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Sub-Problems in NLP

» Understanding / Comprehension
— Speech recognition
— Syntactic analysis
— Semantic analysis
— Pragmatic analysis
* Generation / Production
— Content selection
— Syntactic realization
— Speech synthesis
 Translation
— Understanding
— Generation

Ambiguity is Ubiquitous

» Speech Recognition
— “Recognize speech” vs. “Wreck a nice beach”
» Syntactic Analysis

— “I ate spaghettwith a fork” vs. “I ate spaghettiith
meat balls.”

* Semantic Analysis
— “The dog is in thgoen” vs. “The ink is in thepen”
» Pragmatic Analysis
— Pedestrian: “Doegour dogbite?,”
Clouseau: “No.” o
Pedestrian pets dog and is bitten.

Pedestrian: “I thought you said your dog does not bite?”
Clouseau: “That, sir, is not my dog.”

Humor and Ambiguity

» Many jokes rely on the ambiguity of language:

— Groucho Marx: One morning | shot an elephant in my
pajamas. How he got into my pajamas, I'll never know.

— She criticized my apartment, so | knocked her flat.

— Noah took all of the animals on the ark in pairs. Except
the worms, they came in apples.

— Policeman to little boy: “We are looking for a thief with
a bicycle.” Little boy: “Wouldn’t you be better using
your eyes.”

— Why is the teacher wearing sun-glasses. Because the
class is so bright.

Ambiguity is Explosive

Ambiguities compound to generate enormous|
numbers of possible interpretations.

In English, a sentence endingnn
prepositional phrases hasger2"syntactic
interpretations.

— "I saw the man with the telescop&’parses

— “I saw the man on the hill with the telescop&’parses

— “I saw the man on the hill in Texas with the telescope™:
14 parses

— “I saw the man on the hill in Texas with the telescope at
noon.”:42 parses

Word Sense Disambiguation (WSD)
as Text Categorization

< Each sense of an ambiguous word is treated as a category
— “play” (verb)
« play-game
« play-instrument
* play-role
— “pen” (noun)
* writing-instrument
« enclosure
< Treat current sentence (or preceding and current sentence
as a document to be classified.
— “play”:
« play-game: “John played soccer in the stadium on Friday.”
« play-instrument: “John played guitar in the band on Friday.”
« play-role: “John played Hamlet in the theater on Friday.”
— “pen”:
« writing-instrument: “John wrote the letter with a pen in New York.”
« enclosure: “John put the dog in the pen in New York.”




Learning for WSD

Assume part-of-speech (POS), e.g. noun, verb,
adjective, for the target word is determined.

Treat as a classification problem with the
appropriate potential senses for the target word
given its POS as the categories.

Encode context using a set of features to be used
for disambiguation.

Train a classifier on labeled data encoded using
these features.

Use the trained classifier to disambiguate future
instances of the target word given their contextual
features.

WSD “line” Corpus

* 4,149 examples from newspaper articles
containing the word “line.”

» Each instance of “line” labeled with one of
6 senses from WordNet.

» Each example includes a sentence
containing “line” and the previous sentence
for context.

Senses of “line”

Product “While he wouldn’t estimate the sale price, analysts have
estimated that it would exceed $1 billion. Kraft also told anslygplans

to develop and test a line of refrigerated entrees and desseles the
Chillery brand name.”

Formation “C-LD-R L-V-S V-NNA reads a sign in Caldor’s book
department. The 1,000 or so people fighting for a place in linerfave
trouble filling in the blanks.”

Text “Newspaper editor Francis P. Church became famous for a 1897
editorial, addressed to a child, that included the line “Yes, Magthere is
a Santa Clause.”

Cord: “It is known as an aggressive, tenacious litigator. Riclbard
Parsons, a partner at Patterson, Belknap, Webb and Tyler hikes t
experience of opposing Sullivan & Cromwell to “having a thousand-pound
tuna on the line.”

Division: “Today, it is more vital than ever. In 1983, the act was
entrenched in a new constitution, which established a tricaperi@ment
along racial lines, whith separate chambers for whites, edéoand Asians
but none for blacks.”

Phone “On the tape recording of Mrs. Guba's call to the 911 emergency
line, played at the trial, the baby sitter is heard begging famasulance.” o

Experimental Data for WSD of “line”

» Sample equal number of examples of each
sense to construct a corpus of 2,094.
* Represent as simple binary vectors of word
occurrences in 2 sentence context.
— Stop words eliminated
— Stemmed to eliminate morphological variation
 Final examples represented with 2,859
binary word features.
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Learning Algorithms

Naive Bayes

— Binary features

K Nearest Neighbor

— Simple instance-based algorithm with k=3 and Hamming distance
Perceptron

— Simple neural-network algorithm.

C4.5

— State of the art decision-tree induction algorithm
PFOIL-DNF

— Simple logical rule learner for Disjunctive Normal Form
PFOIL-CNF

— Simple logical rule learner for Conjunctive Normal Form
PFOIL-DLIST

— Simple logical rule learner for decision-list of conjumetiules

Learning Curves for WSD of “line”
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Discussion of
Learning Curves for WSD of “line”

» Naive Bayes and Perceptron give the best results.
» Both use a weighted linear combination of
evidence from many features.

» Symbolic systems that try to find a small set of
relevant features tend to overfit the training data
and are not as accurate.

» Nearest neighbor method that weights all features
equally is also not as accurate.

» Of symbolic systems, decision lists work the best.

Beyond Classification Learning

 Standard classification problem assumes
individual cases are disconnected and independen
(i.i.d.: independently and identically distributed)

* Many NLP problems do not satisfy this
assumption and involve making many connected
decisions, each resolving a different ambiguity,
but which are mutually dependent.

» More sophisticated learning and inference
techniques are needed to handle such situations in
general.
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Sequence Labeling Problem

* Many NLP problems can viewed as sequence
labeling.
» Each token in a sequence is assigned a label.

 Labels of tokens are dependent on the labels of
other tokens in the sequence, particularly their
neighbors (not i.i.d).

.IZIQ'A M e

bar blam zonk zonk bar blam

Part Of Speech Tagging

» Annotate each word in a sentence with a
part-of-speech.
* Lowest level of syntactic analysis.

®

John saw the saw and decided to take it to the tab
PN V Det N Con V PartV ProPrepDet N

» Useful for subsequent syntactic parsing and
word sense disambiguation.
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Information Extraction

< Identify phrases in language that refer to specific types of
entities and relations in text.
* Named entity recognition is task of identifying names of
people, places, organizations, etc. in text.
people organizations places
— Michael Dellis the CEO ofDell Computer Corporatioand lives
in Austin Texas
» Extract pieces of information relevant to a specific
application, e.g. used car ads:
make model year mileage

— For sale2002ToyotaPriug 20,000 mj
Available starting July 30, 2006.

Semantic Role Labeling

» For each clause, determine the semantic rol
played by each noun phrase that is an
argument to the verb.
agent source destination instrument

—JohndroveMary from Austin to Dallasin his
Toyota Prius

— The hammebrokethe window

 Also referred to a “case role analysis,”
“thematic analysis,” and “shallow semantic
parsing”

\1%
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Bioinformatics

» Sequence labeling also valuable in labeling
genetic sequences in genome analysis.
extron intron
— AGCTAACGTTCGATACGGATTACAGCCT

Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

J(lhn saw the saw and decided to take it to the tablg

classifier|

PN
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Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

John saw% slavynd decided to take it to the tablg.

classifier|

N

Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

John saw the saw Tnd decided to take it to the tablg.

classifier|

Conj
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Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

John saw the saw a\dl dfcided to take it to the tablg

classifier|
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Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

John saw the saw and decidef to take it to the tablg

classifier|

Part
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Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

John saw the saw and decideiti t?ke it to the tablg

classifier|
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Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

John saw the saw and decided t\ta\:ejt to the tabld

classifier|
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Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

John saw the saw and decided to ta&e‘ ii to the tabld

classifier|

Prep

Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

John saw the saw and decided to take il\ 10 the tablg.

classifier|

Det
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Sequence Labeling as Classification

 Classify each token independently but use
as input features, information about the
surrounding tokens (sliding window).

John saw the saw and decided to take it thle fble.

classifier|

N

Forward Classification

Yohn saw the saw and decided to take it to the table]

Sequence Labeling as Classification
Using Outputs as Inputs

* Better input features are usually the
categorie®f the surrounding tokens, but
these are not available yet.

» Can use category of either the preceding or
succeeding tokens by going forward or back
and using previous output.
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Forward Classification

PN
JONn saw the saw and decided to take it to the table]
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Forward Classification

Johxsay the saw and decided to take it to the table]

Forward Classification

PN V Det
John saw the saw and decided to take it to the table]

W
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Forward Classification

PN V Det N

decided to take it to the table

Forward Classification

PN V Det N Caonj

John saw the saw an to the table
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Forward Classification

PN V Det N Cqnj \%
John saw the saw and\de 'def to take it to the table|

Forward Classification

PN V Det N Conj (V (Part
John saw the saw and decided\ to take it to the table]
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Forward Classification

PN V Det N Conj V [PartV
John saw the saw and decided\to tare it to the table]

Pro
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Forward Classification

PN V Det N Conj V PartV Pro
John saw the saw and decided to ké\li jo the table

42




Forward Classification

PN V Det N Conj V PartV Pro Prep
John saw the saw and decided to take\it tf he table

classifier

Det
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Forward Classification

PN V Det N Conj V PartV ProPrep Det
John saw the saw and decided to take it OKF jable

Backward Classification

» Disambiguating “to” in this case would be
even easier backward.
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Backward Classification

» Disambiguating “to” in this case would be
even easier backward.

John saw the saw and decided to take 't\‘lo/z table

Det
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Backward Classification

» Disambiguating “to” in this case would be
even easier backward.

Backward Classification
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» Disambiguating “to” in this case would be
even easier backward.

48




Backward Classification

» Disambiguating “to” in this case would be
even easier backward.
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Backward Classification

» Disambiguating “to” in this case would be
even easier backward.

roPrep Det N
Ake it to the table
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Backward Classification

» Disambiguating “to” in this case would be
even easier backward.

PartV Pro Prep Det N
John saw the saw ard\iifcid d Ao take it to the table]

Backward Classification

» Disambiguating “to” in this case would be
even easier backward.

PartV ProPrep Det N

John saw the s%rnd/zéid to take it to the table|
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Backward Classification

» Disambiguating “to” in this case would be
even easier backward.

nj V PartV ProPrep Det N

C
John saw the TW/an ecided to take it to the table

classifier|

Backward Classification

» Disambiguating “to” in this case would be
even easier backward.

V  PartV ProPrep Det N
dnd decided to take it to the table]
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Backward Classification

» Disambiguating “to” in this case would be
even easier backward.

t V Conj V PartV ProPrep Det N

D,
JO%TW/; aw and decided to take it to the table]

classifier|

Problems with Sequence Labeling as
Classification

* Not easy to integrate information from
category of tokens on both sides.

« Difficult to propagate uncertainty between
decisions and “collectively” determine the
most likely joint assignment of categories to
all of the tokens in a sequence.

Hidden Markov Model

* Probabilistic generative model for sequences.

A finite state machine with probabilistic transito

and probabilistic generation of outputs from state

« Assume an underlying set of states in which the
model can be (e.g. parts of speech).

» Assume probabilistic transitions between states ov
time (e.g. transition from POS to another POS as
sequence is generated).

« Assume a probabilistic generation of tokens from
states (e.g. words generated for each POS).

™

Backward Classification

» Disambiguating “to” in this case would be
even easier backward.

Det V Conj V PartV ProPrep Det N
e saw and decided to take it to the table

PN
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Probabilistic Sequence Models

» Probabilistic sequence models allow
integrating uncertainty over multiple,
interdependent classifications and
collectively determine the most likely
global assignment.

» Two standard models
— Hidden Markov Model (HMM)
— Conditional Random Field (CRF)

58

Sample HMM for POS

60
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Sample HMM Generation

Sample HMM Generation
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Sample HMM Generation

Sample HMM Generation

John

John
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Sample HMM Generation

Sample HMM Generation

John bit

John bit

66
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Sample HMM Generation

Sample HMM Generation

John bit the

John bit the

68

Sample HMM Generation

Sample HMM Generation

John bit the apple

John bit the apple
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Formal Definition of an HMM

A set ofN statesS={S,, S,, ... §}
A set ofM possible observations={V,,V,...Vjy}
A state transition probability distributioh={a;}

8 =P(..=S/|q=8) 1<i,j<N
Observation probability distribution for each state
B={by(K)}

b;(kK)=P(v, att|g, =S;) 1<j<N 1l<ks<M
Initial state distributiorr = {7}
7T =P(Q,=95) 1<i<N
Total parameter sét{A,B,x}

HMM Generation Procedure

» To generate a sequencelofbservations:
0=0,0,...0;

Choose an initial statg=§ according te
Fort=1toT
Pick an observatio®=v, based on being in stateusing
distributionbg,(K)
Transit to another statg,,=S based on transition
distributiona; for stateq,

72
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Three Useful HMM Tasks

* Observation likelihoodTo classify and
order sequences.

Most likely state sequencéo tag each
token in a sequence with a label.
Maximum likelihood training To train
models to fit empirical training data.

HMM: Observation Likelihood

* Given a sequence of observatioBsand a model
with a set of parameters, what is the probability
that this observation was generated by this model:
P(O|») ?

+ Allows HMM to be used as Ian%;uage modelA
formal probabilistic model of a language that
assigns a probability to each string saying how
likely that string was to have been generated by
the language.

* Useful for two tasks:

— Sequence Classification
— Most Likely Sequence

74

Sequence Classification

« Assume an HMM is available for each category
(i.e. language).

* What is the most likely category for a given
observation sequence, i.e. which category’'s HMM
is most likely to have generated it?

» Used in speech recognition to find most likely
word model to have generate a given sound or
phoneme sequence.

Austin ~ P(O| Austin) > PO | Boston) ? Boston [

Most Likely Sequence

» Of two or more possible sequences, which
one was most likely generated by a given
model?

» Used to score alternative word sequence
interpretations in speech recognition.

vice president Gope

O,

Ordinary English 55 | ordenglish) > RO, | OrdEnglish) 2

HMM: Observation Likelihood
Naive Solution

» Consider all possible state sequen€of length
T that the model could have traversed in
generating the given observation sequence.

» Compute the probability of this state sequence
from m andA, and multiply it by the probabilities
of generating each of given observations in each
of the corresponding states in this sequence to get
PO.Q[}).

» Sum this over all possible state sequences to get
PO| %).

« Computationally complex: T).

HMM: Observation Likelihood
Efficient Solution

» Markov assumptiorProbability of the current
state only depends on the immediately previous
state, not on any earlier history (via the traoaiti
probability distributionA).

» Therefore, the probability of being in any state at
any given time only relies on the probability of
being in each of the possible states at tirhe

» Forward-Backward AlgorithmUses dynamic
programming to exploit this fact to efficiently
compute observation likelihood in BRT) time.

78
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Most Likely State Sequence

« Given an observation sequen€g,and a modek,
what is the most likely state sequeigeQ;,Q,,...Qr,
that generated this sequence from this model?

» Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globaky be
assignment of tags to all tokens in a sequence @asin
principled approach grounded in probability theory.

John gave the dog an apple.

Most Likely State Sequence

Given an observation sequen€g,and a model,
what is the most likely state sequeigeQ;,Q,,...Qx,
that generated this sequence from this model?
Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globaky be
assignment of tags to all tokens in a sequence @asin
principled approach grounded in probability theory.

Johngave the dog an apple.

Det Noun PropNounVerb

80

Most Likely State Sequence

Given an observation sequen€g,and a model,
what is the most likely state sequeligeQ;,Q,,...Qr,
that generated this sequence from this model?
Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globaky be
assignment of tags to all tokens in a sequence @asin
principled approach grounded in probability theory.

Most Likely State Sequence

Given an observation sequen€g,and a model,
what is the most likely state sequeigeQ;,Q,,...Qr,
that generated this sequence from this model?
Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globaky be
assignment of tags to all tokens in a sequence @asin
principled approach grounded in probability theory.

T )
A‘ Johngavethe dog an applg
‘v Det Noun PropNounVerb
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Most Likely State Sequence

» Given an observation sequen€g,and a modek,
what is the most likely state sequeigeQ;,Q,,...Qq,
that generated this sequence from this model?

» Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globaky be
assignment of tags to all tokens in a sequence @asin
principled approach grounded in probability theory.

S —
s“"’“ﬂ\
“ka

‘v Det Noun PropNounVerb

Most Likely State Sequence

Given an observation sequen€g,and a model,
what is the most likely state sequeigeQ;,Q,,...Qq,
that generated this sequence from this model?
Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globaky be
assignment of tags to all tokens in a sequence @asin
principled approach grounded in probability theory.

S~
SSSPRVESNAL
=

‘g’j Det Noun PropNounVerb
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Most Likely State Sequence

« Given an observation sequen€g,and a modek,
what is the most likely state sequeigeQ;,Q,,...Qr,
that generated this sequence from this model?

» Used for sequence labeling, assuming each state
corresponds to a tag, it determines the globaky be
assignment of tags to all tokens in a sequence @asin
principled approach grounded in probability theory.

e
&

—————
b &
v Det Noun PropNounVerb

P

HMM: Most Likely State Sequence
Efficient Solution

* Dynamic Programming can also be used to
exploit the Markov assumption and
efficiently determine the most likely state
sequence for a given observation and
model.

» Standard procedure is called tigerbi
algorithm(Viterbi, 1967) and also has
O(N2T) time complexity.

86

Maximum Likelihood Training

» Given an observation sequenCgwhat set of
parameters),, for a given model maximizes the
probability that this data was generated from this
model (PQ| A))?

» Used to train an HMM model and properly induce
its parameters from a set of training data.

» Only need to have an unannotated observation
sequence (or set of sequences) generated from thg
model. Does not need to know the correct state
sequence(s) for the observation sequence(s). In
this sense, it isnsupervised

Maximum Likelihood Training

Training Sequences

ah s ten

astin

oh s tun

eh z ten ~ HMM —>
Training

Austin

88

HMM: Maximum Likelihood Training
Efficient Solution

* There is no known efficient algorithm for finding
the parameters, that truly maximize RQ)| ).).

» However, using iterative re-estimation, eum-
Welch algorithm a version of a standard statistical
procedure calle@xpectation Maximization (EM)
is able tdocally maximize PQ| 1).

* In practice, EM is able to find a good set of
parameters that provide a good fit to the training
data in many cases.

Sketch of Baum-Welch (EM) Algorithm
for Training HMMs

Assume an HMM withN states.
Randomly set its parametérs{A,B, w}
(so that they represent legal distributions)
Until converge (i.ek no longer changes) do:
E Step: Use the forward/backward procedure to
determine the probability of various possible
state sequences for generating the training d
M Step: Use these probability estimates to
re-estimate values for all of the parameters

ata

90
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Supervised HMM Training

« If training sequences are labeled (tagged) with the
underlying state sequences that generated them,
then the parameters={A,B, z} can all be
estimated directly from counts accumulated from
the labeled sequences (with appropriate
smoothing).

Training Sequences

Johnatethe apple
A dogbit Mary i
Mary hit the dog Supervised
JohngaveMary thecat ===y  HMM
. Training
Det Noun PropNounVerb o1

Generative vs. Discriminative Models

* HMMs aregenerative modeland arenotdirectly
designed to maximize the performance of sequen
labeling. They model theint distributionP(O,Q)

» HMMs are trained to have an accurate probabilistic
model of the underlying language, and not all
aspects of this model benefit the sequence labeling
task.

 Discriminative modelare specifically designed and
trained to maximize performance on a particular
inference problem, such as sequence labeling. The
model theconditional distributionP(Q | O)

92

Conditional Random Fields

» Conditional Random Field€RF9 are
discriminative models specifically designed and
trained for sequence labeling.

« Experimental results verify that they have superior
accuracy on various sequence labeling tasks.

— Noun phrase chunking
— Named entity recognition
— Semantic role labeling

» However, CRFs are much slower to train and do

not scale as well to large amounts of training data

93

Limitations of Finite-State Models

Finite state models like HMMs and CRFs are
unable to model all aspects of natural-language.

» The complexity and nested phrasal structure of
natural language require recursion and the power
of context free gramma(€FGy.

For example “The velocity of the seismic waves
rises to..." is hard for a HMM POS tagger since it
expects a plural verb after “waves” (“rise”)

/‘K

NP, VP
T 5

Det N P rises 1o ...
/ /K
A

The velocity P[ep NR
f

of the seismic waves 94

Probabilistic Context Free Grammar
(PCFG)

* A PCFG is a probabilistic version of a CFG
where each production has a probability.

 Probabilities of all productions rewriting a
given non-terminal must add to 1, defining
a distribution for each non-terminal.

 String generation is now probabilistic where
production probabilities are used to non-
deterministically select a production for
rewriting a given non-terminal.

Sample PCFG

S—>NPVP 09
S— VP 01 97t

NP — DetAN 0.5 NP \a
NP — NP PP 0.3}:1 A \P VAN
NP — PropN 0.2

Det it Det A N
A—¢ . 06 )_, //&X AN [|
A — Adj A 0.4 The Adj A dogwith Det A N & girl
PP— PrepNP 1.0 4=1 | | |

e &

VP—-VNP 0. big
VP—VPPP 03 1°°
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Sentence Probability

» Assume productions for each node are chosen
independently.

 Probability of derivation is the product of the
probabilities of its productions. D

P(D)=0.9x0.5x0.7x0.5x

0.6x0.01 x0.01x0.5 x
0.3x0.6x0.01 05 Dm 01 0.01/\
= 8.505 x 16 / op i |
The @& dog bit Det A N
 Probability of a sentence is the sum of the a ¢ gl
probability of all of its derivations.

Three Useful PCFG Tasks

Since it is unambiguous, P(“The dog bit a girl”) = 8.505 x 10-4
97

* Observation likelihoodTo classify and
order sentences.

* Most likely derivation To determine the
most likely parse tree for a sentence.

» Maximum likelihood trainingTo train a
PCFG to fit empirical training data.

98

PCFG: Observation Likelihood

* There is an analog to Forward/Backward called
theInside/Outside algorithrfor efficiently
determining how likely a string is to be produced
by a PCFG.

» Can use a PCFG as a language model to choose
between alternative sentences for speech
recognition or machine translation.

S—NPVP 09 o)
S— VP 0.1 1

NP —DetAN 0.5 .
NP—NPPP 03 ? The dog big barked>
NP —PropN 0.2
A—e 0.6 -
A—AdiA 04 2 The big dog barked
PP—Prep NP 1.0 =
VP —VNP 07 O2
VP — VP PP 0.3 . .

P(O, | English) > PO, | English) ? 99

PCFG: Most Likely Derivation

English

* There is an analog to the Viterbi algorithm to
efficiently determine the most probable derivation
(parse tree) for a sentence.

 Time complexity is O{°T3) whereN is the
number of non-terminals in the grammar anid
the length of the sentence.

SoNP VP 08 John put the dog in the pen.

S— VP 0.1 /\

NP —DetAN 0.5 NP P
NP—NPPP 0.3 / /Y\
NP —PropN 0.2 PCFG ohn VvV NP

| J PP
A—e 0.6 = Parser ’ Q
A — Adj A 0.4 put ‘the dog inthe pen

PP—Prep NP 1.0

VP VNP 0.7
VP VP PP 0.3

English 100

PCFG: Most Likely Derivation

* There is an analog to the Viterbi algorithm to
efficiently determine the most probable derivation
(parse tree) for a sentence.

 Time complexity is O{°T3) whereN is the
number of non-terminals in the grammar anid
the length of the sentence.

SoNF VP 08 John put the dog in the pen.
S— VWP 0.1 /\
NP —DetAN 0.5

NP —NPPP 0.3

A NP /YP
NP —PropN 0.2 L) PCFG J%m vV NP
A—e 0.6 Parser [ / _\F
A — Adj A 0.4 put ‘the dog inthe pen

PP—Prep NP 1.0
VP VNP 0.7
VP - VP PP 0.3

English 101

PCFG: Maximum Likelihood Training

» Given a set of sentences, induce a grammar that
maximizes the probability that this data was
generated from this grammar.

* Assume the number of non-terminals in the
grammar is specified.

* Only need to have an unannotated set of sequencsg
generated from the model. Does not need correct
parse trees for these sentences. In this sernise, it
unsupervised
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PCFG: Maximum Likelihood Training

Training Sentences
S—NP VP 0.9

John ate the apple S— VP 0.1

- NP —DetAN 0.5
A it Mar
dog bit Mary NP—NPPP 03

Mary hit the dog NP — PropN
0.2
John gave Mary the cat o PCFG A H"}a P 0.6

ini A — Adj A 0.4
Tralnlng PP—Prep NP 1.0
VP VNP 0.7
VP - VP PP 0.3

English
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PCFG Comments

¢ Unsupervised training (of PCFGs or HMMs) do not to
work very well. They tend to capture alternative structure
in the data that does not directly reflect general syntax.

< Since probabilities of productions do not rely on specific
words or concepts, only general structural disambiguation
is possible.

« Consequently, vanilla PCFGs cannot resolve syntactic
ambiguities that require semantics to resolve, e.g. ate with
fork vs. meatballs.

¢ In order to work well, PCFGs must bxicalized i.e.
productions must be specialized to specific words by
including their head-word in their LHS non-terminals (e.g.
VP-ate).
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Example of Importance of Lexicalization

» A general preference for attaching PPs to verbs
rather than NPs in certain structural situations
could be learned by a vanilla PCFG.

» But the desired preference can depend on specifi¢
words.

John likes the dog in the pen.
S—NP VP 0.9
S— VWP 0.1 /\
NP —DetAN 0.5

NP —NPPP 0.3

NP A/P
NP —PropN 0.2 PCFG . J%m

A—s 06 == Parser v #P
A — Adj A 0.4 /
PP—Prep NP 1.0 likes ‘the dog inthe pen

VP VNP 0.7
VP - VP PP 0.3

English
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PCFG: Supervised Training

« If parse trees are provided for training sentenaes,
grammar and its parameters can be can all be
estimated directly from counts accumulated from thq
tree-bankwith appropriate smoothing).

Tree Bank

e
ho e~ S—oNPVP 09
, S— VP 0.1
put ‘e tog e pen NP —DetAN 0.5
P NP NP PP 0.3
A Supervised NP Proph 08
e e = PCFG Drhe 08
.. — Ad] 0.4
[FAVAN Training PP Prep NP 10
VP — VNP 0.7
VP - VP PP 03

English

Example of Importance of Lexicalization

» A general preference for attaching PPs to verbs
rather than NPs in certain structural situations
could be learned by a vanilla PCFG.

 But the desired preference can depend on specifi
words.

John likes the dog in the pen.
S—NP VP 0.9
S— VP 0.1 /\
NP —DetAN 0.5

NP P
NP—NPPP 03 / /{\
NP —PropN 0.2 PCFG John ¥V NP PP
Aoe 06 == parser / Q
A—AdA 04 likes ‘the dog inthe pen

PP—Prep NP 1.0
VP VNP 0.7
VP - VP PP 0.3

English
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Treebanks

» English Penn TreebanBtandard corpus for
testing syntactic parsing consists of 1.2 M words
of text from the Wall Street Journal (WSJ).

* Typical to train on about 40,000 parsed sentences
and test on an additional standard disjoint teist se
of 2,416 sentences.

* Chinese Penn TreebarlO0K words from the
Xinhua news service.

 Other corpora existing in many languages, see the
Wikipedia article “Treebank”
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Treebank Results

« Standard accuracy measurements judge the fradtion

the constituents that match between the computed arn
human parse trees. Rfis the system'’s parse tree ahd
is the human parse tree (the “gold standard”):
— Recall= (# correct constituents ) / (# constituents if)
— Precisior= (# correct constituents B) / (# constituents i)
» Labeled Precisioandlabeled recaltequire getting the
non-terminal label on the constituent node cortrect
count as correct.
Results of current state-of-the-art systems on the
English Penn WSJ treebank are about 90% labeled
precision and recall. 109

CLang: RoboCupCoachL anguage

* In RoboCup Coach competition teams compete to
coach simulated playenstp://www.robocup.ory

» The coaching instructions are given in a formal

language called CLangnen et al. 2003]

If the ball is in our
goal area then player
1 should intercept it

Simulated soccer field

iz

ClLang

Learning Semantic Parsers

» Manually programming robust semantic parse
is difficult due to the complexity of the task.

» Semantic parsers can be learned automatical
from sentences paired with their logical form.

NL - LF
Training Exs

Natural

Logical
Language Form

113

Yy

Semantic Parsing

e Semantic Parsing: Transforming natural
language (NL) sentences intomputer
executableomplete logical forms or
meaning representations (MRs) for some
application.

» Example application domains
— CLang: Robocup Coach Language
— Geoquery: A Database Query Application

110

Geoquery:
A Database Query Application

» Query application for U.S. geography database
containing about 800 faciglie & Mooney, 1996]

Which rivers run
through the states
bordering Texas?

Arkansas, Canadian, Cimarron,
Gila, Mississippi, Rio Grande ...

IAnswer
o,

Semantic Parsing

Query
‘answer(traverse(next_to(stateid(‘texas')))) ‘—V

112

Our Semantic-Parser Learners

¢ CHILL+WOLFIE (zelle & Mooney, 1996; Thompson & Mooney,
1999, 2003)
— Separates parser-learning and semantic-lexicon learning.
— Leams a deterministic parser using ILP techniques.
¢ COCKTAIL (Tang & Mooney, 2001)
— Improved ILP algorithm for CHILL.
e SILT (Kate, Wong & Mooney, 2005)
— Leamns symbolic transformation rules for mapping directly from NL to LF.
¢ SCISSORGe & Mooney, 2005)
— Integrates semantic interpretation into Collins’ statistical symtetiser.
¢ WASP (Wong & Mooney, 2006)
— Uses syntax-based statistical machine translation methods.
¢ KRISP (Kate & Mooney, 2006)

— Uses a series of SVM classifiers employing a string-kernel taivtelsabuild
semantic representations.




Experimental Corpora

ClLang

— 300 randomly selected pieces of coaching advice from
the log files of the 2003 RoboCup Coach Competition

— 22.52 words on average in NL sentences
— 14.24 tokens on average in formal expressions

GeoQueryzelle & Mooney, 1996]

— 250 queries for the given U.S. geography database
— 6.87 words on average in NL sentences

— 5.32 tokens on average in formal expressions
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Experimental Methodology

 Evaluated using standard 10-fold cross validation
» Correctness

— ClLang: outpuexactly matchesthe correct
representation

— Geoquery: the resulting query retrieves the same
answer as the correct representation

* Metrics
Precision= | Correct CompletedParseg
| CompletedParseg
Recall = |Correct CompletedParses|

|Sentencés
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Precision Learning Curve for CLang

Precision (%)
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Recall Learning Curve for CLang
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Precision Learning Curve for GeoQuery
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Issues for Future Research

Manual annotation of large corpora is difficult. Potential
solutions include:

— Active learning

— Unsupervised learning

— Semi-supervised learning

— Learning from natural context

Most progress has involved syntactic analysis. More work i
needed on semantic and pragmatic analysis.

— Semantic role labeling: PropBank and FrameNet

— Semantic parsing: OntoNotes?
What are the implications for our understanding of human
language learning?

— Nativism vs. empiricism

What are the implications for our understanding of human
language evolution?
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Conclusions

Resolving ambiguity in natural language is the most|
difficult aspect of NLP.

Properly resolving ambiguity requires many types o
knowledge that must be efficiently and effectively
integrated during processing.

Manually encoding this knowledge is very difficult.
Machine learning methods can learn the requisite
knowledge from various types of annotated and
unannotated corpora.

Learning methods have proven more successful for
building accurate, robust NLP systems than manual
knowledge acquisition.
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