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Sub-Problems in NLP

• Understanding / Comprehension
– Speech recognition
– Syntactic analysis
– Semantic analysis
– Pragmatic analysis

• Generation / Production
– Content selection
– Syntactic realization
– Speech synthesis

• Translation
– Understanding
– Generation
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Ambiguity is Ubiquitous

• Speech Recognition
– “Recognize speech” vs. “Wreck a nice beach”

• Syntactic Analysis
– “I ate spaghetti with a fork” vs. “I ate spaghetti with

meat balls.”
• Semantic Analysis

– “The dog is in the pen.” vs. “The ink is in the pen.”
• Pragmatic Analysis

– Pedestrian: “Does your dogbite?,”
Clouseau: “No.”
Pedestrian pets dog and is bitten.                     
Pedestrian: “I thought you said your dog does not bite?”
Clouseau: “That, sir, is not my dog.”

4

Humor and Ambiguity

• Many jokes rely on the ambiguity of language:
– Groucho Marx: One morning I shot an elephant in my 

pajamas.  How he got into my pajamas, I’ll never know.

– She criticized my apartment, so I knocked her flat.

– Noah took all of the animals on the ark in pairs. Except 
the worms, they came in apples.

– Policeman to little boy: “We are looking for a thief with 
a bicycle.” Little boy: “Wouldn’t you be better using 
your eyes.”

– Why is the teacher wearing sun-glasses. Because the 
class is so bright.
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Ambiguity is Explosive

• Ambiguities compound to generate enormous 
numbers of possible interpretations.

• In English, a sentence ending in n
prepositional phrases has over2n syntactic 
interpretations.
– “ I saw the man with the telescope”: 2 parses
– “I saw the man on the hill with the telescope.”: 5 parses
– “I saw the man on the hill in Texas with the telescope”:     

14 parses
– “I saw the man on the hill in Texas with the telescope at 

noon.”: 42 parses
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Word Sense Disambiguation (WSD) 
as Text Categorization

• Each sense of an ambiguous word is treated as a category.
– “play” (verb)

• play-game
• play-instrument
• play-role

– “pen” (noun)
• writing-instrument
• enclosure

• Treat current sentence (or preceding and current sentence) 
as a document to be classified.
– “play”:

• play-game: “John played soccer in the stadium on Friday.”
• play-instrument: “John played guitar in the band on Friday.”
• play-role: “John played Hamlet in the theater on Friday.”

– “pen”:
• writing-instrument: “John wrote the letter with a pen in New York.”
• enclosure: “John put the dog in the pen in New York.”
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Learning for WSD

• Assume part-of-speech (POS), e.g. noun, verb, 
adjective, for the target word is determined.

• Treat as a classification problem with the 
appropriate potential senses for the target word 
given its POS as the categories.

• Encode context using a set of features to be used 
for disambiguation.

• Train a classifier on labeled data encoded using 
these features.

• Use the trained classifier to disambiguate future 
instances of the target word given their contextual 
features.
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WSD “line” Corpus

• 4,149 examples from newspaper articles 
containing the word “line.”

• Each instance of “line” labeled with one of 
6 senses from WordNet.

• Each example includes a sentence 
containing “line” and the previous sentence 
for context.
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Senses of “line”

• Product: “While he wouldn’t estimate the sale price, analysts have 
estimated that it would exceed $1 billion.  Kraft also told analysts it plans 
to develop and test a line of refrigerated entrees and desserts, under the 
Chillery brand name.”

• Formation: “C-LD-R L-V-S V-NNA reads a sign in Caldor’s book 
department. The 1,000 or so people fighting for a place in line have no 
trouble filling in the blanks.”

• Text: “Newspaper editor Francis P. Church became famous for a 1897 
editorial, addressed to a child, that included the line “Yes, Virginia, there is 
a Santa Clause.”

• Cord: “It is known as an aggressive, tenacious litigator. Richard D. 
Parsons, a partner at Patterson, Belknap, Webb and Tyler, likes the 
experience of opposing Sullivan & Cromwell to “having a thousand-pound 
tuna on the line.”

• Division: “Today, it is more vital than ever. In 1983, the act was 
entrenched in a new constitution, which established a tricameralparliament 
along racial lines, whith separate chambers for whites, coloreds and Asians 
but none for blacks.”

• Phone: “On the tape recording of Mrs. Guba's call to the 911 emergency 
line, played at the trial, the baby sitter is heard begging for an ambulance.” 10

Experimental Data for WSD of “line”

• Sample equal number of examples of each 
sense to construct a corpus of 2,094.

• Represent as simple binary vectors of word 
occurrences in 2 sentence context.
– Stop words eliminated

– Stemmed to eliminate morphological variation

• Final examples represented with 2,859 
binary word features.
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Learning Algorithms

• Naïve Bayes
– Binary features

• K Nearest Neighbor
– Simple instance-based algorithm with k=3 and Hamming distance

• Perceptron
– Simple neural-network algorithm.

• C4.5
– State of the art decision-tree induction algorithm

• PFOIL-DNF
– Simple logical rule learner for Disjunctive Normal Form

• PFOIL-CNF
– Simple logical rule learner for Conjunctive Normal Form

• PFOIL-DLIST
– Simple logical rule learner for decision-list of conjunctive rules
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Learning Curves for WSD of “line”
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Discussion of 
Learning Curves for WSD of “line”

• Naïve Bayes and Perceptron give the best results.

• Both use a weighted linear combination of 
evidence from many features.

• Symbolic systems that try to find a small set of 
relevant features tend to overfit the training data 
and are not as accurate.

• Nearest neighbor method that weights all features 
equally is also not as accurate.

• Of symbolic systems, decision lists work the best.
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Beyond Classification Learning

• Standard classification problem assumes 
individual cases are disconnected and independent 
(i.i.d.: independently and identically distributed).

• Many NLP problems do not satisfy this 
assumption and involve making many connected 
decisions, each resolving a different ambiguity, 
but which are mutually dependent.

• More sophisticated learning and inference 
techniques are needed to handle such situations in 
general.
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Sequence Labeling Problem

• Many NLP problems can viewed as sequence 
labeling.

• Each token in a sequence is assigned a label.

• Labels of tokens are dependent on the labels of 
other tokens in the sequence, particularly their 
neighbors (not i.i.d).

foo bar         blam zonk zonk bar           blam
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Part Of Speech Tagging

• Annotate each word in a sentence with a 
part-of-speech.

• Lowest level of syntactic analysis.

• Useful for subsequent syntactic parsing and 
word sense disambiguation.

John  saw  the  saw  and  decided  to  take  it     to   the   table.
PN      V   Det N   Con      V     Part  V   Pro Prep Det N
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Information Extraction

• Identify phrases in language that refer to specific types of 
entities and relations in text.

• Named entity recognition is task of identifying names of 
people, places, organizations, etc. in text.
people organizations places
– Michael Dellis the CEO of  Dell Computer Corporationand lives 

in Austin Texas. 

• Extract pieces of information relevant to a specific  
application, e.g. used car ads:

make model year mileage price
– For sale, 2002ToyotaPrius,  20,000 mi, $15K or best offer. 

Available starting July 30, 2006.
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Semantic Role Labeling

• For each clause, determine the semantic role 
played by each noun phrase that is an 
argument to the verb.
agent patient source destination instrument
– Johndrove Mary from Austin to Dallasin his 

Toyota Prius.
– The hammerbroke the window.

• Also referred to a “case role analysis,”
“thematic analysis,” and “shallow semantic 
parsing”
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Bioinformatics

• Sequence labeling also valuable in labeling 
genetic sequences in genome analysis.
extron intron

– AGCTAACGTTCGATACGGATTACAGCCT
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Sequence Labeling as Classification

• Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PN
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Sequence Labeling as Classification

• Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Conj
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Sequence Labeling as Classification
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Sequence Labeling as Classification

• Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window).
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classifier

Det
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Sequence Labeling as Classification

• Classify each token independently but use 
as input features, information about the 
surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

N
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Sequence Labeling as Classification
Using Outputs as Inputs

• Better input features are usually the 
categoriesof the surrounding tokens, but 
these are not available yet.

• Can use category of either the preceding or 
succeeding tokens by going forward or back 
and using previous output.
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Forward Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

N
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Forward Classification

PN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

V
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Forward Classification

PN     V
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Det
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Forward Classification

PN     V    Det
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

N
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Forward Classification

PN     V    Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Conj
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Forward Classification

PN     V    Det N  Conj
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

V
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Forward Classification

PN     V    Det N  Conj      V
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Part
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Forward Classification

PN     V    Det N  Conj      V     Part
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

V
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Forward Classification

PN     V    Det N  Conj      V     Part  V
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Pro
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Forward Classification

PN     V    Det N  Conj      V     Part  V   Pro
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Prep
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Forward Classification

PN     V    Det N  Conj      V     Part  V   Pro  Prep
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Det
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Forward Classification

PN     V    Det N  Conj      V     Part  V   Pro  Prep Det
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

N
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

N
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Det
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Prep
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

Prep   Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Pro
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

Pro Prep   Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

V
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

V Pro Prep   Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Part
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

Part V  Pro Prep   Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

V
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

V     Part V  Pro Prep   Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Conj
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

Conj      V     Part V  Pro Prep Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

V
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

V   Conj      V     Part V  Pro Prep Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

Det
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

Det V   Conj      V     Part V  Pro Prep   Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

V
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Backward Classification

• Disambiguating “to” in this case would be 
even easier backward.

V    Det V   Conj      V     Part V  Pro Prep   Det N
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PN
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Problems with Sequence Labeling as 
Classification

• Not easy to integrate information from 
category of tokens on both sides.

• Difficult to propagate uncertainty between 
decisions and “collectively” determine the 
most likely joint assignment of categories to 
all of the tokens in a sequence. 
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Probabilistic Sequence Models

• Probabilistic sequence models allow 
integrating uncertainty over multiple, 
interdependent classifications and 
collectively determine the most likely 
global assignment.

• Two standard models
– Hidden Markov Model  (HMM)

– Conditional Random Field (CRF)
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Hidden Markov Model

• Probabilistic generative model for sequences.
• A finite state machine with probabilistic transitions 

and  probabilistic generation of outputs from states.
• Assume an underlying set of states in which the 

model can be (e.g. parts of speech).
• Assume probabilistic transitions between states over 

time (e.g. transition from POS to another POS as 
sequence is generated).

• Assume a probabilistic generation of tokens from 
states (e.g. words generated for each POS).
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Sample HMM for POS

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25
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Sample HMM Generation
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Det
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the
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that
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Verb
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ate saw
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hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bit
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bit
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bit the
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Sample HMM Generation
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0.05

0.9
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0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bit the apple
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.9

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bit the apple
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Formal Definition of an HMM

• A set of N states S={S1, S2, … SN}
• A set of M possible observations V={V1,V2…VM}
• A state transition probability distribution A={aij}

• Observation probability distribution for each state j 
B={bj(k)}

• Initial state distribution π = {πi}

• Total parameter set λ={A,B,π}

NjiSqSqPa itjtij ≤≤=== + ,1         )|( 1

Mk1   1     )|at  ()( ≤≤≤≤== NjSqtvPkb jtkj

NiSqP ii ≤≤== 1         )( 1π
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HMM Generation Procedure

• To generate a sequence of T observations:  
O = O1 O2 … OT

Choose an initial state q1=Si according to π
For t = 1 to T

Pick an observation Ot=vk based on being in state qt using 
distribution bqt(k)

Transit to another state qt+1=Sj based on transition 
distribution aij for state qt
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Three Useful HMM Tasks

• Observation likelihood: To classify and 
order sequences.

• Most likely state sequence: To tag each 
token in a sequence with a label.

• Maximum likelihood training: To train 
models to fit empirical training data.

74

HMM: Observation Likelihood

• Given a sequence of observations, O, and a model 
with a set of parameters, λ, what is the probability 
that this observation was generated by this model: 
P(O| λ) ?

• Allows HMM to be used as a language model: A 
formal probabilistic model of a language that 
assigns a probability to each string saying how 
likely that string was to have been generated by 
the language.

• Useful for two tasks:
– Sequence Classification
– Most Likely Sequence

75

Sequence Classification

• Assume an HMM is available for each category 
(i.e. language).

• What is the most likely category for a given 
observation sequence, i.e. which category’s HMM 
is most likely to have generated it?

• Used in speech recognition to find most likely 
word model to have generate a given  sound or 
phoneme sequence.

Austin Boston

? ?

P(O | Austin) > P(O | Boston) ?

ah  s  t  e  n

O
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Most Likely Sequence

• Of two or more possible sequences, which 
one was most likely generated by a given 
model?

• Used to score alternative word sequence 
interpretations in speech recognition.

Ordinary English

dice precedent core

vice president Gore

O1

O2

?

?

P(O2 | OrdEnglish) > P(O1 | OrdEnglish) ?
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HMM: Observation Likelihood
Naïve Solution

• Consider all possible state sequences, Q, of length 
T that the model could have traversed in 
generating the given observation sequence.

• Compute the probability of this state sequence 
from π and A, and multiply it by the probabilities 
of generating each of given observations in each 
of the corresponding states in this sequence to get 
P(O,Q| λ).

• Sum this over all possible state sequences to get 
P(O| λ).

• Computationally complex: O(TNT).
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HMM: Observation Likelihood
Efficient Solution

• Markov assumption: Probability of the current 
state only depends on the immediately previous 
state, not on any earlier history (via the transition 
probability distribution, A).

• Therefore, the probability of being in any state at 
any given time t only relies on the probability of 
being in each of the possible states at time t-1.

• Forward-Backward Algorithm: Uses dynamic 
programming to exploit this fact to efficiently 
compute observation likelihood in O(N2T) time.
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=Q1,Q2,…QT, 
that generated this sequence from this model?

• Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.

John gave the dog an apple. 
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Det Noun PropNounVerb 
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=Q1,Q2,…QT, 
that generated this sequence from this model?

• Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.

Johngavethedog an apple. 

Det Noun PropNounVerb 
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=Q1,Q2,…QT, 
that generated this sequence from this model?

• Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.

Johngavethedogan apple. 

Det Noun PropNounVerb 
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=Q1,Q2,…QT, 
that generated this sequence from this model?

• Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.

Johngavethedoganapple. 

Det Noun PropNounVerb 
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  
what is the most likely state sequence,Q=Q1,Q2,…QT, 
that generated this sequence from this model?

• Used for sequence labeling, assuming each state 
corresponds to a tag, it determines the globally best 
assignment of tags to all tokens in a sequence using a 
principled approach grounded in probability theory.

Johngavethedoganapple. 

Det Noun PropNounVerb 
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HMM: Most Likely State Sequence
Efficient Solution

• Dynamic Programming can also be used to 
exploit the Markov assumption and 
efficiently determine the most likely state 
sequence for a given observation and 
model.

• Standard procedure is called the Viterbi
algorithm(Viterbi, 1967) and also has 
O(N2T) time complexity.
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Maximum Likelihood Training

• Given an observation sequence, O, what set of 
parameters, λ, for a given model maximizes the 
probability that this data was generated from this 
model (P(O| λ))?

• Used to train an HMM model and properly induce 
its parameters from a set of training data.

• Only need to have an unannotated observation 
sequence (or set of sequences) generated from the 
model. Does not need to know the correct state 
sequence(s) for the observation sequence(s). In 
this sense, it is unsupervised.
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Maximum Likelihood Training

ah  s  t  e  n
a  s  t  i  n
oh  s  t  u  n
eh  z  t  en 

.

.

.

Training Sequences

HMM
Training

Austin
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HMM: Maximum Likelihood Training
Efficient Solution

• There is no known efficient algorithm for finding 
the parameters, λ, that truly maximize P(O| λ).

• However, using iterative re-estimation, the Baum-
Welch algorithm, a version of a standard statistical 
procedure called Expectation Maximization (EM), 
is able to locally maximize P(O| λ).

• In practice, EM is able to find a good set of 
parameters that provide a good fit to the training 
data in many cases.

90

Sketch of Baum-Welch  (EM) Algorithm 
for Training HMMs

Assume an HMM with N states.
Randomly set its parameters λ={A,B,π} 

(so that they represent legal distributions)
Until converge (i.e. λ no longer changes) do:

E Step:  Use the forward/backward procedure to  
determine the probability of various possible 
state sequences for generating the training data

M Step: Use these probability estimates to 
re-estimate values for all of the parameters λ
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Supervised HMM Training

• If training sequences are labeled (tagged) with the 
underlying state sequences that generated them, 
then the parameters, λ={A,B,π} can all be 
estimated directly from counts accumulated from 
the labeled sequences (with appropriate 
smoothing).

Supervised
HMM

Training

Johnatetheapple
A dogbit Mary
Mary hit thedog
JohngaveMary thecat.

.

.

.

Training Sequences

Det Noun PropNounVerb 92

Generative vs. Discriminative Models

• HMMs are generative modelsand are notdirectly 
designed  to maximize the performance of sequence 
labeling. They model the joint distributionP(O,Q)

• HMMs are trained to have an accurate probabilistic 
model of the underlying language, and not all 
aspects of this model benefit the sequence labeling 
task.

• Discriminative models are specifically designed and 
trained to maximize performance on a particular 
inference problem, such as sequence labeling. They 
model the conditional distribution P(Q | O)
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Conditional Random Fields

• Conditional Random Fields(CRFs) are 
discriminative models specifically designed and 
trained for sequence labeling.

• Experimental results verify that they have superior 
accuracy on various sequence labeling tasks.
– Noun phrase chunking

– Named entity recognition

– Semantic role labeling

• However, CRFs are much slower to train and do 
not scale as well to large amounts of training data.
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Limitations of Finite-State Models

• Finite state models like HMMs and CRFs are 
unable to model all aspects of natural-language.

• The complexity and nested phrasal structure of  
natural language require recursion and the power 
of context free grammars(CFGs).

• For example “The velocity of the seismic waves 
rises to…” is hard for a HMM POS tagger since it 
expects a plural verb after “waves” (“rise”)

S
NPsg VPsg

Det N        PP

Prep         NPplThe  velocity

of     the seismic waves

rises to …
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Probabilistic Context Free Grammar
(PCFG)

• A PCFG is a probabilistic version of a CFG 
where each production has a probability.

• Probabilities of all productions rewriting a 
given non-terminal must add to 1, defining 
a distribution for each non-terminal.

• String generation is now probabilistic where 
production probabilities are used to non-
deterministically select a production for 
rewriting a given non-terminal.
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Sample PCFG

S →NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

+ = 1

+ = 1

+ = 1

+ = 1

+ = 1

S

NP                            VP

NP            PP

The

Prep   NP

with

the

V        NP

bit

a

big

dog girl

boy

Det A  NDet A  N εAdj Aε Det A  Nε
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Sentence Probability

• Assume productions for each node are chosen 
independently.

• Probability of derivation is the product of the 
probabilities of its productions.

S

NP                            VP

The

V        NP

bit

a

dog

girl

Det A  N

Det A  N εε 0.9

0.5 0.7

0.5 0.01 0.5

0.3 0.01

0.6

0.01
0.6

P(D) = 0.9 x 0.5 x 0.7 x 0.5 x
0.6 x 0.01 x 0.01 x 0.5 x
0.3 x 0.6 x 0.01 

=  8.505 x 10-9

D

Since it is unambiguous, P(“The dog bit a girl”) = 8.505 x 10-9

• Probability of a sentence is the sum of the 
probability of all of its derivations.
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Three Useful PCFG Tasks

• Observation likelihood: To classify and 
order sentences.

• Most likely derivation: To determine the 
most likely parse tree for a sentence.

• Maximum likelihood training: To train a 
PCFG to fit empirical training data.
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PCFG: Observation Likelihood

• There is an analog to Forward/Backward called 
the Inside/Outside algorithmfor efficiently 
determining how likely a string is to be produced 
by a PCFG.

• Can use a PCFG as a language model to choose 
between alternative sentences for speech 
recognition or machine translation.

S →NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

The dog big barked.

The big dog barked

O1

O2

?

?

P(O2 | English) > P(O1 | English) ? 100

PCFG: Most Likely Derivation

• There is an analog to the Viterbi algorithm to 
efficiently determine the most probable derivation 
(parse tree) for a sentence.

• Time complexity is O(N3T3) where N is the 
number of non-terminals in the grammar and T is 
the length of the sentence.

S →NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG 
Parser

S

NP           VP

John       V     NP          PP

put    the dog  in the pen

John put the dog in the pen.
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PCFG: Most Likely Derivation

• There is an analog to the Viterbi algorithm to 
efficiently determine the most probable derivation 
(parse tree) for a sentence.

• Time complexity is O(N3T3) where N is the 
number of non-terminals in the grammar and T is 
the length of the sentence.

S →NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG 
Parser

S

NP           VP

John       V     NP 

put    the dog  in the penX
John put the dog in the pen.
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PCFG: Maximum Likelihood Training

• Given a set of sentences, induce a grammar that 
maximizes the probability that this data was 
generated from this grammar.

• Assume the number of non-terminals in the 
grammar is specified.

• Only need to have an unannotated set of sequences 
generated from the model. Does not need correct 
parse trees for these sentences. In this sense, it is 
unsupervised.
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PCFG: Maximum Likelihood Training

John ate the apple
A dog bit Mary
Mary hit the dog
John gave Mary the cat.

.

.

.

Training Sentences

PCFG
Training

S →NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English
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PCFG: Supervised Training

• If parse trees are provided for training sentences, a 
grammar and its parameters can be can all be 
estimated directly from counts accumulated from the 
tree-bank (with appropriate smoothing).

.

.

.

Tree Bank

Supervised
PCFG

Training

S →NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

S

NP           VP

John       V     NP          PP

put    the dog  in the pen

S

NP           VP

John       V     NP          PP

put    the dog  in the pen
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PCFG Comments

• Unsupervised training (of PCFGs or HMMs) do not to 
work very well.  They tend to capture alternative structure 
in the data that does not directly reflect general syntax.

• Since probabilities of productions do not rely on specific 
words or concepts, only general structural disambiguation 
is possible.

• Consequently, vanilla PCFGs cannot resolve syntactic 
ambiguities that require semantics to resolve, e.g. ate with 
fork vs. meatballs.

• In order to work well, PCFGs must be lexicalized, i.e. 
productions must be specialized to specific words by 
including their head-word in their LHS non-terminals (e.g. 
VP-ate).
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Example of Importance of Lexicalization

• A general preference for attaching PPs to verbs 
rather than NPs in certain structural situations  
could be learned by a vanilla PCFG.

• But the desired preference can depend on specific 
words.

S →NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG 
Parser

John likes the dog in the pen.
S

NP           VP

John       V     NP          PP

likes    the dog  in the penX

107

Example of Importance of Lexicalization

• A general preference for attaching PPs to verbs 
rather than NPs in certain structural situations  
could be learned by a vanilla PCFG.

• But the desired preference can depend on specific 
words.

S →NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG 
Parser

John likes the dog in the pen.

S

NP           VP

John       V     NP 

likes    the dog  in the pen
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Treebanks

• English Penn Treebank: Standard corpus for 
testing syntactic parsing consists of 1.2 M words 
of text from the Wall Street Journal (WSJ).

• Typical to train on about 40,000 parsed sentences 
and test on an additional standard disjoint test set 
of 2,416 sentences.

• Chinese Penn Treebank: 100K words from the 
Xinhua news service.

• Other corpora existing in many languages, see the 
Wikipedia article “Treebank”
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Treebank Results

• Standard accuracy measurements judge the fraction of 
the constituents that match between the computed and 
human parse trees.  If P is the system’s parse tree and T 
is the human parse tree (the “gold standard”):
– Recall = (# correct constituents in P) / (# constituents in T)

– Precision= (# correct constituents in P) / (# constituents in P)

• Labeled Precisionand labeled recallrequire getting the 
non-terminal label on the constituent node correct to 
count as correct.

• Results of current state-of-the-art systems on the 
English Penn WSJ treebank are about 90% labeled 
precision and recall. 110

Semantic Parsing

• Semantic Parsing: Transforming natural 
language (NL) sentences into computer 
executablecomplete logical forms or 
meaning representations (MRs) for some 
application.

• Example application domains
– CLang: Robocup Coach Language 

– Geoquery: A Database Query Application 
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CLang: RoboCupCoach Language

• In RoboCup Coach competition teams compete to 
coach simulated players [http://www.robocup.org]

• The coaching instructions are given in a formal 
language called CLang [Chen et al. 2003]

Simulated soccer field

CLang

If the ball is in our 
goal area then player 
1 should intercept it.

(bpos (goal-area our) (do our {1} intercept))

Semantic Parsing
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Geoquery:
A Database Query Application

• Query application for U.S. geography database 
containing about 800 facts [Zelle & Mooney, 1996] 

Which rivers run 
through the states 
bordering Texas?

Query
answer(traverse(next_to(stateid(‘texas’))))

Semantic Parsing

Arkansas, Canadian, Cimarron,
Gila, Mississippi, Rio Grande …

Answer

answer(traverse(next_to(stateid(‘texas’))))answer(traverse(next_to(stateid(‘texas’))))
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Learning Semantic Parsers

• Manually programming robust semantic parsers 
is difficult due to the complexity of the task.

• Semantic parsers can be learned automatically 
from sentences paired with their logical form.

NL→LF 
Training Exs

Semantic-Parser
Learner

Natural 
Language

Logical
Form

Semantic
Parser
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Our Semantic-Parser Learners 

• CHILL+WOLFIE (Zelle & Mooney, 1996; Thompson & Mooney, 
1999, 2003) 
– Separates parser-learning and semantic-lexicon learning.
– Learns a deterministic parser using ILP techniques.

• COCKTAIL (Tang & Mooney, 2001)
– Improved ILP algorithm for CHILL.

• SILT (Kate, Wong & Mooney, 2005) 
– Learns symbolic transformation rules for mapping directly from NL to LF.

• SCISSOR(Ge & Mooney, 2005) 
– Integrates semantic interpretation into Collins’ statistical syntactic parser.

• WASP(Wong & Mooney, 2006)
– Uses syntax-based statistical machine translation methods.

• KRISP (Kate & Mooney, 2006)
– Uses a series of SVM classifiers employing a string-kernel to iteratively build 

semantic representations.
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Experimental Corpora

• CLang 
– 300 randomly selected pieces of coaching advice from 

the log files of the 2003 RoboCup Coach Competition

– 22.52 words on average in NL sentences

– 14.24 tokens on average in formal expressions

• GeoQuery[Zelle & Mooney, 1996]

– 250 queries for the given U.S. geography database

– 6.87 words on average in NL sentences

– 5.32 tokens on average in formal expressions
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Experimental Methodology

• Evaluated using standard 10-fold cross validation

• Correctness
– CLang: output exactly matches the correct 

representation

– Geoquery: the resulting query retrieves the same 
answer as the correct representation 

• Metrics

| |

| |

ParsesCompleted

ParsesCompletedCorrect
Precision=

||Sentences

Parses|Completed|Correct
Recall

 
     =
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Precision Learning Curve for CLang

118

Recall Learning Curve for CLang

119

Precision Learning Curve for GeoQuery

120

Recall Learning Curve for Geoquery
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Issues for Future Research

• Manual annotation of large corpora is difficult.  Potential 
solutions include:
– Active learning
– Unsupervised learning
– Semi-supervised learning
– Learning from natural context

• Most progress has involved syntactic analysis.  More work is 
needed on semantic and pragmatic analysis.
– Semantic role labeling: PropBank and FrameNet
– Semantic parsing: OntoNotes?

• What are the implications for our understanding of human 
language learning?
– Nativism vs. empiricism

• What are the implications for our understanding of human 
language evolution?
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Conclusions

• Resolving ambiguity in natural language is the most 
difficult aspect of NLP.

• Properly resolving ambiguity requires many types of 
knowledge that must be efficiently and effectively 
integrated during processing.

• Manually encoding this knowledge is very difficult. 
• Machine learning methods can learn the requisite 

knowledge from various types of annotated and 
unannotated corpora.

• Learning methods have proven more successful for 
building accurate, robust NLP systems than manual 
knowledge acquisition.


