Web Search

Advances & Link Analysis

Meta-Search Engines

• Search engine that passes query to several other search engines and integrate results.
 – Submit queries to host sites.
 – Parse resulting HTML pages to extract search results.
 – Integrate multiple rankings into a “consensus” ranking.
 – Present integrated results to user.

• Examples:
 – Metacrawler
 – SavvySearch
 – Dogpile

HTML Structure & Feature Weighting

• Weight tokens under particular HTML tags more heavily:
 – <TITLE> tokens (Google seems to like title matches)
 – <H1>, <H2>… tokens
 – <META> keyword tokens

• Parse page into conceptual sections (e.g. navigation links vs. page content) and weight tokens differently based on section.
Bibliometrics: Citation Analysis

- Many standard documents include bibliographies (or references), explicit citations to other previously published documents.
- Using citations as links, standard corpora can be viewed as a graph.
- The structure of this graph, independent of content, can provide interesting information about the similarity of documents and the structure of information.
- CF corpus includes citation information.

Impact Factor

- Developed by Garfield in 1972 to measure the importance (quality, influence) of scientific journals.
- Measure of how often papers in the journal are cited by other scientists.
- Computed and published annually by the Institute for Scientific Information (ISI).
- The impact factor of a journal J in year Y is the average number of citations (from indexed documents published in year Y) to a paper published in J in year $Y-1$ or $Y-2$.
- Does not account for the quality of the citing article.

Bibliographic Coupling

- Measure of similarity of documents introduced by Kessler in 1963.
- The bibliographic coupling of two documents A and B is the number of documents cited by both A and B.
- Size of the intersection of their bibliographies.
- Maybe want to normalize by size of bibliographies?
Co-Citation

- Number of documents that cite both A and B.
- Maybe want to normalize by total number of documents citing either A or B?

Citations vs. Links

- Web links are a bit different than citations:
 - Many links are navigational.
 - Many pages with high in-degree are portals not content providers.
 - Not all links are endorsements.
 - Company websites don’t point to their competitors.
 - Citations to relevant literature is enforced by peer-review.

Authorities

- *Authorities* are pages that are recognized as providing significant, trustworthy, and useful information on a topic.
- *In-degree* (number of pointers to a page) is one simple measure of authority.
- However in-degree treats all links as equal.
- Should links from pages that are themselves authoritative count more?
Hubs

- *Hubs* are index pages that provide lots of useful links to relevant content pages (topic authorities).
- Hub pages for IR are included in the course home page:
 - http://www.cs.utexas.edu/users/mooney/ir-course

HITS

- Algorithm developed by Kleinberg in 1998.
- Attempts to computationally determine hubs and authorities on a particular topic through analysis of a relevant subgraph of the web.
- Based on mutually recursive facts:
 - Hubs point to lots of authorities.
 - Authorities are pointed to by lots of hubs.

Hubs and Authorities

- Together they tend to form a bipartite graph:
HITS Algorithm

- Computes hubs and authorities for a particular topic specified by a normal query.
- First determines a set of relevant pages for the query called the *base* set S.
- Analyze the link structure of the web subgraph defined by S to find authority and hub pages in this set.

Constructing a Base Subgraph

- For a specific query Q, let the set of documents returned by a standard search engine (e.g. VSR) be called the *root* set R.
- Initialize S to R.
- Add to S all pages pointed to by any page in R.
- Add to S all pages that point to any page in R.

Base Limitations

- To limit computational expense:
 - Limit number of root pages to the top 200 pages retrieved for the query.
 - Limit number of “back-pointer” pages to a random set of at most 50 pages returned by a “reverse link” query.
- To eliminate purely navigational links:
 - Eliminate links between two pages on the same host.
- To eliminate “non-authority-conveying” links:
 - Allow only m ($m \pm 4-8$) pages from a given host as pointers to any individual page.
Authorities and In-Degree

• Even within the base set S for a given query, the nodes with highest in-degree are not necessarily authorities (may just be generally popular pages like Yahoo or Amazon).
• True authority pages are pointed to by a number of hubs (i.e. pages that point to lots of authorities).

Iterative Algorithm

• Use an iterative algorithm to slowly converge on a mutually reinforcing set of hubs and authorities.
• Maintain for each page $p \in S$:
 – Authority score: a_p (vector a)
 – Hub score: h_p (vector h)
• Initialize all $a_p = h_p = 1$
• Maintain normalized scores:
 $\sum_{p \in S} a_p \vec{a} = 1$ $\sum_{p \in S} h_p \vec{h} = 1$

HITS Update Rules

• Authorities are pointed to by lots of good hubs:
 $a_p = \sum_{q \to p} h_q$
• Hubs point to lots of good authorities:
 $h_p = \sum_{q \to q} a_q$
Illustrated Update Rules

\[a_i = h_i + h_j + h_k \]
\[h_i = h_i + a_j + a_k \]

HITS Iterative Algorithm

Initialize for all \(p \in S \): \(a_p = h_p = 1 \)
For \(i = 1 \) to \(k \):
 For all \(p \in S \): \(a_p = \sum q \neq p h_q \) (update auth. scores)
 For all \(p \in S \): \(h_p = \sum p \neq q a_q \) (update hub scores)
 For all \(p \in S \): \(a_p = a_p / c \) (normalize \(a \))
 For all \(p \in S \): \(h_p = h_p / c \) (normalize \(h \))

Convergence

• Algorithm converges to a fix-point if iterated indefinitely.
• Define \(A \) to be the adjacency matrix for the subgraph defined by \(S \).
 \[A_{ij} = 1 \text{ for } i \in S, j \in S \text{ iff } i \rightarrow j \]
• Authority vector, \(a \), converges to the principal eigenvector of \(A^T A \)
• Hub vector, \(h \), converges to the principal eigenvector of \(A A^T \)
• In practice, 20 iterations produces fairly stable results.
Results

- Authorities for query: “Java”
 - java.sun.com
 - comp.lang.java FAQ
- Authorities for query “search engine”
 - Yahoo.com
 - Excite.com
 - Lycos.com
 - AltaVista.com
- Authorities for query “Gates”
 - Microsoft.com
 - roadahead.com

Result Comments

- In most cases, the final authorities were not in the initial root set generated using AltaVista.
- Authorities were brought in from linked and reverse-linked pages and then HITS computed their high authority score.

Finding Similar Pages Using Link Structure

- Given a page, P, let R (the root set) be t (e.g. 200) pages that point to P.
- Grow a base set S from R.
- Run HITS on S.
- Return the best authorities in S as the best similar-pages for P.
- Finds authorities in the “link neighborhood” of P.
Similar Page Results

- Given “honda.com”
 - toyota.com
 - ford.com
 - bmwusa.com
 - saturncars.com
 - nissanmotors.com
 - audi.com
 - volvocars.com

HITS for Clustering

- An ambiguous query can result in the principal eigenvector only covering one of the possible meanings.
- Non-principal eigenvectors may contain hubs & authorities for other meanings.
- Example: “jaguar”:
 - Atari video game (principal eigenvector)
 - NFL Football team (2nd non-princ. eigenvector)
 - Automobile (3rd non-princ. eigenvector)

PageRank

- Does not attempt to capture the distinction between hubs and authorities.
- Ranks pages just by authority.
- Applied to the entire web rather than a local neighborhood of pages surrounding the results of a query.
Initial PageRank Idea

- Just measuring in-degree (citation count) doesn’t account for the authority of the source of a link.
- Initial page rank equation for page p:
 \[R(p) = c \sum_{q \rightarrow p} \frac{R(q)}{N_q} \]
 - N_q is the total number of out-links from page q.
 - A page, q, “gives” an equal fraction of its authority to all the pages it points to (e.g. p).
 - c is a normalizing constant set so that the rank of all pages always sums to 1.

Initial PageRank Idea (cont.)

- Can view it as a process of PageRank “flowing” from pages to the pages they cite.

Initial Algorithm

- Iterate rank-flowing process until convergence:

 Let S be the total set of pages.

 Initialize $\forall p \in S$: $R(p) = 1/|S|$.

 Until ranks do not change (much) (convergence)

 For each $p \in S$:

 \[R'(p) = \sum_{q \rightarrow p} \frac{R(q)}{N_q} \]

 \[c = 1/ \sum_{p \in S} R'(p) \]

 For each $p \in S$: $R(p) = cR'(p)$ (normalize)
Sample Stable Fixpoint

0.4 0.2
0.4 0.2
0.2

Linear Algebra Version

• Treat \mathbf{R} as a vector over web pages.
• Let \mathbf{A} be a 2-d matrix over pages where
 \[A_{uv} = \frac{1}{N_v} \text{ if } u \to v \text{ else } A_{uv} = 0 \]
• Then $\mathbf{R} = c \mathbf{A} \mathbf{R}$
• \mathbf{R} converges to the principal eigenvector of \mathbf{A}.

Problem with Initial Idea

• A group of pages that only point to themselves but are pointed to by other pages
 act as a “rank sink” and absorb all the rank in the system.

Rank flows into cycle and can’t get out
Introduce a “rank source” E that continually replenishes the rank of each page, p, by a fixed amount $E(p)$.

$$R(p) = c \left(\sum_{q \rightarrow p} \frac{R(q)}{N_q} + E(p) \right)$$

PageRank Algorithm

Let S be the total set of pages.
Let $\forall p \in S: E(p) = \alpha/|S|$ (for some $0<\alpha<1$, e.g. 0.15)
Initialize $\forall p \in S: R(p) = 1/|S|
Until ranks do not change (much) (convergence)
For each $p \in S$: $R(p) = \left(1 - \alpha \sum_{q \rightarrow p} \frac{R(q)}{N_q} \right) + E(p)$
$c = 1/\sum_{p} R^2(p)$
For each $p \in S$: $R(p) = cR^2(p)$ (normalize)

Linear Algebra Version

- $R = c(AR + E)$
- Since $\|R\|_1 = 1 : R = c(A + E \times 1)R$
 - Where 1 is the vector consisting of all 1’s.
- So R is an eigenvector of $(A + E \times 1)$
Random Surfer Model

• PageRank can be seen as modeling a “random surfer” that starts on a random page and then at each point:
 – With probability $E(p)$ randomly jumps to page p.
 – Otherwise, randomly follows a link on the current page.
• $R(p)$ models the probability that this random surfer will be on page p at any given time.
• “E jumps” are needed to prevent the random surfer from getting “trapped” in web sinks with no outgoing links.

Speed of Convergence

• Early experiments on Google used 322 million links.
• PageRank algorithm converged (within small tolerance) in about 52 iterations.
• Number of iterations required for convergence is empirically $O(\log n)$ (where n is the number of links).
• Therefore calculation is quite efficient.

Simple Title Search with PageRank

• Use simple Boolean search to search webpage titles and rank the retrieved pages by their PageRank.
• Sample search for “university”:
 – Altavista returned a random set of pages with “university” in the title (seemed to prefer short URLs).
 – Primitive Google returned the home pages of top universities.
Google Ranking

- Complete Google ranking includes (based on university publications prior to commercialization).
 - Vector-space similarity component.
 - Keyword proximity component.
 - HTML-tag weight component (e.g. title preference).
 - PageRank component.
- Details of current commercial ranking functions are trade secrets.

Personalized PageRank

- PageRank can be biased (personalized) by changing E to a non-uniform distribution.
- Restrict “random jumps” to a set of specified relevant pages.
- For example, let $E(p) = 0$ except for one’s own home page, for which $E(p) = \alpha$
- This results in a bias towards pages that are closer in the web graph to your own homepage.

Google PageRank-Biased Spidering

- Use PageRank to direct (focus) a spider on “important” pages.
- Compute page-rank using the current set of crawled pages.
- Order the spider’s search queue based on current estimated PageRank.
Link Analysis Conclusions

- Link analysis uses information about the structure of the web graph to aid search.
- It is one of the major innovations in web search.
- It was one of the primary reasons for Google’s initial success.