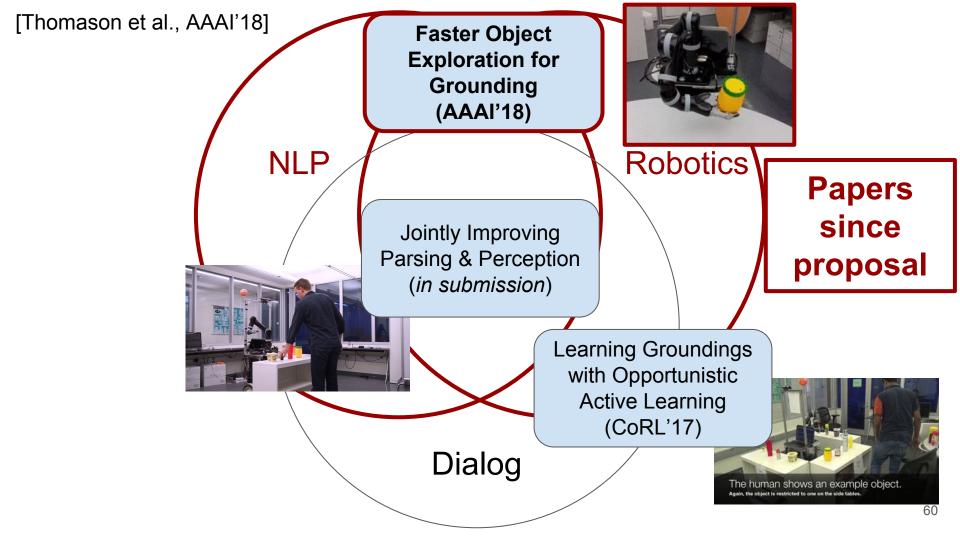
Jointly Improving
Parsing & Perception
(in submission)

Papers since proposal

Learning Groundings with Opportunistic Active Learning (CoRL'17)

Dialog

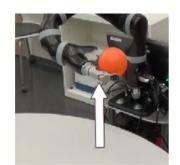




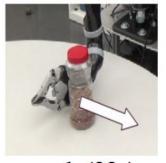
Exploratory Behaviors

grasp (22s)

drop (9.8s)



lift (11.1s)



push (22s)

+hold

+look

(0.8s)

(5.7s)

lower (10.6s)

press (22s)

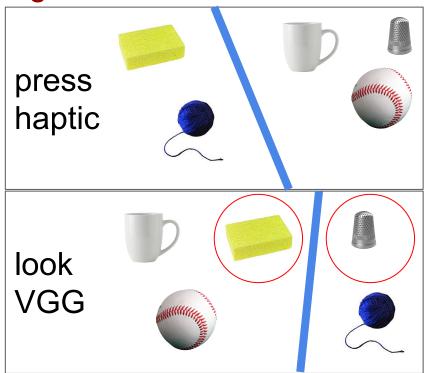
104s to explore an object once.

520s to explore an object five times.

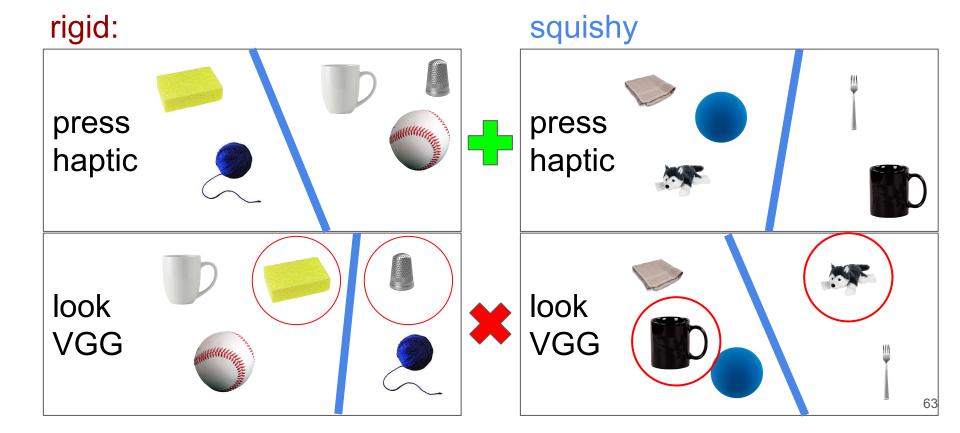
4.5 **hours** to fully explore 32 objects.

Guiding Exploratory Behaviors

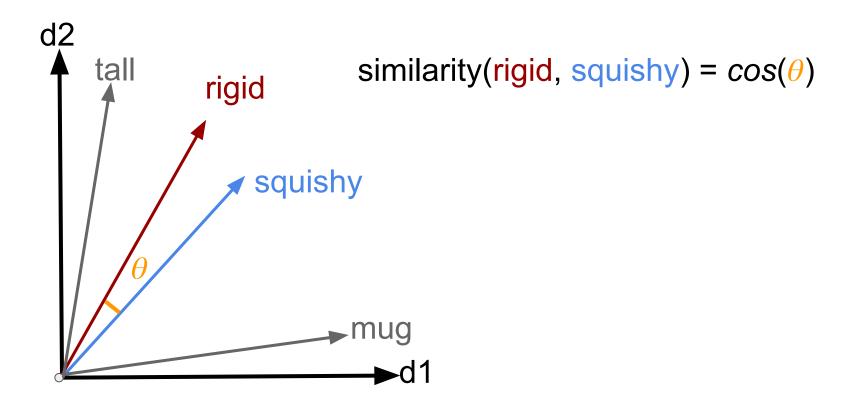
rigid:



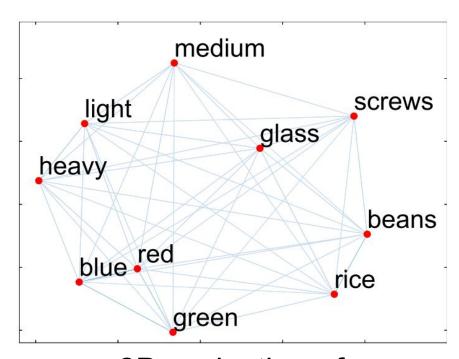
Guiding Exploratory Behaviors



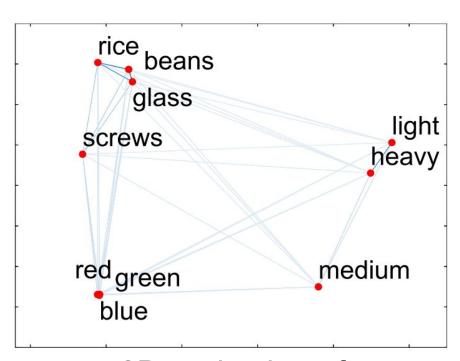
Guiding Exploratory Behaviors



Shared Structure: Embeddings and Features



2D-projection of word embeddings



2D-projection of behavior context features

Guiding Exploratory Behaviors using Embeddings

$$d(p, o) = sgn\left(\sum_{c \in C} w_{p, c} G_{p, c}(o)\right)$$

$$w_{q,c} \approx \frac{1}{|P_q|} \sum_{p \in P_q} poscos(p,q) w_{p,c}$$

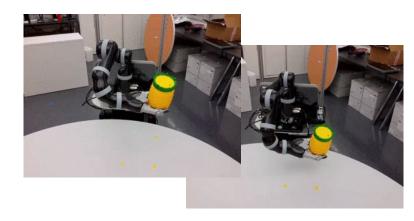
Surrogate reliability weights for new classifiers for q

Nearest word-embedding predicates to q

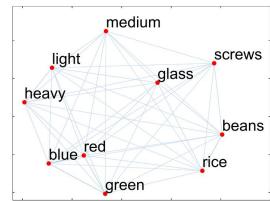
Reliability weights for trained neighbor classifiers p

Technical Contributions

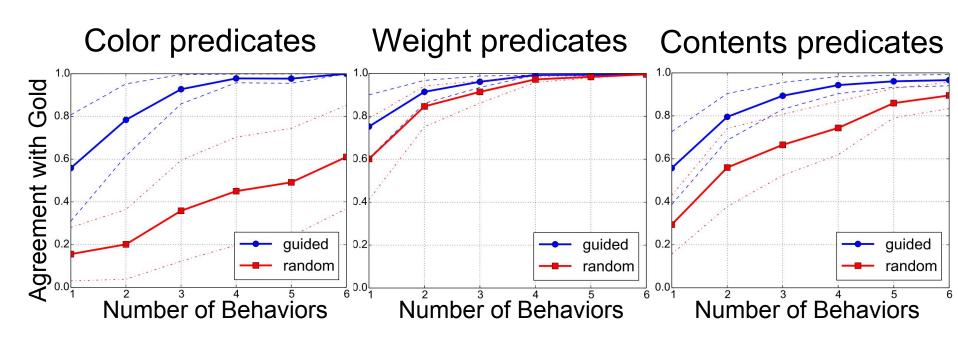
 Reduce exploration time when learning a target new word.



 Use word embeddings and human annotations to guide behaviors.

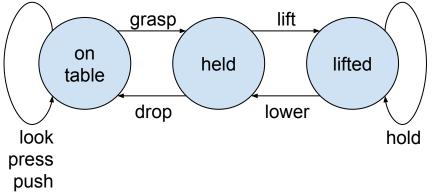


Results

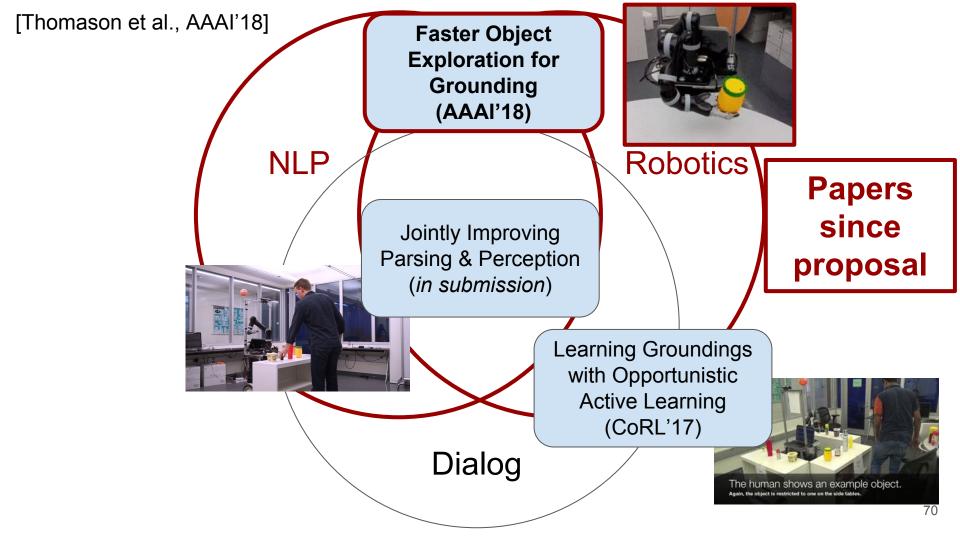


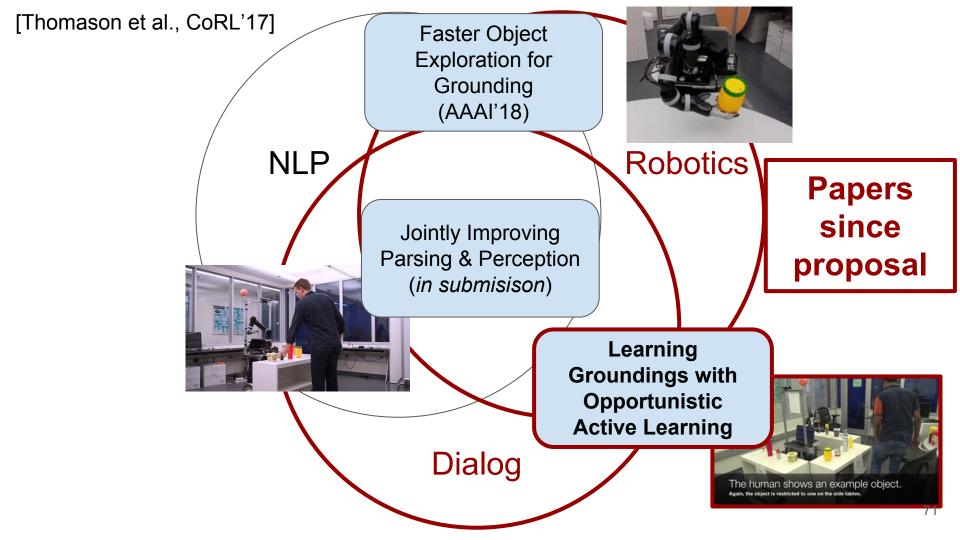
(dotted lines show standard error)

Other Findings



- Human annotations help;
 "how would you tell if an object is tall?"
- Human annotations + word embeddings work better than either alone.





Active Learning for Perceptual Questions

$$o_{\min}(p) = \operatorname{argmin}_{o \in O_{tr}}(\kappa(p, o))$$

The object for which the predicate classifier is least sure of the predicted label.

$$8.0 =$$

$$) = 0.4$$

d(bottle,

$$= -0.2$$

Active Learning for Perceptual Questions

empty	
sensorimotor context	W _{p,c}
lift-haptics	?
lift-audio	?
look-vgg	?

bottle	
sensorimotor context	W _{p,c}
look-shape	0.6
look-vgg	0.5
•••	
lower-haptics	0.02

Active Learning for Perceptual Questions

$$prob(p) = \frac{1 - \kappa(p, o_{\min}(p))}{\sum_{q \in P \setminus \{p\}} 1 - \kappa(q, o_{\min}(q))}$$
 probability proportional unconfidence in least

Ask for a label with probability proportional to *un*confidence in least confident training object.

$$p \in \{q : q \in P \land \kappa(q, o_{\min}(q)) = 0\}$$

Ask for a positive label for any predicate we have insufficient data for.

Active Learning for Perceptual Questions

"Could you use the word bottle when describing this object?"

Ask for a label with probability proportional to *un*confidence in least confident training object.

"Can you show me something empty?"

Ask for a positive label for any predicate we have insufficient data for.

[Thomason et al., CoRL'17]

Technical Contributions

 Introduce an opportunistic active learning strategy for getting high-value labels.

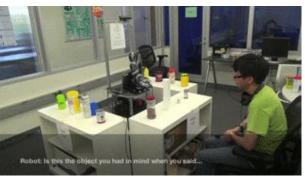
Show that off-topic questions improve performance.

"A full, yellow bottle."

"Would you describe this object as full?"

"Show me something red."

Experiments with Object Identification



"Would you describe this object as full?"

Baseline Agent

"Show me something red."

Inquisitive Agent

Results

"Would you describe this object as full?"

Baseline Agent

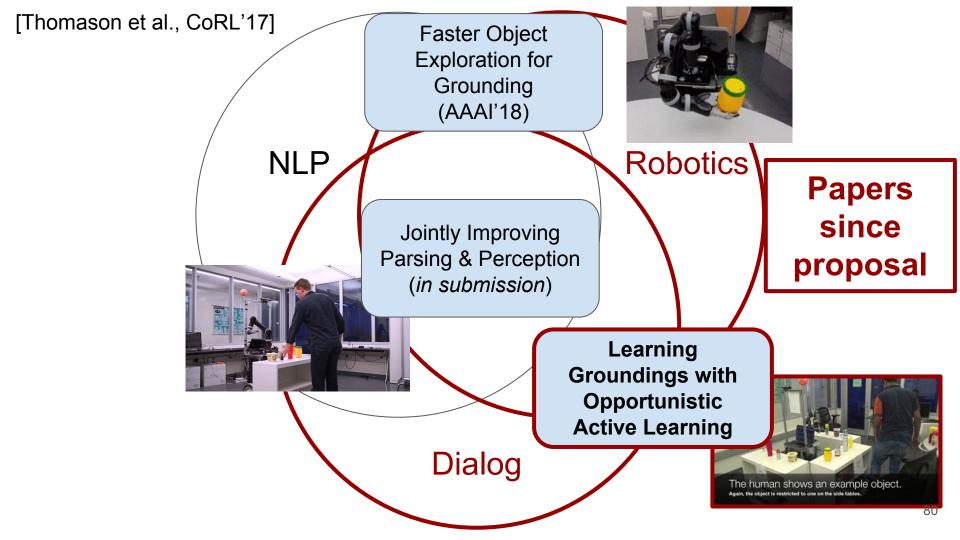
Rated less annoying.

"Show me something red."

Inquisitive Agent

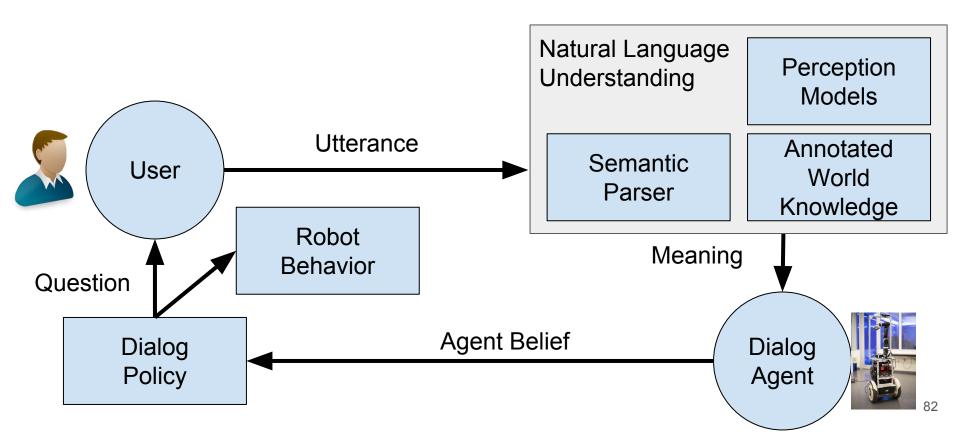
Correct object more often.

Rated better for real-world use.



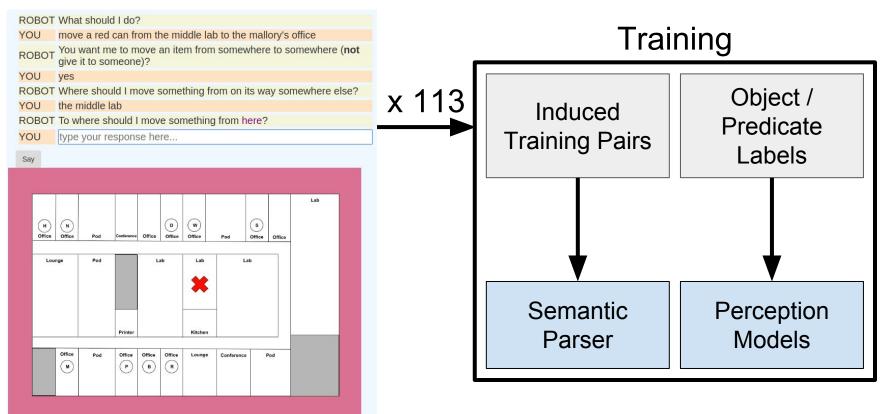
[in submission] Faster Object **Exploration for** Grounding (AAAI'18) Robotics **NLP Papers Jointly Improving** since Parsing & proposal **Perception** (in submission) **Learning Groundings** with Opportunistic **Active Learning** (CoRL'17) Dialog

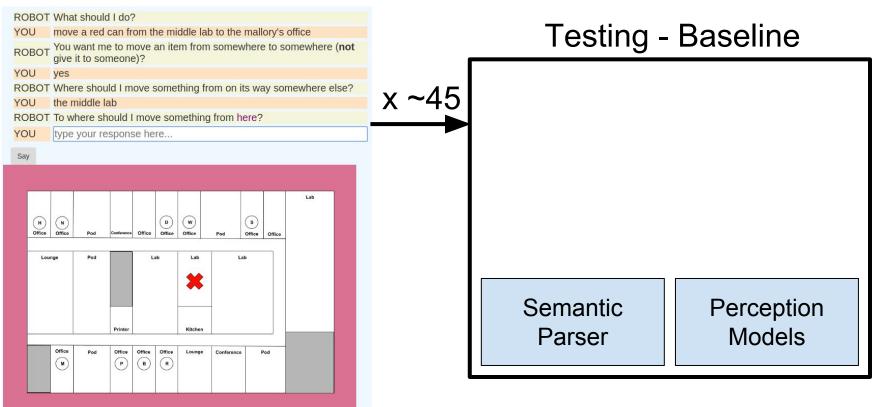
Human-Robot Dialog

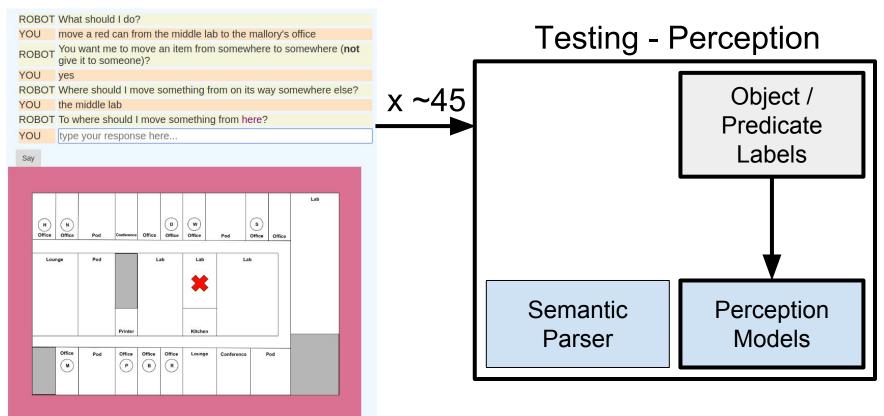


Jointly Improving Parsing and Perception

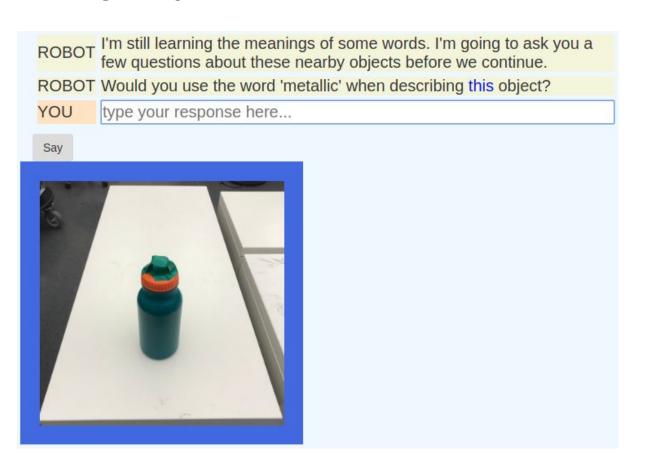
"Move a rattling container from lounge by the conference room to Bob's office."

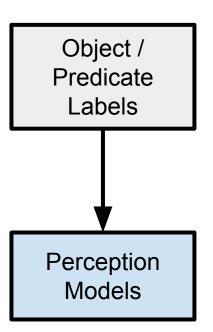




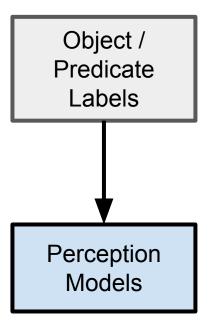


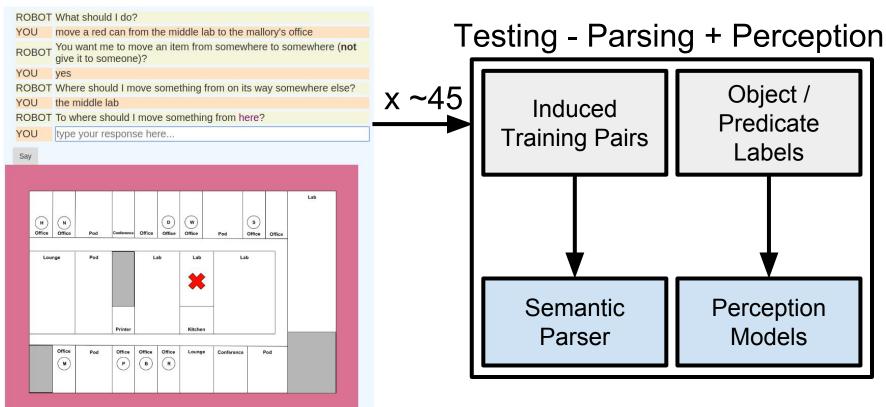
Getting Object/Predicate Labels in Dialog

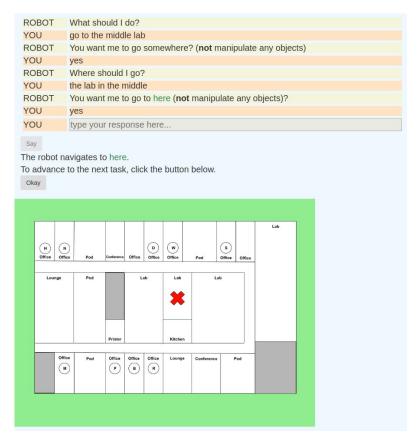


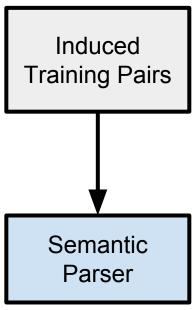


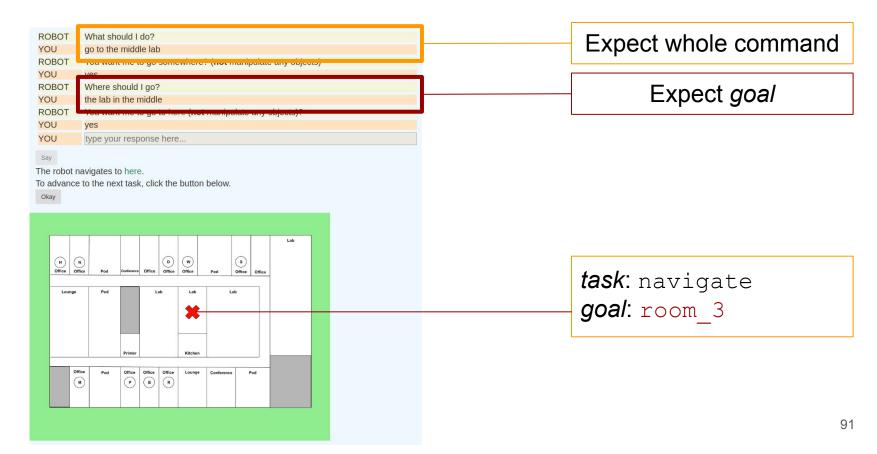
Getting Object/Predicate Labels in Dialog











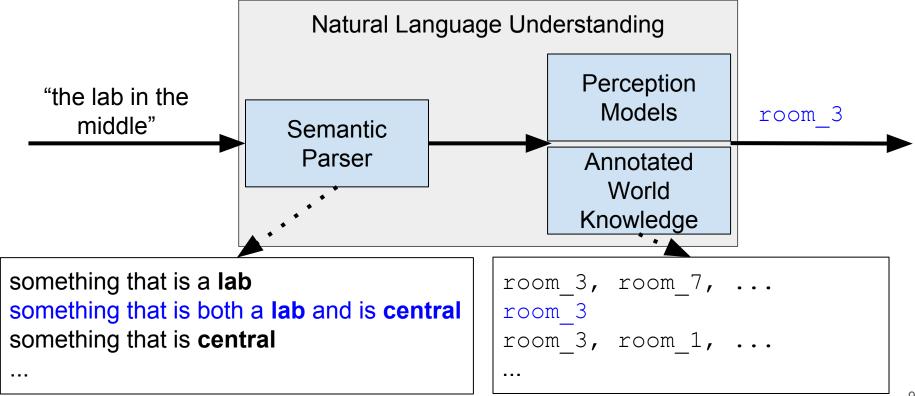
Induced Utterance/Denotation Pairs

"go to the middle lab"
navigate(room 3)

"the lab in the middle"

room 3

Natural Language Understanding



Induced Utterance/Denotation Pairs

"go to the middle lab"
navigate(room 3)

"the lab in the middle" room 3

Semantic Parser

Perception Models

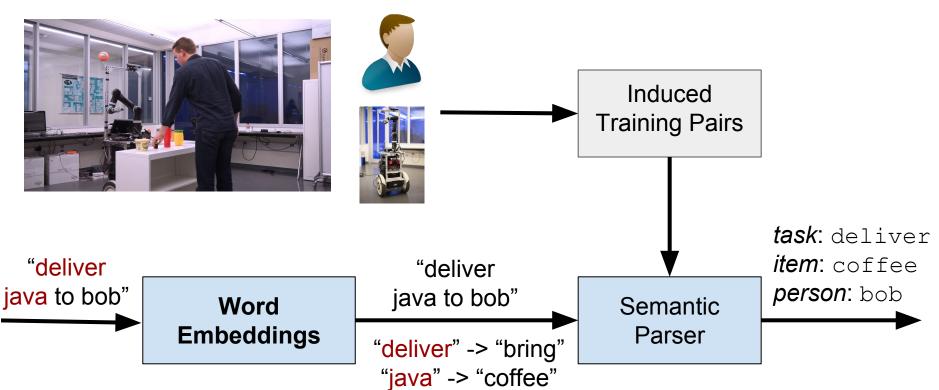
Annotated World Knowledge

Induced Parser Training Data

"go to the middle lab"
navigate (lab+central)

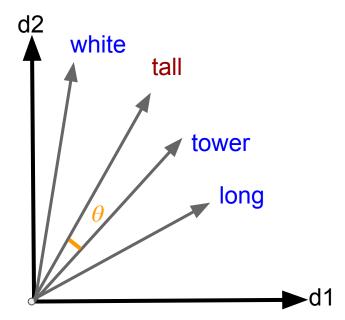
"the lab in the middle" lab+central

Using Embeddings for Out-of-Vocabulary Words



Using Embeddings to Find Perception Words

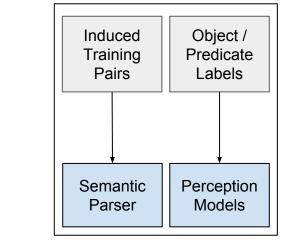
ROBOT	What should I deliver to this person?
YOU	a tall metal can
ROBOT	I haven't heard the word 'tall' before. Does it refer to properties of things, like a color, shape, or weight?
YOU	yes
ROBOT	Does 'tall' mean the same thing as 'tower'?
YOU	no
ROBOT	Does 'tall' mean the same thing as 'white'?
YOU	no
ROBOT	Does 'tall' mean the same thing as 'long'?
YOU	yes

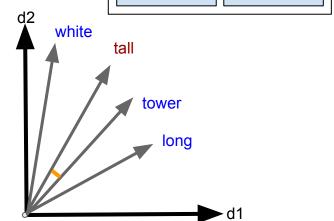


Technical Contributions

Improve both parsing and perception from conversations.

 Use word embeddings to guide search for synonyms and novel perceptual predicates.





Parsing + **Untrained Baseline Perception Training Perception Training** Object / Object / Induced Predicate **Predicate** Training Labels **Pairs** Labels Semantic Perception Semantic Perception Semantic Perception Models Models Models Parser Parser Parser

Metric - Semantic F1

$$T_U = \{(\text{action}, \text{deliver}), (\text{patient}, o_2), (\text{recipient}, p_1)\},$$

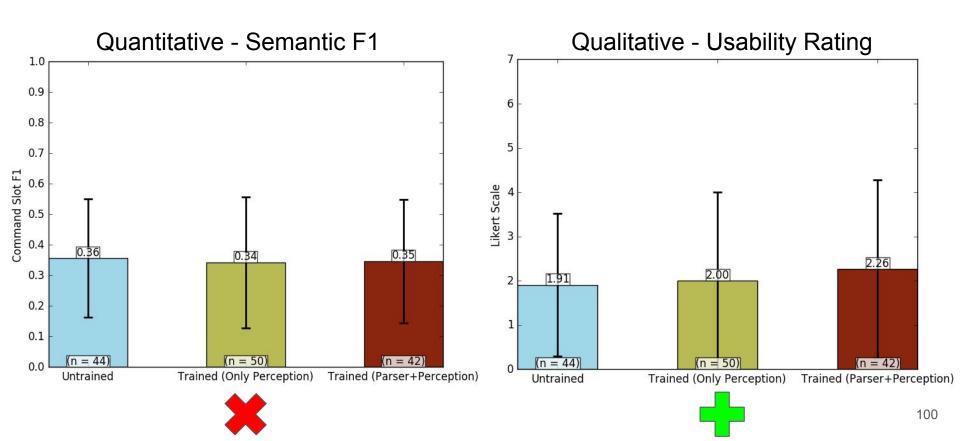
$$T_G = \{(\text{action}, \text{relocate}), (\text{patient}, o_2), (\text{source}, r_1), (\text{goal}, r_3)\};$$

$$\text{precision}(T_U, T_G) = \frac{|T_U \cap T_G|}{|T_U|} = \frac{1}{3},$$

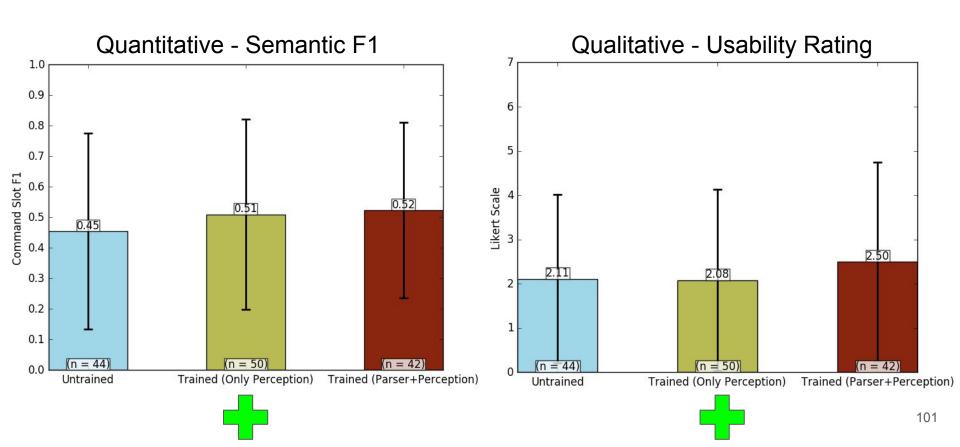
$$\text{recall}(T_U, T_G) = \frac{|T_U \cap T_G|}{|T_G|} = \frac{1}{4},$$

$$f(T_U, T_G) = 2 \cdot \frac{\text{precision}(T_U, T_G) \cdot \text{recall}(T_U, T_G)}{\text{precision}(T_U, T_G) + \text{recall}(T_U, T_G)} = 0.286.$$

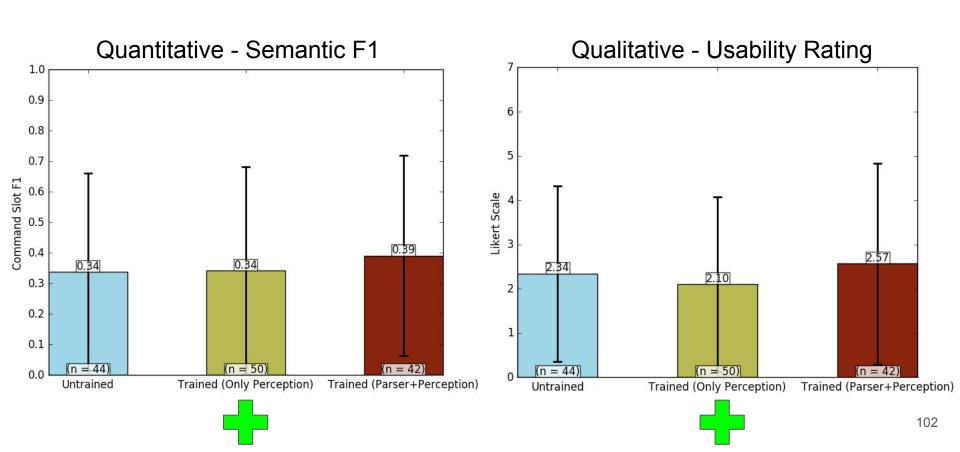
Results - Navigation Task



Results - Delivery Task

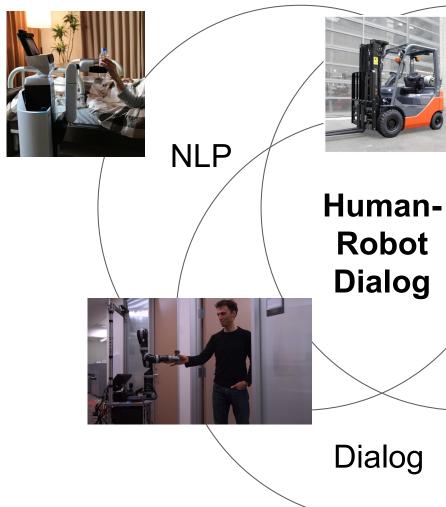


Results - Relocation Task



[in submission]

[in submission] [in submission] Faster Object **Exploration for** Grounding (AAAI'18) Robotics' **NLP Papers Jointly Improving** since Parsing & proposal **Perception** (in submission) **Learning Groundings** with Opportunistic **Active Learning** (CoRL'17) Dialog 104

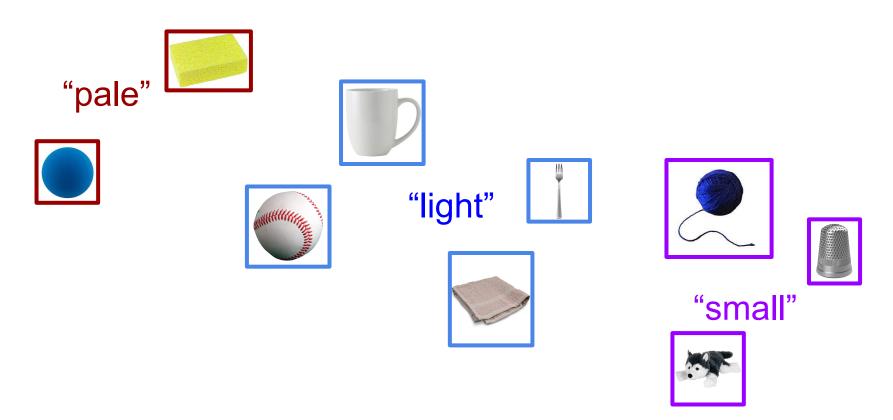


Robotics

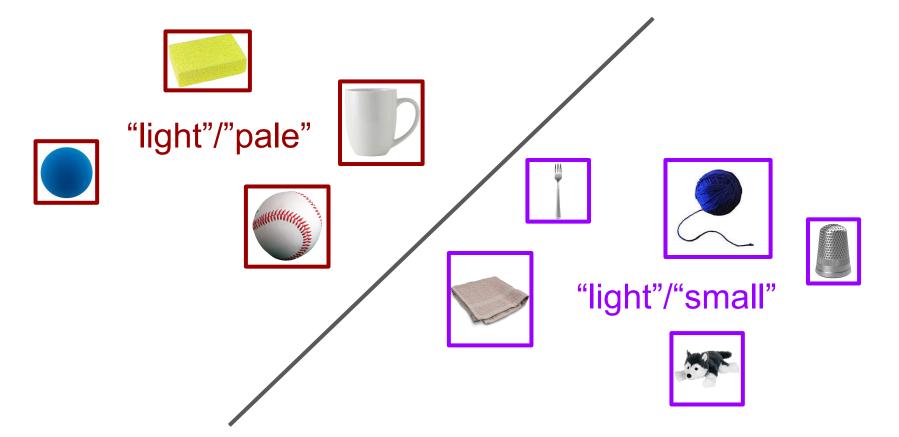
Next Directions

Dialog

Grounded Predicate Synset Induction

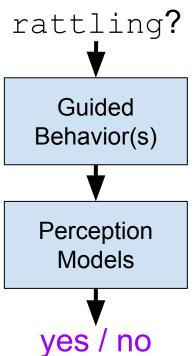


Grounded Predicate Synset Induction



Guided Exploration of New Objects

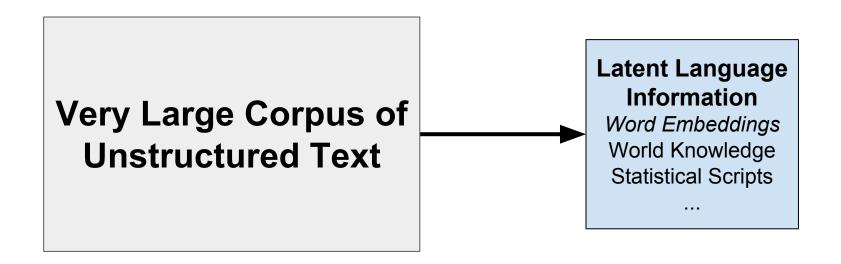
"Move a rattling container from the kitchen to bob's office."



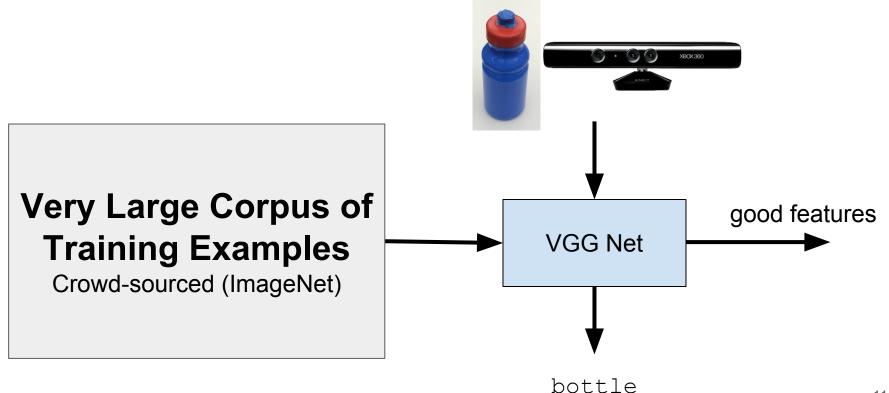
Moving Forward

- The intersection of problems in human-robot dialog is inherently low-resource.
- Other parts of NLP, Robotics, and Dialog are not.
- We can use big data and techniques from these fields when solving problems in human-robot dialog.

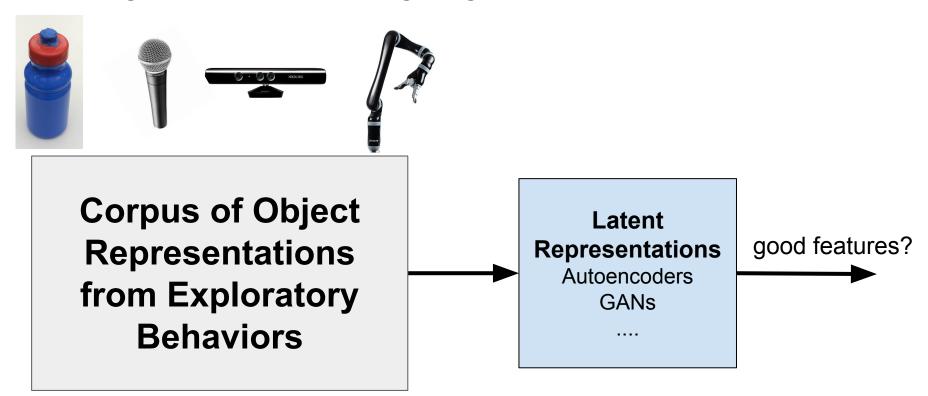
Moving Forward - Using Big Data Where We Can



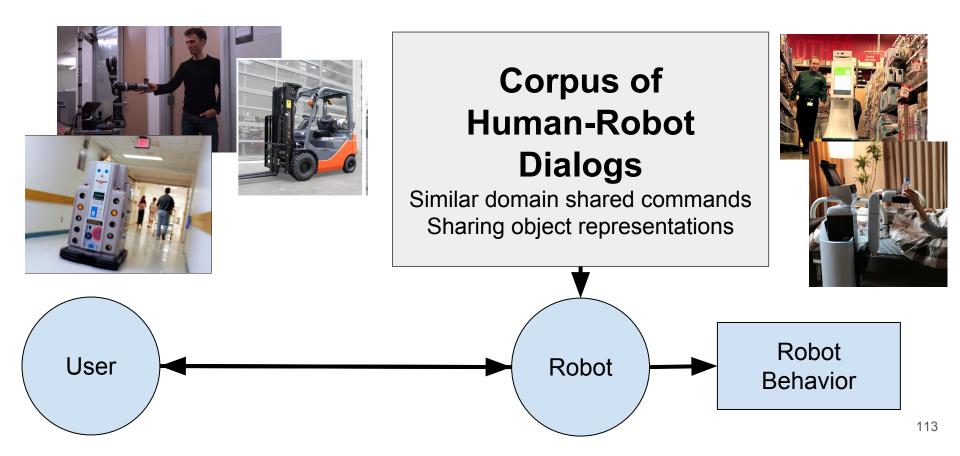
Moving Forward - Using Big Data Where We Can

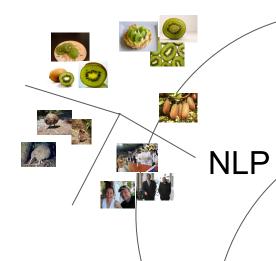


Moving Forward - Using Big Data Where We Can



Moving Forward - Transfer Learning





Polysemy
Induction and
Synonymy Detection
(IJCAl'17)

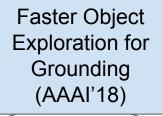
Robotics \

Human-Robot Dialog Papers before proposal

Improving
Semantic Parsing
through Dialog
(IJCAI'15)

Learning
Groundings with
Human Interaction
(IJCAI'16)

Dialog



Robotics

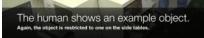
Papers since proposal

NLP

Jointly Improving
Parsing & Perception
(in submission)

Learning Groundings with Opportunistic Active Learning (CoRL'17)

Dialog



Acknowledgments

Ray Mooney

Peter Stone

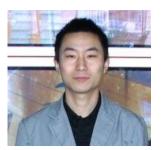
Scott Niekum

Stefanie Tellex

Acknowledgments

Jivko Sinapov

Harel Yedidsion



Shiqi Zhang

Justin Hart

Aishwarya Padmakumar

Subhashini Venugopalan

Piyush Khandelwal

Yuqian Jiang

Rodolfo Corona

Nick Walker

- Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog.
 Jesse Thomason, Aishwarya Padmakumar, Jivko Sinapov, Nick Walker, Harel Yedidsion, Justin Hart,
 Peter Stone, Raymond J. Mooney. (in submission)
- Guiding Exploratory Behaviors for Multi-Modal Grounding of Linguistic Descriptions.
 Jesse Thomason, Jivko Sinapov, Raymond J. Mooney, and Peter Stone. AAAI'18.
- Improving Black-box Speech Recognition using Semantic Parsing.
 Rodolfo Corona, Jesse Thomason, and Raymond J. Mooney. IJCNLP'17.
- Opportunistic Active Learning for Grounding Natural Language Descriptions.
 Jesse Thomason, Aishwarya Padmakumar, Jivko Sinapov, Justin Hart, Peter Stone, and Raymond J. Mooney. CoRL'17.
- Multi-Modal Word Synset Induction.
 Jesse Thomason and Raymond J. Mooney. IJCAI'17.
- Integrated Learning of Dialog Strategies and Semantic Parsing.
 Aishwarya Padmakumar, **Jesse Thomason**, Raymond J. Mooney. EACL'17.
- BWIBots: A platform for bridging the gap between AI and human--robot interaction research.
 Piyush Khandelwal, Shiqi Zhang, Jivko Sinapov, Matteo Leonetti, Jesse Thomason, Fangkai Yang, Ilaria Gori, Maxwell Svetlik, Priyanka Khante, Vladimir Lifschitz, J. K. Aggarwal, Raymond Mooney, and Peter Stone. IJRR'17.
- Learning Multi-Modal Grounded Linguistic Semantics by Playing "I Spy".
 Jesse Thomason, Jivko Sinapov, Maxwell Svetlik, Peter Stone, and Raymond J. Mooney. IJCAI'16.
- Learning to Interpret Natural Language Commands through Human-Robot Dialog. **Jesse Thomason**, Shiqi Zhang, Raymond J. Mooney, and Peter Stone. IJCAI'15.

Graded Adjectives

- Think of gradation as a form of polysemy
- Semantic parser can use surrounding context
- Re-ranking of parses, as discussed, can help disambiguate

words

"plate" plate0 heavy0|heavy1 "heavy" 0gnw "mug"

words

predicates

Comparative Adjectives

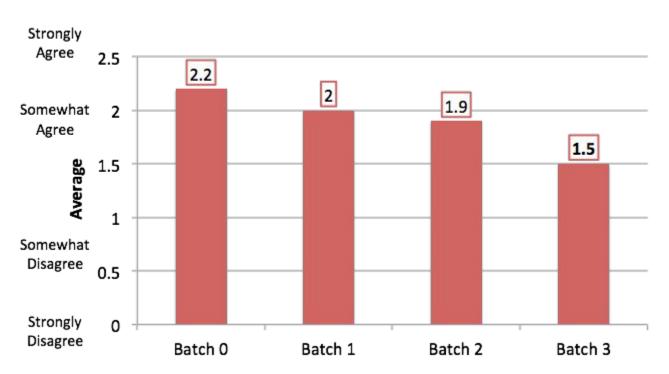
- E.g. "taller", "heavier"; take two arguments: obj1, obj2
- Train classifier on the feature differences between obj1,
 obj2
- Can otherwise be handled with existing architecture
- Superlatives: majority winner object in pairwise comparative

Mechanical Turk Qualitative Results

The robot understood me

Mechanical Turk Qualitative Results

The robot frustrated me



Multi-modal Representation

[Thomason et al., IJCAI'17; Deerwester et al., 1990; Simonyan and Zisserman, CoRR'14]

LSA embedding text features; VGG image features

Bat

"... most of the oldest known, definitely identified bat fossils were already very similar to modern microbats ... "

Bat

"... a baseball bat is divided into several regions ..."

Bat

"... about 70% of bat species are insectivores ... "

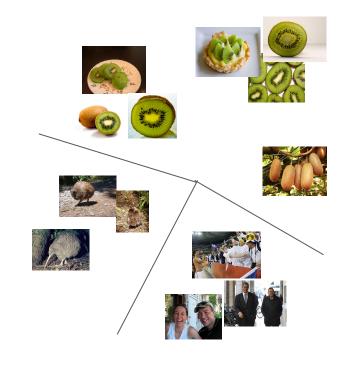
Bat

"... hickory has fallen into disfavor over its greater weight, which slows down bat speed ... "

Technical Contributions

Perform unsupervised,
 multi-modal sense induction
 and synonymy detection

 Create an ImageNet-like resource without manual annotation.

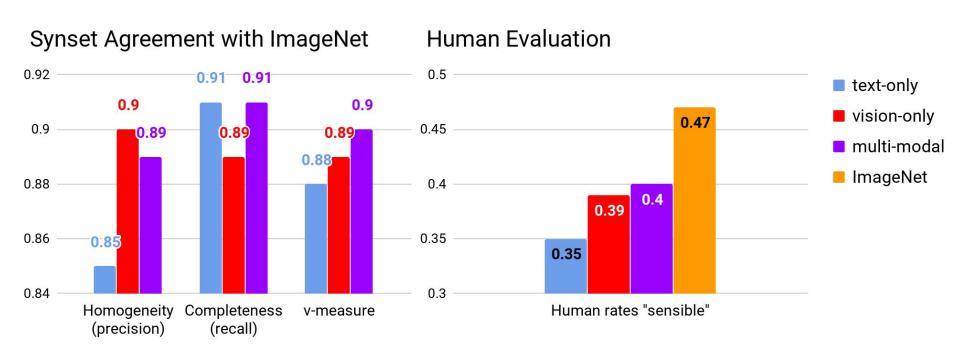


Results

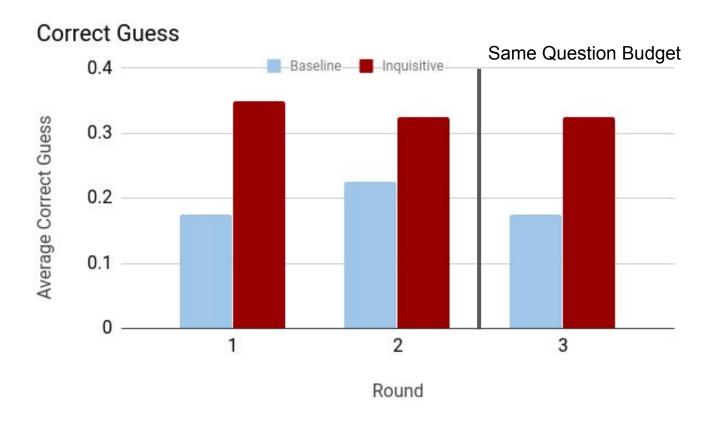
ImageNet

Multi-modal

Results

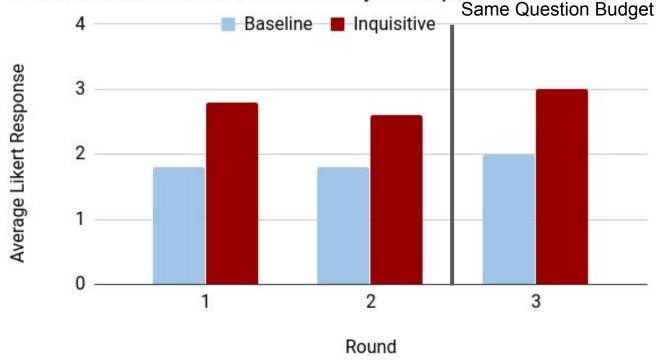


Results - Correct Object Selected



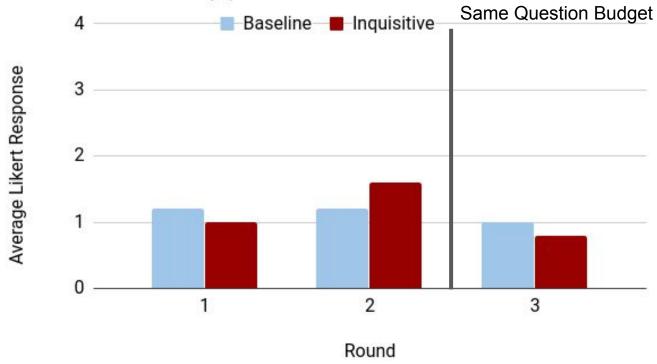
Results - Users Feeling Understood

The robot seemed to understand my descriptions.



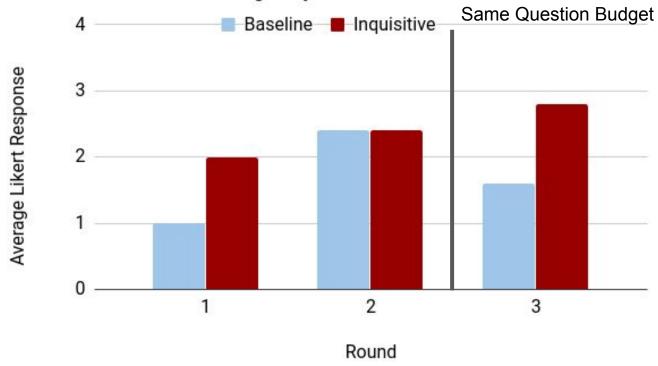
Results - Users Annoyed

The robot asked too many questions.



Results - Viable for Deployment

I would use a robot like this to get objects for me in another room.

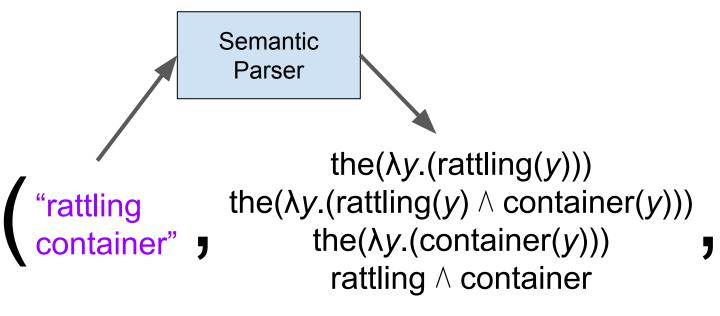


 Given utterance-denotation pair, find a semantic form that is plausible for both

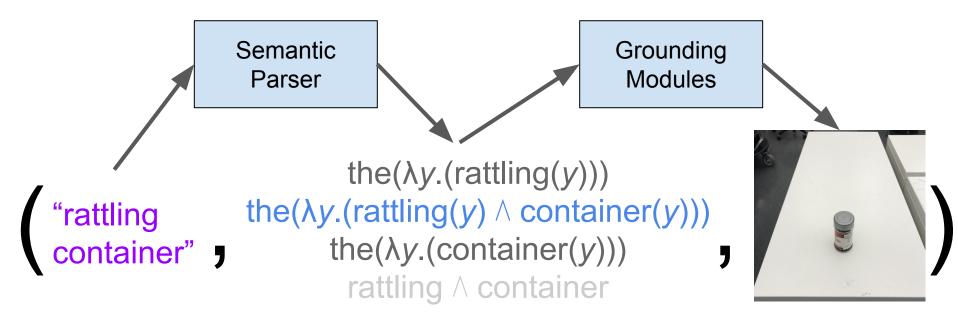
"rattling container"

- Use the parser to produce a beam of parses
- Use the grounder to find the denotations of those parses

"rattling container"



. . .



. . .

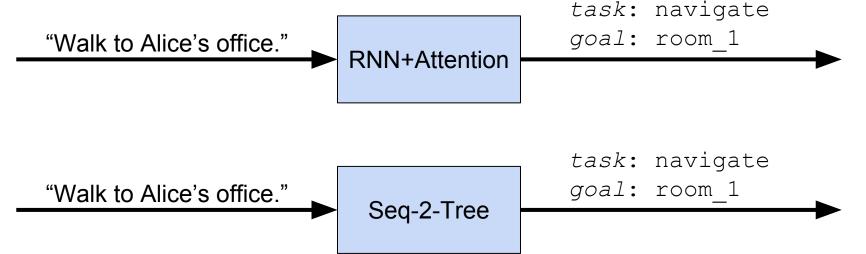
"rattling container" \mathbf{f} the($\lambda y.(rattling(y) \land container(y))) <math>\mathbf{f}$


```
"rattling container" \mathbf{J} the(\lambda y.(\text{rattling}(y) \land \text{container}(y)))
```

[ongoing]

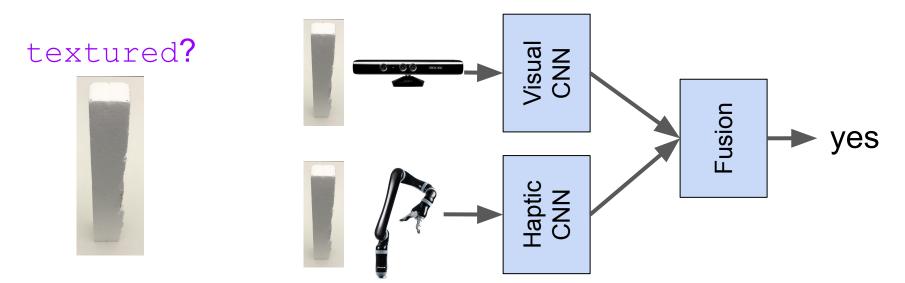
Neural Parsing Methods

- Recurrent Neural Networks (RNNs) with Attention
- Sequence-to-Tree encoder-decoder networks



Neural Perception Models

 Compress high-dimensional sensorimotor context information using Convolutional Neural Networks (CNNs)



Embodied Question Answering

End-to-end deep model for joint parsing and perception

