Evaluating the Robustness of Natural Language Reward Shaping Models to Spatial Relations

Antony Yun

Successes of Reinforcement Learning

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go https://bair.berkeley.edu/blog/2020/05/05/fabrics/ https://deepmind.com/blog/article/AlphaFold-Using-Al-for-scientific-discovery

My Work

- Construct a challenge dataset in the Meta-World reward shaping domain that contains spatially relational language
- Evaluate robustness of existing natural language reward shaping models

Outline

- Background on Deep Learning, Reinforcement Learning
- Natural language reward shaping
- Our Dataset
- Results

Background: Neural Networks

- Function approximators
- Trained with gradient descent

) = [0.12, 0.05, ...]

https://github.com/caoscott/SReC

Background: Neural Networks

https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

https://www.researchgate.net/figure/Illustration-of-LSTM-block-s-is-the-sigmoid-function-which-play-the-role-of-gates-during_fig2_322477802

Background: Reinforcement Learning

- Learn a policy by interacting with the environment
- Optimize cumulative discounted reward

https://deepmind.com/blog/article/producing-flexible-behaviours-simulated-environments http://web.stanford.edu/class/cs234/index.html

Background: Markov Decision Process (MDP)

$M = \langle S, A, T, R, \gamma \rangle$

- S = states
- A = actions
- T = transition function
- R = reward
- γ = discount factor

Background: Policy Based RL

- Parameterized policy $\pi_{\theta}(s, a) = P[a \mid s, \theta]$
- Want optimal policy that maximizes expected reward
- Learned by gradient descent on final reward
- We use Proximal Policy Optimization (PPO)

Challenges with RL

• Sample inefficient

https://www.alexirpan.com/2018/02/14/rl-hard.html

Challenges with RL

- Sample inefficient
- Good reward functions are hard to find
 - Sparse: easy to design

0	0	0	1
0	0	0	0
0	0	0	0
Ó	0	0	0

https://www.alexirpan.com/2018/02/14/rl-hard.html

Challenges with RL

- Sample inefficient
- Good reward functions are hard to find
 - Sparse: easy to design
 - Dense: easy to learn

Background: Reward Shaping

- Provide additional potential reward
- Does **not** change the optimal policy

$$R' = R + F$$

$$F(s, a, s') = \gamma \phi(s') - \phi(s)$$

Prior Work: LEARN

- Language-based shaping rewards for Montezuma's Revenge
- Non-experts can express intent
- 60% improvement over baseline

"Jump over the skull while going to the left"

Prior Work: LEARN

[Goyal et al, 2019]

Meta-World

- Object manipulation domain involving grasping, placing, and pushing
- Continuous action space, multimodal data, complex goal states

Figure 1. A simulated robot completing a task in the Meta-World domain

Dense Rewards in Meta-World

$$R = R_{\text{reach}} + R_{\text{grasp}} + R_{\text{place}}$$

$$= \underbrace{-\|h - o\|_{2}}_{R_{\text{reach}}} + \underbrace{\mathbb{I}_{\|h - o\|_{2} < \epsilon} \cdot c_{1} \cdot \min\{o_{z}, z_{\text{target}}\}}_{R_{\text{grasp}}} + \underbrace{\mathbb{I}_{|o_{z} - z_{\text{target}}| < \epsilon} \cdot c_{2} \cdot \exp\{\|o - g\|_{2}^{2}/c_{3}\}}_{R_{\text{place}}}$$

$$R = R_{\text{reach}} + R_{\text{push}}$$

$$= \underbrace{-\|h - o\|_{2}}_{R_{\text{reach}}} + \underbrace{\mathbb{I}_{\|h - o\|_{2} < \epsilon} \cdot c_{2} \cdot \exp\{\|o - g\|_{2}^{2}/c_{3}}\}}_{R_{\text{push}}}$$

[Yu et al, 2019]

Dense Rewards in Meta-World

Task	Reward
turn on faucet	$- \ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 \le 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
sweep	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
pick out of hole	$-\ h-o\ _{2} + \mathbb{I}_{\ h-o\ _{2} < 0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z}-z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _{2}^{2}/0.01\}$
turn off faucet	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 \le 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
push with stick	$-\ h-o\ _{2} + \mathbb{I}_{\ h-o\ _{2}<0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z}-z_{\text{target}} <0.05} \cdot 1000 \cdot \exp\{\ h-g\ _{2}^{2}/0.01\}$
get coffee	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
pull handle side	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
basketball	$-\ h - o\ _{2} + \mathbb{I}_{\ h - o\ _{2} < 0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z} - z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _{2}^{2}/0.01\}$
pull with stick	$-\ h-o\ _{2} + \mathbb{I}_{\ h-o\ _{2} < 0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z}-z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _{2}^{2}/0.01\}$
sweep into hole	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
disassemble nut	$-\ h-o\ _{2} + \mathbb{I}_{\ h-o\ _{2} < 0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z}-z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _{2}^{2}/0.01\}$
assemble nut	$-\ h-o\ _{2} + \mathbb{I}_{\ h-o\ _{2} < 0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z}-z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _{2}^{2}/0.01\}$
place onto shelf	$-\ h-o\ _{2} + \mathbb{I}_{\ h-o\ _{2} < 0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z}-z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _{2}^{2}/0.01\}$
push mug	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
press handle side	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
hammer	$-\ h - o\ _{2} + \mathbb{I}_{\ h - o\ _{2} < 0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z} - z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _{2}^{2}/0.01\}$
slide plate	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
slide plate side	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
press button wall	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
press handle	$-\ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
pull handle	$-\ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
soccer	$-\ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
retrieve plate side	$-\ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
retrieve plate	$-\ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
close drawer	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
reach	$1000 \cdot \exp\{\ h - g\ _2^2/0.01\}$

press button top wall	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
each with wall	$1000 \cdot \exp\{\ h - g\ _2^2/0.01\}$
nsert peg side	$-\ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 < 0.05} \cdot 100 \cdot \min\{o_z, z_{\text{target}}\} + \mathbb{I}_{ o_z - z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
oush	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
oush with wall	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
pick&place w/ wall	$-\ h - o\ _{2} + \mathbb{I}_{\ h - o\ _{2} < 0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z} - z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _{2}^{2}/0.01\}$
press button	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
press button top	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
bick&place	$-\ h - o\ _{2} + \mathbb{I}_{\ h - o\ _{2} < 0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z} - z_{\text{target}} < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _{2}^{2}/0.01\}$
oull	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
oull mug	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
inplug peg	$-\ h-o\ _{2} + \mathbb{I}_{\ h-o\ _{2}<0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z}-z_{\text{target}} <0.05} \cdot 1000 \cdot \exp\{\ h-g\ _{2}^{2}/0.01\}$
urn dial	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
oull lever	$-\ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
close window	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
open window	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
open door	$-\ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
close door	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
open drawer	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
nsert hand	$1000 \cdot \exp\{\ h - g\ _2^2/0.01\}$
close box	$-\ h-o\ _{2} + \mathbb{I}_{\ h-o\ _{2}<0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z}-z_{\text{target}} <0.05} \cdot 1000 \cdot \exp\{\ h-g\ _{2}^{2}/0.01\}$
ock door	$-\ h - o\ _2 + \mathbb{I}_{\ h - o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h - g\ _2^2 / 0.01\}$
unlock door	$-\ h-o\ _2 + \mathbb{I}_{\ h-o\ _2 < 0.05} \cdot 1000 \cdot \exp\{\ h-g\ _2^2/0.01\}$
pick bin	$-\ h-o\ _{2} + \mathbb{I}_{\ h-o\ _{2}<0.05} \cdot 100 \cdot \min\{o_{z}, z_{\text{target}}\} + \mathbb{I}_{ o_{z}-z_{\text{target}} <0.05} \cdot 1000 \cdot \exp\{\ h-g\ _{2}^{2}/0.01\}$

Table 3: A list of reward functions used for each of the Meta-World tasks.

Pix2R Dataset

- 13 Meta-World tasks, 9 objects
- 100 scenarios per task
- Videos generated using PPO on dense rewards
- 520 human-annotated descriptions from Amazon Mechanical Turk
- Use video trajectories + descriptions to approximate dense reward

[Goyal et al, 2020]

Pix2R Architecture

Pix2R Results

- Adding shaping reward speeds up policy learning sparse rewards
- Sparse + Shaping rewards perform comparably to Dense rewards

Extending Pix2R Dataset

- Each scenario has only one instance of each object
- Descriptions use simplistic language

- Goal: construct a dataset containing relational language
- Probe whether model is learning multimodal semantic relationships or just identification
- Motivate development of more robust models

Relational Data

- "Turn on the coffee machine on the left"
- "Press the coffee maker furthest from the button"

Video Generation

- Target object + duplicate object + distractors
- Train PPO with dense reward until success
- 6 tasks (button_top, button_side, coffee_button, handle_press_top, door_lock, door_unlock)
- 5 scenarios per task
- 30 total scenarios

Collecting Natural Language Descriptions

- Amazon Mechanical Turk
- 'Please ensure that the instruction you provide uniquely identifies the correct object, for example, by describing it with respect to other objects around it.'
- At least 3 descriptions per scenario (131 total)
- Manually create negative examples

Evaluation

- Can Pix2R encode relations between objects?
- Evaluate on test split of new data
- 6 scenarios, 3 descriptions, 5 runs each \rightarrow 90 runs

- Sparse: PPO with binary reward
- Dense: PPO with expert Meta-World reward

- Sparse: PPO with binary reward
- Dense: PPO with expert Meta-World reward
- Original: PPO shaped by Pix2R trained on original dataset

- Sparse: PPO with binary reward
- Dense: PPO with expert Meta-World reward
- Original: PPO shaped by Pix2R trained on original dataset
- Augmented: PPO shaped by Pix2R trained on combined dataset

- Sparse: PPO with binary reward
- Dense: PPO with expert Meta-World reward
- Original: PPO shaped by Pix2R trained on original dataset
- Augmented: PPO shaped by Pix2R trained on combined dataset
- Reduced: PPO shaped by Pix2R trained on original dataset, excluding relational descriptions

Results

- All agents perform comparably, except sparse
- Reduced even performs slightly better
- Scenarios could be too simple
- Inconclusive, further experimentation needed

Conclusion

- Pix2R is robust to our specific challenge dataset
- No immediately obvious shortcomings
- Room for further probing through challenge datasets

Future Work

- Improving our existing challenge dataset
 - Refine environment generation to create more challenging scenarios
 - Multi-stage AMT pipeline for higher quality annotations
- Other challenge datasets
 - Can construct targeted, "adversarial" examples for any ML task

Acknowledgements

Dr. Ray Mooney

Prasoon Goyal