CS391L: Machine Learning:
Decision Tree L ear ning

Raymond J. Mooney
University of Texas at Austin

Decision Trees

« Tree-based classifiers for instances representéshage-vectors.
Nodes test features, there is one branch for ealale of the feature,
and leaves specify the category.

« Can represent arbitrary conjunction and disjuncii@en represent any
classification function over discrete feature vesto
« Can be rewritten as a set of rules, i.e. disjueatigrmal form (DNF).
— red[circle— pos
— redcircle— A
blue— B; red[square— B
green— C; redOtriangle— C

Properties of Decision Tree Learning

« Continuous (real-valued) features can be handled by
allowing nodes to split a real valued feature into two
ranges based on a threshold (e.g. length < 3 and e8pth

« Classification trees have discrete class labels détives,
regression trees allow real-valued outputs at the leaves.

= Algorithms for finding consistent trees are efficient for
processing large amounts of training data for data mining
tasks.

* Methods developed for handling noisy training data (both
class and feature noise).

« Methods developed for handling missing feature values.

Top-Down Decision Tree Induction

« Recursively build a tree top-down by divide and conquer.

<big, red, circle>: + <small, red, circle>: +
<small, red, square>: <big, blue, circle>=

color
red” pilie Ngreen

<big, red, circle>: +
<small, red, circle>: +
<small, red, square>:

Top-Down Decision Tree Induction

« Recursively build a tree top-down by divide and conquer.

<big, red, circle>: + <small, red, circle>: +
<small, red, square>: <big, blue, circle>=

color

<big, red, circle>: +
<small, red, circle>: +
<small, red, square>: circl

ne e
. g.)l?e blueg, circle>=
squareNriangt

pos neg pos
<big, red, circle>: + <small, red, square>:
<small, red, circle>: +

Decision Tree Induction Pseudocode

DTreegxamples, features) returns a tree
If all examples are in one category, return a leaf node with th&tgory label.
Else if the set ofeaturesis empty, return a leaf node with the category lltiet
is the most common in examples.
Else pick a featur€ and create a nodefor it
For each possible valweof F:
Let examples be the subset of examples that have vl F
Add an out-going edgé to nodeR labeled with the value,
If examples; is empty
then attach a leaf node to edgi@beled with the category that
is the most common iexamples.
else call DTreefkamples;, features— {F}) and attach the resulting
tree as the subtree under eéige
Return the subtree rootedfat

Picking a Good Split Feature

« Goal is to have the resulting tree be as small as possible,
per Occam'’s razor.

« Finding a minimal decision tree (nodes, leaves, or depth) is
an NP-hard optimization problem.

« Top-down divide-and-conquer method does a greedy
search for a simple tree but does not guarantee to find the
smallest.

— General lesson in ML: “Greed is good.”

* Want to pick a feature that creates subsets of examples tha
are relatively “pure” in a single class so they are “closer
to being leaf nodes.

« There are a variety of heuristics for picking a good test, a
popular one is based on information gain that originated
with the ID3 system of Quinlan (1979).

Entropy

Entropy (disorder, impurity) of a set of exampBsrelative to a binary
classification is:

Entropy(S) == p,10g, (p,) ~ Py 109, (P,)
wherep, is the fraction of positive examples in S gidbs the fraction
of negatives.
If all examples are in one category, entropy i® fare define
0libg(0)=0)
If examples are equally mixe,€p,=0.5), entropy is a maximum of 1.
Entropy can be viewed as the number of bits reduireaverage to
encode the class of an exampl&ivhere data compression (e.g.
Huffman coding) is used to give shorter codes toenlikely cases.

For multi-class problems vgith c categories, entrgpyeralizes to:
Entropy(S) =" - pl0g,(p,)
i=1

Entropy Plot for Binary Classification

ﬁ,ﬁ"‘ W Wﬂ-‘%emropy-d‘ata' ——

08 & LY
F %
%
%
06 Fd % 4

e *%‘

Entropy
:
"\N\
-
\N

e
:

04

L L L
0.2 04 0.6 08 1
Fraction of Positives

Information Gain

The information gain of a featufeis the expected reduction in
entropy resulting from splitting on this feature.
Gain(S,F) = Entropy(S)- 3 @Emropy(sv)
ey |9
whereS, is the subset d§ having valuev for featureF.

Entropy of each resulting subset weighted by ietire size.

* Example:

— <big, red, circle>: + <small, red, circle>

— <small, red, square>: <big, blue, circle>=

2+, 2 E=1 2+,2-:E=1 2+,2-:E=1

size lor shape
big small red blue circle square
141 141+ 2+1- O+1- 2+ O+1-
E=1 E=1 E=0.918 E=0 E=0.918 E=0
Gain=1(0.51+0.51) =0 Gain=1(0.750.918 + Gain=1(0.750.918 +

0.250) = 0.311 0.250) = 0.311

Hypothesis Space Search

« Performsoatch learning that processes all training
instances at once rather thanremental learning
that updates a hypothesis after each example.

« Performs hill-climbing (greedy search) that may
only find a locally-optimal solution. Guaranteed to
find a tree consistent with any conflict-free
training set (i.e. identical feature vectors always
assigned the same class), but not necessarily the
simplest tree.

« Finds a single discrete hypothesis, so there is no
way to provide confidences or create useful
queries.

Bias in Decision-Tree Induction

* Information-gain gives a bias for trees with
minimal depth.

» Implements a search (preference) bias
instead of a language (restriction) bias.

History of Decision-Tree Research

» Hunt and colleagues use exhaustive search decision-tree

methods (CLS) to model human concept learning in the
0’s.

« In the late 70’s, Quinlan developed ID3 with the
information gain heuristic to learn expert systems from
examples.

» Simulataneously, Breiman and Friedman and colleagues
develop CART (Classification and Regression Trees),
similar to ID3.

« Inthe 1980’s a variety of improvements are introduced to
handle noise, continuous features, missing features, and
improved splitting criteria. Various expert-system
development tools results.

* Quinlan’s updated decision-tree package (C4.5) released in|
1993.

* Weka includes Java version of C4.5 called J48.
13

Weka J48 Trace 1

data> java weka.classifiers.trees.J48 -t figure-@rfigure.arff -U -M 1
Options: -U-M 1

J48 unpruned tree

colol lue: negative (1.0)

color = red

| shape = circle: positive (2.0)

| shape = square: negative (1.0)

| shape = triangle: positive (0.0)

color = green: positive (0.0)

Number of Leaves : 5
Size of the tree: 7

Time taken to build model: 0.03 seconds
Time taken to test model on training data: 0 sesond

Weka J48 Trace 2

data> java weka.classifiers.trees.J48 -t figuré3-affigure3.arff -U -M 1
Options: -U-M 1
J48 unpruned tree

shape = circle

| color = blue: negative (1.0)

| color =red: positive (2.0)

| color = green: positive (1.0)
shape = square: positive (0.0)
shape = triangle: negative (1.0)

Number of Leaves : 5
Size of thetree: 7

Weka J48 Trace 3

data> java weka, classifiers.trees. 48 -t contastele.arff === Confusion Matrix ===

48 pruned tree

! abc < cassfiedas
tear-proc-rate = reduced: none (12.0) RS Rt
tear-prod-rate = normal 1014/ c=none

| astigmatism = no: soft (6.0/1.0)

| astigmatism = yes

| | spectacle-prescrip = myope: hard (3.0)

| | spectacle-prescrip = hypermetrope: none (8)0/1 == Stratfied cross-validation ===
Number of Leaves : 4

‘ Correctly Classified Instances 20 83.3333%
ize of the tr 7
Stee of the tree Incorrectly Classified Instances 4 166667 %
Time taken to build model: 0.03 seconds Nanpa Satene s
Time taken to test model on training data: 0 sesond lean absolute error
Root mean squared error 0.3249
- Rektive absolute error 39.7050 %
=== Error on trainin(ta ===
or on waining data Root relative squared error 74.3898 %
Total Number of Instances 24

Correctly Classified Instances 22 9L6667%
Incorrectly Classified Instances 2 8.3333%
0.8447

Kappa statistic === Confusion Matrix ===

Time taken to build model: 0.02 seconds hRA;;n "f:ﬁ\:;eu . o 0‘5133041
Time taken to test model on training data: 0 sesond Relative absolute error 22,6257 % abc <-chssfiedas
Root relative squared error 48.1223% 500] a=soft
Total Number of Instances 24 03 1| b=hard
1212| c=none
15 16
Computational Complexity Overfitting

« Worst case builds a complete tree where every path test
every feature. Assunreexamples anch features.
1
Maximum ofn examples spread across
all nodes at each of tmelevels

< Ateach levelj, in the tree, must examine the remaining
m-i features for each instance at the level to calculate info
gains. m

> im=0(nn")

i=1

* However, learned tree is rarely complete (number of leaves
is<n). In practice, complexity is linear in both number of
features ifn) and number of training exampley.(

 Learning a tree that classifies the training datdegtly ma
not lead to the tree with the best generalizatonriseen data.

- ;I_'h_ere may be noise in the training data that tbe is erroneously

itting.

— The algorithm may be making poor decisions towénddeaves of the
treeéhat are based on very little data and mayaeflect reliable
trends.

= Ahypothesish, is said to overfit the training data is there
exists another hypothesis whith, such thah has less error
thanh” on the training data but greater error on indepand
test data.

on training data

on test data

accuracy

hypothesis complexity 18

Overfitting Example

Testing OhmsLaw: V=IR (I =(YR)V)

Experimentally
measure 10 points

Fit a curve to the
Resulting data.

current (1)

voltage (V)

Perfect fit to training data with ar"@egree polynomial
(can fitn points exactly with am-1 degree polynomial)

Ohm was wrong, we have found a more accurate function!

19

Overfitting Example

Testing OhmsLaw: V=IR (I =(YR)V)

current (1)

voltage (V)

Better generalization with a linear function
that fits training data less accurately.

Overfitting Noise in Decision Trees

« Category or feature noise can easily cause ovefitt
— Add noisy instance <medium, blue, circlggas(but reallyneg

Overfitting Noise in Decision Trees

« Category or feature noise can easily cause ovefitt

— Add noisy instance <medium, blue, circlggas(but reallyneg
color

pos neg pos neg pos neg

« Noise can also cause different instances of the $aature
vector to have different classes. Impossiblettthfs data
and must label leaf with the majority class.

— <big, red, circle>neg(but reallypos

« Conflicting examples can also arise if the featames
incomplete and inadequate to determine the cla$shar
target concept is non-deterministic. 2

Overfitting Prevention (Pruning) Methods

« Two basic approaches for decision trees

— PrepruningStop growing tree as some point during top-down
construction when there is no longer sufficienedatmake
reliable decisions.

— PostpruningGrow the full tree, then remove subtrees thataio n
have sufficient evidence.

« Label leaf resulting from pruning with the majoritiass of
the remaining data, or a class probability distidou
« Method for determining which subtrees to prune:

— Cross-validationReserve some training data as a hold-out set
(validation set, tuning set) to evaluate utility of subtrees.

— Statistical testUse a statistical test on the training data to
determine if any observed regularity can be disesisss likely due
to random chance.

— Minimum description length (MDL)Determine if the additional
complexity of the hypothesis is less complex thest gxplicitly
remembering any exceptions resulting from pruning.

Reduced Error Pruning

A post-pruning, cross-validation approach.

Partition training data in “grow” and “validation” e
Build a complete tree from the “grow” data.
Until accuracy on validation set decreases do:
For each non-leaf node, n, in the tree do:
Temporarily prune the subtree below n and replaafit a
leaf labeled with the current majority class at thade.
Measure and record the accuracy of the pruned tréleeovalidation set.
Permanently prune the node that results in theegeamcrease in accuracy of
the validation set.

Issues with Reduced Error Pruning

The problem with this approach is that it
potentially “wastes” training data on the validation
set.

Severity of this problem depends where we are on
the learning curve:

test accuracy

number of training examples

Cross-Validating without
Losing Training Data

If the algorithm is modified to grow trees breadth-
first rather than depth-first, we can stop growing
after reaching any specified tree complexity.
First, run several trials of reduced error-pruning
using different random splits of grow and
validation sets.

Record the complexity of the pruned tree learned
in each trial. LetC be the average pruned-tree
complexity.

Grow a final tree breadth-first from all the traigi
data but stop when the complexity reacBes

Similar cross-validation approach can be used to
set arbitrary algorithm parameters in general.

Additional Decision Tree Issues

Better splitting criteria

— Information gain prefers features with many values.
Continuous features

Predicting a real-valued function (regression jrees
Missing feature values

Features with costs

Misclassification costs

Incremental learning

~ D4

- D5

Mining large databases that do not fit in main mgmo

