A Hybrid Proactive Approach for Integrating
Off-line and On-line Real-Time Schedulers

Weirong Wang?!, Aloysius K. Mok!, and Gerhard Fohler?

! Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188
{weirongw, mok}@cs.utexas.edu
2 Department of Computer Engineering
Malardalen University, Sweden
gerhard.fohler@mdh.se

Abstract. The issue of integrating event-driven workload into existing
static schedules has been addressed by Fohler’s Slot Shifting method
[5] [6]- Slot Shifting takes a static schedule for a time-driven workload
as input, analyzes its slacks off-line, and makes use of the slacks to ac-
commodate an event-driven workload on-line. Slot Shifting is a reactive
method in the sense that it does not address how to produce a static
schedule so that it can be successfully integrated with the event-driven
workload. We shall show that the choice of the static schedule cannot
be considered independent of the event-driven workload. We propose a
proactive hybrid scheduler with both an off-line component and an on-
line component. Time-driven workload and event-driven workload are
modeled as periodic tasks and sporadic tasks respectively. The off-line
component produces a pre-schedule. The on-line component schedules
all periodic and sporadic jobs by using a variation of the EDF scheduler
with one additional constraint: the sequencing of the periodic jobs in
the static schedule must be as specified by the pre-schedule. The off-line
component is optimal in the sense that it produces a valid pre-schedule
for a given periodic task set and a given sporadic task set if and only if
one exists.

1 Introduction

An embedded computer system may be required to process periodic as well as
non-periodic tasks. For example, consider a node in a wireless sensor network.
The wireless node may collect information from its sensors and performs sig-
nal processing transformations on the data at fixed time intervals that may be
characterized by periodic tasks [8]. The node may also perform mode changes
and relay control signals for state machines among the nodes, and these tasks
may be characterized as sporadic tasks [9]. This paper addresses the problem of
scheduling a combination of periodic tasks and sporadic tasks by introducing a
concept called proactive scheduling. The novelty of this concept lies in a com-
bination of off-line and on-line scheduling techniques that can be shown to be
optimal and also preserve the ordering of jobs that may be important for the
off-lined scheduled periodic tasks. A hybrid proactive scheduler will be presented
for scheduling a mixed set of periodic and sporadic tasks.

The Cyclic Executive (CE) [1] is a well accepted scheduling technique for
periodic tasks. A CE schedule is produced off-line to cover the length of a hyper-
period, i.e., the least common multiple of the periods of all the tasks. The CE
schedule is represented as a list of executives, where each executive defines an
interval of time in a hyper-period to be allocated to a specific task. During on-
line execution, a CE scheduler partitions the time line into an infinite number of
consecutive hyper intervals, each the length of a hyper-period, and repeats the
CE schedule within each hyper interval. The significant advantages of CE include
the following: (1) the on-line overhead of CE is very low, O(1) and can usually be
bounded by a small constant. (2) a variety of timing constraints, such as mutual
exclusion and distance constraints can be solved by off-line computation [12],
which might otherwise be difficult to handle by typical on-line schedulers such
as the Earliest Deadline First (EDF) scheduler. However, the drawback of CE
is that it does not provide sufficient flexibility for handling the unpredictable
arrival times of sporadic tasks. Even though sporadic tasks can be modeled as
pseudo periodic tasks [9] and can therefore be scheduled by CE, this method
may reserve excessive capacity whenever the deadline of a sporadic task is short
compared with its mean time of arrival, as is typically the case of mode changes
in state machines.

The Earliest Deadline First scheduler (EDF) is known to be optimal for
scheduling periodic and sporadic tasks [8] [9]. EDF requires that at any moment
during on-line scheduling, among all arrived but unfinished jobs, the job with the
nearest deadline be selected for execution. However, the on-line complexity of
EDF is O(lgn), which is higher than that of CE (O(1)). Other than the potential
problem with over capacity as mentioned above, the EDF scheduler does not
provide strong predictability as the CE scheduler in terms of guaranteeing the
ordering of jobs; the ordering of jobs to be scheduled is unknown off-line in
general. This ordering may be important if programmers exploit this ordering
to minimize the use of data locks at run time, as is common practice in avionics
software systems.

Seeking for a balanced solution, Fohler has investigated the issue of integrat-
ing event-driven workload, modeled as aperiodic tasks into pre-computed static
schedules by the Slot Shifting [5] method. Isovic and Fohler further integrated
sporadic tasks into this approach [6]. In the Slot Shifting approach, the “slacks”
left within the static schedule are computed off-line and then applied on-line to
accommodate event-driven workload. While the Slot Shifting approach tests if
a given set of aperiodic or sporadic tasks can be scheduled within a given static
schedule, this method is reactive in the sense that it does not address how to
generate a static schedule for periodic tasks to fit with the aperiodic and sporadic
tasks.

In this paper we shall go further to propose a proactive hybrid scheduling
approach, as shown in Figure 1. There is an off-line component and an on-line
component in our approach. The off-line component is called Slack-Reserving
Pre-scheduler (SRP), and it produces a flexible pre-schedule with slacks embed-
ded in it. A pre-schedule consists of a list of job fragments, and it defines a
fixed order by which the fragments of periodic jobs are to be scheduled. A pre-
schedule is not a schedule, because it does not define the exact time intervals in
which each fragment is scheduled. Instead, a fragment in a pre-schedule may be
preempted and/or delayed on-line to accommodate the unpredictable arrivals of
sporadic tasks. The on-line component schedules the pre-schedule together with
the jobs of the sporadic tasks by a Constrained Earliest Deadline First (CEDF)

scheduler.
Arrival
. Function

1
1
1
1
1
1
1
1
1
1
7 CEDF
1
1
1
1
1
1
1
1
I

Off-line

On-line

Fig. 1. Framework of the Proactive Hybrid Scheduler

The first important contribution of this paper is an optimal pre-scheduler
SRP. The reactive Slot Shifting approach considers as input a given static sched-
ule for a periodic task set and a sporadic task set; if the off-line component finds

that the static schedule is “bad” because it cannot be successfully integrated
together with the sporadic tasks on-line, the reactive method leaves as an unan-
swered question whether there exists a “good” static schedule for the periodic
task set that may be integrated with the sporadic/aperiodic workload. In con-
trast, SRP will produce a “good” pre-schedule for the given set of periodic tasks
and sporadic tasks if and only if one exists.

The second contribution of this paper is the demonstration of the non-
existence of universally “good” pre-schedule in general: Given a fixed set of
periodic tasks, there might exist a set @ of sporadic task sets, and there exists
a “good” pre-schedule with each specific sporadic task set in @, but there might
not exist a single common pre-schedule “good” with all sporadic task sets in
&. This fact implies that an optimal pre-scheduler needs the information of the
sporadic task set as input.

The remainder of the paper is organized as follows. Section 2 defines the
task models and the definition of schedule. Section 3 defines pre-schedule, the
on-line component, and the validity of a pre-schedule. Section 4 describes and
analyzes the off-line component SRP. Section 5 shows the non-existence of uni-
versally valid pre-schedule in general. Section 6 addresses related work. Section
7 summarizes this paper and points out future work.

2 Task Model

We shall adopt the usual model of real-time tasks and assume that a task can be
modeled either as a periodic task or as a sporadic task with preperiod deadlines.
All workloads are modeled as being made up of a periodic task set Tp and a
sporadic task set Tg. Each task T in either Tp or Tg is an infinite sequence of
jobs. A job is defined by a triple: ready time, deadline and execution time and
is written as (r, d, ¢); the job must receive a total execution time of ¢ between
time=r and time=d at run-time. A periodic task is defined by a 4-tuple: initial
offset, period, relative deadline, and execution time and is written as (o, p, [, ¢).
The first job of a periodic task is ready at time=o, and the subsequent jobs are
ready at the beginning of each period exactly p time units apart. We shall adopt
as a convention in this paper the notation X.a which denotes the attribute a
of entity X. For example, the jt* job of a periodic task T may be written as
To+j-Tp, To+j-Tp+T.I, T.c), starting with job 0. Similarly, a sporadic
task is defined by a tuple: (p, !, c), with its attributes defined the same way as a
periodic task, except that the period of a sporadic task is the minimal length of
the time interval between two consecutive jobs, and the actual ready time of any
job of a sporadic task cannot be known until it arrives at run-time. We use an
arrival function A to represent the arrival times of sporadic jobs in a particular
run. A valid arrival function must satisfy the minimal arrival interval constraint:
for any two consecutive jobs J; and J; 1 of a sporadic task 7', it must be the
case that A(J;41) — A(J;) > T.p. A job J of sporadic task T will be written as
(A(), A(J)+ T, T.c).

Let the hyper-period P be the least common multiple of the periods of all
periodic tasks in Tp and all sporadic tasks in Tg. For any nature number n,
the time interval (n- P, (n+ 1) - P) is a called hyper interval. Our scheduler will
generate a pre-schedule for the length of one hyper-period and repeat the same
sequence of jobs of the periodic tasks every hyper interval at run-time, i.e., the
on-line component of our scheduler restarts the pre-schedule at the beginning of
every hyper interval. For ease of discussion, let Jp represent the list of the jobs
of the periodic tasks within one hyper interval. Every job in Jp occurs exactly
once in every hyper interval, and will be called a periodic job in the remainder
of this paper. Notice that in this terminology, there are as many jobs from the
same periodic task in a hyper-period as the number of periods of the task in a
hyper-period. Individual Jobs from the same periodic task within a hyper-period
may be considered as periodic with respect to the length of the hyper-period.

For each periodic task 7" in Tp, for any natural number j less than TL;,
there is a periodic job in Jp which is defined by (r, d, ¢) = (T.o+ j - T.p,
To+j-Tp+T.I, Tc). Job J is before job J' and job J' is after job J if and
only if either (1) J.or < J'.r and J.d < J'.d; or (2) Jr < J.r and J.d < J'.d. Job
J contains job J' or job J' is contained by job J if and only if Jr < J'.r and
J'.d < J.d. Job J is parallel with job J' if and only if J.r = J'.r and J.d = J'.d.
For scheduling purposes, parallel periodic jobs can be transformed into a single
periodic job with their aggregate execution time. Therefore, we shall not consider
parallel jobs in the remainder of the paper. We assume that Jp is sorted such
that a job with lower index is either before or contained by a job with higher
index.

Ezxample 1. The task sets Tp and Tgs defined below are used in later examples
in this paper.

Tp = {(90, 225,30, 5), (0,75, 75, 15), (0, 225,225, 135)}; Ts = {(225,25,25)}

The hyper-period of the task sets P is 225. The set of periodic jobs Jp is
defined as follows.

Jp = [(0,75,15), (90, 120, 5), (75, 150, 15), (0, 225, 150), (150, 225, 15)]

Fig. 2 illustrates the periodic tasks and the periodic jobs. The vertical bars
indicate the ready times and deadlines of periodic jobs, and the length of the
box inside the scope of a periodic job indicates its execution time. B

We shall assume that all tasks are preemptable and are scheduled on a single
processor. A schedule is represented by a function S which maps each job to a
set of time intervals. For instance, S(J) = {(bo,€o), (b1,€1)} means that job J
is scheduled to two time intervals (bg,eq) and (b1,e1). A schedule must satisfy
the following two constraints. Firstly, there is at most one job to be scheduled
at any point in time, i.e., at any time ¢, there exists at most one job J, by
which (b,e) € S(J) and b < t < e. Secondly, the accumulated time allocated to

90 120
J() 1, Iy
O = = S
0 75 150 225
J3
. |
0 225
\ \
\

Fig. 2. Definition of Tp and Jp

each job between its ready time and deadline must be no less than its specified
execution time, i.e., for a job J with execution time ¢, 3, . c 55 (min(J.d, e) —
maz(J.r,b)) > J.c.

3 Definitions of Pre-Schedule and the On-line Component

A pre-schedule F is a list of fragments. A fragment F' is defined by a 5-tuple,
(4, k,r,d,c) with the following meaning: Suppose J be the j** periodic job in job
list Jp. F is the k" (starting from 0) fragment in the pre-schedule of job J, and
job J is scheduled for at least a total execution time of ¢ between times=r and
time=d in every hyper interval.

The CEDF scheduler is the EDF scheduler plus one additional constraint:
the sequence of the periodic jobs must follow the pre-schedule exactly. It may
be implemented as follows. At the beginning of each hyper interval, set the first
fragment in the pre-schedule be marked as “current”. Define R as the set of
sporadic jobs waiting to be scheduled. The set R is initialized at time 0 as an
empty set. When a sporadic job becomes ready, it is added into R; when it
is completely scheduled, it is removed from R. At any time, if the deadline of
the current fragment is earlier than the deadline of any job in R, the current
fragment is scheduled; otherwise, the sporadic job with the earliest deadline in
R is scheduled. When the execution time of the current fragment is completely
allocated, set the next fragment in the pre-schedule as “current”, and so on.

Ezample 2. Pre-schedule F is a pre-schedule for Jp and Tgs defined in Exam-
ple 1.
F =[(0,0,0,75,15), (3,0,0,120,60), (2,0, 75,120, 15),
(1,0,90,120,5), (3,1, 90, 225,90), (4,0, 150, 225, 15)]

Suppose that the first job of a sporadic task 73, written as Jg arrives at dif-
ferent times in two different runs of the system, denoted by the arrival functions

A and A', such that A(Js) = 0 and A’(Js) = 30. The on-line scheduler will
produce two different schedules S and S’, as illustrated in Fig. 3. Each box in
the schedule represents an interval of time scheduled to a job. The fragments
corresponding to periodic jobs being scheduled are on the top of the boxes in
the figure. Notice that the start times and the finish times of periodic jobs may
vary to accommodate the arrivals of sporadic jobs, but the order defined by the
pre-schedule is always followed. H

FO Fl F2 F3 F4 FS

A] I U
0 25 40 100 115 120 210 225

FO F1 F1 F2 F3 F4 F5
AR N IS
0 15 30 55 100 115 120 210 225

Fig. 3. Schedules Accommodating Different Arrival Functions

A pre-schedule is valid if and only if the following three conditions are sat-
isfied. Firstly, under any valid arrival function A of Tgs, the on-line component
always produces a valid schedule for Tg and Jp. Secondly, for any fragment F,
suppose J is its corresponding periodic job. Then the ready time and the deadline
of F' will be within the effective scheduling scope of J, i.e., Jor < For < F.d < J.d.
Third, for any fragment F', the execution time F.c is greater than or equal to 0.

4 The Off-line Component

The off-line component SRP tries to produce a pre-schedule in three steps. The
first step establishes FU%) 3 list of partially defined fragments, in which only the
attributes j and k of each fragment are defined. Essentially, the first step defines
a total order of fragments in the pre-schedule. The following two steps will not
change the ordering of the fragments. They only define the other attributes for
each fragment. The second step defines the ready time r and deadline d of each
fragment and produces FU:¥*4) The third step defines the execution time ¢ of
each fragment to produce FU¥r:d:¢) the completed pre-schedule which is also
represented as F. We shall describe the algorithms in detail step by step and
show that SRP is optimal in the sense that it produces a valid pre-schedule if
and only if one exists.

4.1 Step 1: Generating FU-X)

In this step, a partially defined pre-schedule FU-¥) is created according to the
following constraint-based definition.

A periodic job in Jp is a top periodic job if and only if it does not contain
any other periodic job in Jp. Constraint 1 and 2 are about the fragments of top
periodic jobs.

Constraint 1 Each top periodic job has one and only one fragment.

Constraint 2 Let J and J' be any pair of top periodic jobs, and F' and F'
be their corresponding fragments. Fragment F' is before fragment F’ if and only
if periodic job J is before periodic job J'.

Constraint 3 and Constraint 4 are about the fragments of non-top periodic
jobs. In the definition of these constraints, we assume that Jr and J} are two
consecutive top periodic jobs in Jp; i.e., Jr is before J; and there exists no
periodic job J7 after Jr and before J. We also assume that the fragments
corresponding to Jr and Jr are Fr and Fr.

Constraint 3 If a periodic job J contains either Jr or Ji., then there is one
and only one fragment F' of J between Fp and F'r; Otherwise, there exists no
fragment of J between Fr and F'r.

Constraint 4 Assume that both fragment F' of periodic job J and fragment
F' of periodic job J' are between and excluding Fr and FJ. Fragment F is
before fragment F” if and only if either J is before J', or J contains J' and F' is
not the last fragment of J.

Ezample 8. Assume that Jp is defined in Example 1. Jobs Jy, J1, and Jy are top
jobs, while job J» and Js are not. Partially defined pre-schedule FUX) is shown
below.

FUR =1(0,0),(3,0),(2,0),(1,0), (2,1),(3,1), (4,0)]

4.2 Step 2: Generating FU-ord)

This step augments FUX) to FOEd): in other words, it defines the ready time
r and deadline d for every fragment. The ready times of fragments are defined as
the earliest times satisfying the following constraints: (1) the ready time of each
fragment is not earlier than the ready time of its corresponding job; (2) the ready
times of fragments are non-decreasing. Similarly, the deadlines of fragments are
defined as the latest times satisfying the following constraints: (1) the deadline
of each fragment is not later than the deadline of its corresponding job; (2) the
deadlines of fragments are non-decreasing.

Ezxample 4. Assume that Jp is defined in Example 1 and F¥¥ is defined in
Example 3. Partially defined pre-schedule F3-%7d is defined as shown below.
FUkmd) = 1(0,0,0,75), (3,0,0,120), (2,0,75,120), (1,0, 90, 120),
(2,1,90,150), (3, 1,90, 225), (4,0, 150, 225)]

4.3 Step 3: Generating FU-krdc)

This step augments FU-kr.d) to plkr.de) by assigning the execution time c for
every fragment. At the beginning of this step, we augment F@:kr.d) to Fkor.d.x)
representing the execution time of each fragment as a variable; then we solve the
variables with a Linear Programming (LP) solver under three sets of constraints:
non-negative constraints, sufficiency constraints and slack-reserving constraints,
which are defined as follows.

Non-negative constraints require that the execution times to be non-negative;
i.e., for every fragment F', F.z > 0.

Notice that a fragment may have zero execution time. A fragment with zero
execution time is called a zero fragment; otherwise it is a non-zero fragment. Zero
fragments are trivial in the sense that we can either delete or add them from or
to a pre-schedule, and the schedule produced according to the pre-schedule will
not be modified at all.

Sufficiency constraints require that for every periodic job J in Jp, the ag-
gregate execution time of its fragments in the pre-schedule shall be equal to the
execution time of J; i.e., > F.z = J.c, where F' is any fragment of J.

A slack-reserving constraint requires that the aggregate execution time of
fragments and all sporadic jobs that must be completely scheduled within a
time interval shall be less than or equal to the length of the time interval. An
execution may start at time 0 but last infinitely, therefore the number of time
intervals is infinite. In order to make the pre-scheduling problem solvable, we
need to establish a finite number of critical slack-reserving constraints, such
that if all critical slack-reserving constraints are satisfied by a pre-schedule, all
slack-reserving constraints are satisfied. For this purpose, we define critical time
intervals.

A time interval (b, €) is critical if and only if all of the following conditions are
true. First, there exists a periodic job J in Jp and J.r = b. Second, the length
of the time interval is shorter than or equal to the hyper-period; i.e., e — b < P.
Third, at least one of the following cases is true: there exists a periodic job J in
Jp and either J.d = e or J.d + P = e; or there exists a sporadic task 7" in Ts,
such that e — b =T.p-n + T.d, where n is a natural number.

In order to define slack-reserving constraints on critical intervals, we intro-
duce two functions, E(b, e) and Slack(l). Function E(b,e) represents the aggre-
gate execution time of all fragments that must be completely scheduled between
critical time interval (b, e), and function Slack(l) represents the maximal aggre-
gate execution time of sporadic jobs that must be completely scheduled within a
time interval of length . The slack-reserving constraint on a critical time interval
(b,e) is E(b,e) < e—b— Slack(e — b).

Function E(b, e) is computed with the following two cases. For the first case,
time interval (b,e) is within one hyper interval (0, P); i.e. e < P. Let F} be
the first fragment with a ready time greater than or equal to b, F, be the last
fragment with a deadline less than or equal to e, then E(b,e) = > F.z, where
F is between and including Fj and F,. For the second case, time interval (b, e)
straddles hyper interval (0, P) and hyper interval (P,2P), i.e., e > P. Then

let Fy be the first fragment with a ready time equal or after to b, and let F,
be the last fragment with a deadline earlier than or equal to e — P, function
E(b,e) = > F.z, where F' is any fragment including and after F} or before and
including F..

Function Slack(l) is computed as follows. Let function n(T',[) be the maximal
number of jobs of T' that must be completely scheduled within [. If [— LTLPJ Tp <
T.d, n(T,l) = LTL.pJ; otherwise, n(T,1) = Lﬁj + 1. Function Slack(l) is equal
to > rer Toc-n(T,1).

Function E(b,e) is a linear function of a set of variables, and Slack(e — b) is
a constant; therefore, the slack-reserving constraint is a linear constraint.

Non-negative constraints, sufficiency constraints and slack-reserving constraints
on critical intervals are all linear and their total number is finite; therefore, the
execution time assignment problem is a LP problem, which can be solved op-
timally in the sense that if there exists an assignment to the execution times
under these constraints, the assignment will be found in finite time. Optimal LP
solvers are widely available. If an optimal LP solver returns an assignment to
execution times, SRP produces a fully defined pre-schedule with the execution
times; otherwise, SRP returns failure.

Ezample 5. Assume that Jp and Tgs are defined in Example 1, and FU-Xnd) jg
defined in Example 4.

All non-negative constraints are listed as follows.
Foox>0; Fi.x>0; Fhax>0 F.x>0; F,.z>0; Fs.2>0
All sufficiency constraints are listed as follows.
Fo.x =15; F3.x=5; Fex+ Fyp.x =15, Fi.x+ Fs.x =150; Fg.x =15

The slack-reserving constraints on many critical time intervals will be trivially
satisfied. For instance, time interval (0, 75) is a critical time interval, however,
E(0,25) = Fy.x = 15, Slack(75—0) = 25, therefore the slack-reserving constraint
on this time interval is always satisfied. We list all non-trivial slack-reserving
constraints below.

Frez+Fx<T75 critical interval (0, 120)
Fyxz+ F5.x <90 critical interval (90, 225)

The pre-schedule F in Example 2 satisfies all constraints above, so it is a valid
pre-schedule. B

4.4 Optimality and Computational Complexity

We prove the optimality and complexity of SRP in Theorem 1 and 2.

Lemma 1. Slack-reserving constraints on all time intervals are satisfied by a
pre-schedule produced by SRP.

Assume the opposite: slack-reserving constraint is violated on time interval (b, €),
which means E(b, €) + Slack(e—b) > e—b. Prove by two cases. Case 1: e—b < P.
Let time b’ be the earliest time satisfying both condition: it is between (b, e);
and there exists a fragment F', and b’ = F.r +n- P, where n is a natural number;
if such a time does not exist, let ' = 0. Let [= e — b. Let ¢’ be the latest
time between (b',b’' +) such that (b',¢') is a critical interval. Then E(b',¢e') =
EY,b +1) > E(b,e) and Slack(e' —b') = Slack(e —b), and e’ —b' <[, therefore
E,e')+Slack(t',e') > ¢ —b', which means the slack-reserving constraint must
be violated on critical interval (¥',e'). Contradiction.

Case 2: e—b > P. There exists a latest e’ between (b, €), such that €' is either
a deadline of a fragment F, i.e., e’ = F.d+n- P; or there exists a sporadic task T,
and e’ = b+T.p-n+T.d. Then E(b,e') = E(b,e) and Slack(e' —b) = Slack(e—b),
so E(b,e')+ Slack(e' —b) > €' —b. Because E(e' — P, e') + Slack(P) < P must be
true, E(b,e' — P) + Slack(e’ —b— P) > ¢’ — b— P, which means slack-reserving
constraint is also violated on interval (b, e’ — P). We may repeat this argument to
show that the slack-reserving constraint is violated on an interval withe—b < P,
where Case 1 applies. B

Lemma 2. If SRP produces a pre-schedule ¥, then F is valid.

To prove F is valid, we need to prove that it satisfies the three conditions as
defined in Section 3. First, the ready time and deadline of each fragment in F
are always assigned within the effective range of its corresponding job by Step
2 of SRP. Second, the non-negative constraints in Step 3 of SRP guarantee the
execution time of each fragment are non-negative. Third, we prove that the on-
line component always produces a valid schedule according to F by contradiction.
Assume the opposite, then there are two possibilities: Case 1, CEDF fails to
meet a deadline of a fragment or a sporadic job. Case 2, CEDF meets every
deadline, but it does not schedule sufficient execution times for a periodic job in
its effective range. Suppose Case 1 is true, then CEDF fails at a time e. Let time
b be the latest ideal time before time e; if such an ideal time does not exist, let b
equal to time 0. Then slack-reserving constraint on time interval (b, e) must be
violated, which contradicts to Lemma 1. Suppose Case 2 is true, then at least
one sufficiency constraint in Step 3 of SRP is violated. Contradiction. B

Lemma 3. If a valid pre-schedule exists, SRP produces one pre-schedule.

Proof: The strategy of our proof is as follows. Assume F’ is a valid pre-schedule.
First we transform F’ into another valid pre-schedule F1, which can be obtained
by augmenting attributes r, d, and ¢ to each fragment of FU:¥) the partially
defined pre-schedule generated by Step 1 of SRP. Then we further transform
F! to F2, which can be obtained by augmenting attribute c to each fragment
of Flkrd) generated by Step 2 of SRP. Because F? is a valid pre-schedule,
there exists a pre-schedule satisfying all constraints in Step 3 of SRP, therefore

SRP must produce a pre-schedule. We define the transformations and show the
correctness of the claims below.

Transformation 1: from F' to F!

Apply the following rules to pre-schedule one at a time, until no rule can be
further applied.

Rule 1: If Fy and F, are two consecutive fragments of the same job J, merge
them into one fragment F' of job J, with F.c = Fy.c + Fe.c, F.r = Fp.r and
F.d=F,d.

To facilitate other rules, we first define a primitive Swap(Jy, Jr, Fy, Fe),
which swap all non-zero fragments (fragments with non-zero execution times) of
job Jy before all non-zero fragments of job J, between and including fragments
Fy and Fe. It is implemented as follows. Let Cy be the aggregate execution time
of all fragments of job J; between and including F, and F.. Let C[, ,) be the
aggregate execution time of all fragments of job Jf or J, including and after F,
but before Fy. Let F}, be the latest fragment of either job Jy or job J,, such
that C[p) is less than or equal to C'y. For every fragment F' of job J;. including
and after Fj but before Fi,, change it to a fragment of job J¢, without changing
its ready time, deadline, or execution time. Similarly, for every fragment F' of
job J; after Fy, but before and including F,, change it to a fragment of job
Jr. If Cpy,m)y = Cf, make Fy, a fragment of J,.. Otherwise, split Fy;, into two
consecutive fragments Fi,; of job J; and Fi,, of job J,, such that the ready
times and deadlines of Fi,,; and Fy,,, are the same as those of Fi,, but Fi,5.c =
Cf - C[b,m) and FmT.C = Fm — I'my-C.

Rule 2: Assume that job J; is before job J.. Let F be the first non-zero
fragment of J;, and F, be the last non-zero fragment of J;. If F; is before F, in
pre-schedule, apply Swap.

Rule 3: Assume that job J, contains job J¢. Let Fj and Fe be the first and the
last non-zero fragments of Jy. If there exists a non-zero fragment of J, between
F, and F,, apply Swap.

Rule 4: Let Fr and Fr. be non-zero fragments of two consecutive top jobs
Jr and Fr, Fr is before Fr. and there is no other non-zero fragment of top
job between them. Assume that non-zero fragment Fj of J,. is before non-zero
fragment F, of J¢, and both of them are between Fr and Fp. If either Jy
contains J, and both J; and J, contain Jr, or J, contains J; and only J,
contains job J7., apply Swap.

Claim 0: Transformation 1 terminates.

Cyclic swaps will not occur according to the definition of Transformation 1,
therefore it must finally terminate.

Claim 1: Pre-schedule F! is a valid pre-schedule.

None of the transformation rules will change the aggregate execution time of
either any periodic job or any critical time interval. Also, none of transformation
rules changes the ready time or deadline of a fragment beyond the valid scope
of its corresponding job, or results in negative execution times.

Claim 2: Pre-schedule F! can be obtained by augmenting FU-¥)

By the transformation rules, if F! does not satisfy the constraints listed in
Step 1 of SRP, Transformation 1 won’t terminate. Notice that if there is no
fragment F of J between any consecutive pair of fragments of top jobs in F1,
we can always plug in such a fragment F' of job J with 0 execution time at
proper position. Therefore, there is a one-to-one in-order mapping between F1!
and FUX) | which implies the claim.

Transformation 2: from F! to F?

Re-assign attribute r and d of every fragment according to the algorithm in
Step 2 of SRP.

Claim 3: F?Z is a valid pre-schedule.

For every fragment, its ready time and deadline are still within the valid
range of its corresponding periodic job, and the execution time of each fragment
remains unchanged. If CEDF produces a schedule according to F2, then every
job, either sporadic or periodic, is sufficiently scheduled between its ready time
and deadline. Therefore, if F2 is not valid, there must exist an arrival function
A, such that CEDF fails with it at a time e, which is either the deadline of a
sporadic job or a periodic job. Let b be the latest ideal time before e or time 0 if
such an ideal time does not exist. Let F? be the first fragment in F? with a ready
time at or after time b and Fe2 be the last fragment in F5 with a deadline before
or at time e. Fragment F? must be the first fragment of its corresponding job Jj
and F2.r = Jy.r. Let F}} be the corresponding fragment in F*, then FZ.r < Fl.r.
Similarly, F!.d < F2.d. Then all fragments between and including F} and F!
must be scheduled between time b and e when CEDF schedules according to
Fl. With the same arrival function 4, CEDF must also fail with F!, which
contradicts with Claim 1.

Claim 4: F? can be obtained by augmenting F0:

Follows Claim 2 and the fact that the attributes r and d of fragments in F?2
are defined by the algorithm in Step 2 of SRP.

Claim 5: A valid pre-schedule satisfies all non-negative, sufficient and slack-
reserving constraints.

If a sufficiency constraint is not satisfied, CEDF will not schedule sufficient
execution time for a job; If slack-reserving constraint on a critical time interval
is not satisfied, CEDF fails with certain valid arrival function. In both cases,
CEDF does not produce a valid schedule, which contradicts with the definition
of a valid pre-schedule. Non-negative constraint directly follows the definition of
valid pre-schedule.

Claim 6: SRP must produce a pre-schedule.

Because of Claim 3 and 5, F? satisfies all non-negative, sufficient execution
time and slack-reserving constraints. Together with Claim 4, F? indicates the
existence of an execution time augment to FU*rd) that satisfies all those con-
straints. Therefore Step 3 of SRP must return a pre-schedule. m

k,r,d)

Theorem 1. SRP is optimal in the following sense: given Jp and Ts, if a valid
pre-schedule exists, SRP produces a valid pre-schedule; otherwise, SRP returns
failure.

This theorem immediately follows Lemma 2 and Lemma 3. ®

Theorem 2. The computational complexity of SRP is O(C(n3,nyp - (np + ns)),
where nyp and n, are the number of periodic jobs and the mazimal number of
sporadic jobs in one hyper-period respectively, and C(n,m) represents the com-
plexity of LP solver with n variables and m constraints.

Proof: The complexity of LP solver is the major factor. The maximal number
of fragments is bounded by nf,. The number of non-negative constraints and the
number of execution time constraints are bounded by n,, and the number of
slack-reserving constraints on critical intervals is bounded by ny,, - (n, + ng). B

5 The Non-Existence of Universally Valid Pre-schedule

The slack embedded in a pre-schedule by SRP specifically targets one given set
of sporadic tasks. Is it possible to produce a one-size-fits-all pre-schedule? To
formalize the discussion, we define the concept of universally valid pre-schedule.
For a given periodic task set Tp, a pre-schedule Fy is universally valid if and
only if the following condition is true for any sporadic task set Tg: Fy is a valid
pre-schedule for Tp and Tg if and only if there exists a valid pre-schedule for
Tp and Ts. If a universally valid pre-schedule exists for every periodic task set,
then a more dynamic optimal hybrid scheduling scheme could be constructed. A
universally valid pre-schedule might be produced off-line without requiring the
knowledge of the sporadic task set, and the sporadic task set might be allowed
to change on-line, and an admission control mechanism could be implemented
with the schedulability test defined in [6]. The optimality criterion for scheduling
here means that if a specific sporadic task set is rejected on-line, then no valid
pre-schedule exists for this sporadic task set. However, by Example 6, we can
show that the one-size-fits-all pre-schedules are impossible: universally valid pre-
schedule does not exist in general, so the more dynamic scheme we surmise above
cannot be done.

Ezxample 6. Suppose one periodic task set and two alternative sporadic task sets
are defined as follows:

Tp = {(56’ 100, 19, 9)7 (Oa 100, 100, 71)}a Ts = {(507 10, 10)}7 Tls = {(20’ 4, 4)}

With both sets of sporadic tasks, hyper-period P = 100, and the periodic job
list is defined as follows.

I, = [(56,75,9), (0,100, 71)]

There exists a valid pre-schedule F for Tp and Ts, and a valid pre-schedule F’
for Tp and Tg, defined as follows.

F = [(1,0,0,75,46), (0,0,56,75,9), (1, 1,56, 100, 25)]
F' = [(1,0,0,75,48), (0,0,56,75,9), (1,1, 56, 100, 23)]

Suppose there is a universally valid pre-schedule Fy. Let X} be the total exe-
cution time of all fragments of J; before the last fragment of Jy in Fy; let X,
be the aggregate execution time of all fragments of J; after the first fragment of
Jo in Fy. A universally valid pre-schedule Fy must satisfy the following set of
constraints:

Xp+X,>71 sufficiency constraint for J;
Xp <46 slack-reseving constraint on (0, 75) for Ts
X, <23 slack-reseving constraint on (56, 100) for Tg

The constraints contradict with each other, therefore Fy does not exist. B

6 Related Work

In the introduction section, we have reviewed the Slot Shifting scheme [5] [6],
CE scheduler [1] and EDF scheduler [8]. In this section, we review other closely
related work.

Gerber et al proposed a parametric scheduling scheme [7]. They assume that
the execution order of real-time tasks is given, the execution times of tasks may
range between upper and lower bounds, and there are relative timing constraints
between tasks. The scheduler consists of an off-line component and an on-line
component. The off-line component formulates a “calendar” which stores two
functions to compute the lower and upper bounds of the start time for each
task. The bound functions of a task take the parameters of tasks earlier in
the sequence as variables and can therefore be solved on-line. Based on the
bounds on the start time, the on-line dispatcher decides when to start scheduling
the real-time task or waiting non-real-time tasks. The parametric scheduling
scheme and our proactive hybrid scheduler share the following similarities: (1)
Both schemes make use of off-line computation to reduce on-line scheduling
overhead and yet guarantee schedulability. (2) Both schemes make use of slacks
to handle a non-deterministic workload represented either as variable parameters
or as sporadic tasks. Yet, there are significant differences between these two
schemes. The parametric scheduling scheme assumes that the ordering of the
tasks is given, but our proactive hybrid scheduler does not. The implementation
techniques of these two schemes are quite different.

In terms of implementation techniques, SRP is more related to a line of
research by Erschler et al [4] and Yuan et al [13], even though their works are fo-
cussed on non-preemptive scheduling of periodic tasks. Erschler et al introduced
the concept of “dominant sequence” which defines the set of possible sequences
for non-preemptive schedules. They also introduce the concept of “top job”.
Building upon the work of Erschler et al, Yuan et al proposed a “decomposition
approach”. Yuan et al define several relations between jobs, such as “leading”
and “containing”, and apply them in a rule-based definition of “super sequence”,

an equivalent of dominant sequence. The partially defined pre-schedule FUX) in
our paper is similar to the dominant sequence or the super sequence, and we
adopt some of their concepts and terminology as mentioned. However, in view of
the NP-hardness of the non-preemptive scheduling problem, approximate search
algorithms are applied to either the dominant sequence or super sequence to find
a schedule in [4] and [13]. In this paper, the execution time assignment problem
on the partially defined pre-schedule can be solved optimally by LP solver.

General composition approaches have been proposed in recent years, such as
the open system environment [3] by Deng and Liu, temporal partitioning [10] by
Mok and Feng, and hierarchical schedulers [11] by Regehr and Stankovic. The
general composition schemes usually focus on the segregation between compo-
nents or schedulers, which means that the behavior of a component or scheduler
will be independent to the details of other components or schedulers. In con-
trast, proactive hybrid scheduler focuses on putting scheduling overhead off-line
and yet provides strict on-line deadline guarantee by making intensive use of the
information available about all tasks.

7 Conclusion

This paper proposes a proactive hybrid scheduler that combines the advantages
of CE and EDF schedulers. We present an off-line Slack Reserving Pre-scheduling
algorithm which is optimal in the sense that given a periodic task set and a
sporadic task set, SRP produces a valid pre-schedule if and only if one exists.
We also demonstrate the non-existence of universally valid pre-schedule, which
implies that every optimal pre-scheduling algorithm requires both the periodic
task set and the sporadic task set as input.

For future work, the proactive hybrid scheduler may be extended to accom-
modate workload models other than periodic and sporadic tasks with preperiod
deadlines, such as complex inter-task dependencies, We may also apply the pre-
scheduling technique to other forms of hybrid schedulers, such as a combination
of CE and the fixed priority scheduler.

References

1. T. P. Baker, A. Shaw. The cyclic executive model and Ada, Proceedings of IEEE
Real-Time Systems Symposium, pp.120-129, December 1988.

2. G. B. Dantzig. Linear Programming and Extensions, Princeton University Press,
1963.

3. Z. Deng and J. Liu. Scheduling Real-Time Applications in an Open Environment.
Real-Time Systems Symposium, pp. 308-319, December 1997.

4. J. Erschler, F. Fontan, C. Merce, F. Roubellat. A New Dominance Concept in
Scheduling n Jobs on a Single Machine with Ready Times and Due Dates, Opera-
tions Research, 31:114-127.

10.

11.

12.

13.

G. Fohler. Joint Scheduling of Distributed Complex Periodic and Hard Aperiodic
Tasks in Statically Scheduled Systems, Real-Time Systems Symposium, pp. 152-
161, December 1995.

D. Isovic, G. Fohler. Handling Sporadic Tasks in Off-line Scheduled Distributed
Real-Time Systems, the 11th EUROMICRO Conference on Real-Time Systems,
pp- 60-67, York, England, July 1999.

R. Gerber, W. Pugh, and M. Saksena. Parametric Dispatching of Hard Real-Time
Tasks, IEEE Trans. on Computers, Vol.44, No.3, pp. 471-479, Mar 1995.

C.L. Liu and J.W. Layland. Scheduling Algorithms for Multi-programming in Hard
Real-time Environment. Journal of ACM 20(1), 1973.

A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-
Real-Time Environment. Ph.D. thesis. MIT. 1983.

A. K. Mok, X. Feng. Towards Compositionality in Real-Time Resource Partitioning
Based on Regularity Bounds. Real-Time Systems Symposium, pp. 129-138, 2001.
J. Regehr, J. A. Stankovic. HLS: A Framework for Composing Soft Real-Time
Schedulers. Real-Time Systems Symposium, pp. 3-14, 2001.

Duu-Chung Tsou. Execution Environment for Real-Time Rule-Based Decision Sys-
tems. PhD thesis, Department of Computer Sciences, The University of Texas at
Austin, 1997. esting for Real-Time Tasks, Real-Time Systems, Vol. 11, No. 1, pp.
19-39, 1996.

X. Yuan, M.C. Saksena, A.K. Agrawala, A Decomposition Approach to Non-
Preemptive Real-Time Scheduling, Real-Time Systems, Vol. 6, No. 1, pp. 7-35,
1994.

