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Text Categorization

Rocchio, kNN, 

and Bayesian Methods
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Using Relevance Feedback (Rocchio)

• Relevance feedback methods can be adapted for 
text categorization.

• Use standard TF/IDF weighted vectors to 
represent text documents (normalized by 
maximum term frequency).

• For each category, compute a prototype vector by 
summing the vectors of the training documents in 
the category.

• Assign test documents to the category with the 
closest prototype vector based on cosine 
similarity.
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Illustration of Rocchio Text Categorization



4

Rocchio Text Categorization Algorithm
(Training)

Assume the set of categories is {c1, c2,…cn}
For i from 1 to n let pi = <0, 0,…,0>  (init. prototype vectors)

For each training example <x, c(x)>  D
Let d be the frequency normalized TF/IDF term vector for doc x
Let i =  j: (cj = c(x))
(sum all the document vectors in ci to get pi)
Let pi = pi + d     



5

Rocchio Text Categorization Algorithm
(Test)

Given test document x
Let d be the TF/IDF weighted term vector for x
Let m = –2      (init. maximum cosSim)
For i from 1 to n:

(compute similarity to prototype vector)
Let s = cosSim(d, pi)
if s > m

let m = s
let r = ci  (update most similar class prototype)

Return class r
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Rocchio Properties 

• Does not guarantee a consistent hypothesis.
• Forms a simple generalization of the 

examples in each class (a prototype).
• Prototype vector does not need to be 

averaged or otherwise normalized for length 
since cosine similarity is insensitive to 
vector length.

• Classification is based on similarity to class 
prototypes.
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Rocchio Time Complexity

• Note: The time to add two sparse vectors is 
proportional to minimum number of non-zero 
entries in the two vectors.

• Training Time:  O(|D|(Ld + |Vd|)) = O(|D| Ld)   
where Ld is the average length of a document in D and |Vd| 
is the average vocabulary size for a document in D.

• Test Time: O(Lt + |C||Vt|)                                 
where Lt  is the average length of a test document and |Vt | 
is the average vocabulary size for a test document.
– Assumes lengths of pi vectors are computed and stored during 

training, allowing cosSim(d, pi) to be computed  in time 
proportional to the number of non-zero entries in d (i.e. |Vt|)



8

Nearest-Neighbor Learning Algorithm

• Learning is just storing the representations of the 
training examples in D.

• Testing instance x:
– Compute similarity between x and all examples in D.
– Assign x the category of the most similar example in D.

• Does not explicitly compute a generalization or 
category prototypes.

• Also called:
– Case-based
– Memory-based
– Lazy learning
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K Nearest-Neighbor

• Using only the closest example to determine 
categorization is subject to errors due to:
– A single atypical example. 
– Noise (i.e. error) in the category label of a 

single training example.

• More robust alternative is to find the k
most-similar examples and return the 
majority category of these k examples.

• Value of k is typically odd to avoid ties, 3 
and 5 are most common.
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Similarity Metrics

• Nearest neighbor method depends on a 
similarity (or distance) metric.

• Simplest for continuous m-dimensional 
instance space is Euclidian distance.

• Simplest for m-dimensional binary instance 
space is Hamming distance (number of 
feature values that differ).

• For text, cosine similarity of TF-IDF 
weighted vectors is typically most effective.
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3 Nearest Neighbor Illustration
(Euclidian Distance)
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Illustration of 3 Nearest Neighbor for Text
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K Nearest Neighbor for Text

Training:

For each each training example <x, c(x)>  D
Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:
Compute TF-IDF vector d for document y

For each <x, c(x)>  D
Let sx = cosSim(d, dx)

Sort examples, x, in D by decreasing value of sx

Let N be the first k examples in D.     (get most similar neighbors)
Return the majority class of examples in N
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Rocchio Anomoly   

• Prototype models have problems with 
polymorphic (disjunctive) categories.



15

3 Nearest Neighbor Comparison

• Nearest Neighbor tends to handle 
polymorphic categories better. 
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Nearest Neighbor Time Complexity

• Training Time: O(|D| Ld) to compose        
TF-IDF vectors.

• Testing Time: O(Lt + |D||Vt|) to compare to 
all training vectors.
– Assumes lengths of dx vectors are computed and stored 

during training, allowing cosSim(d, dx) to be computed  
in time proportional to the number of non-zero entries 
in d (i.e. |Vt|)

• Testing time can be high for large training 
sets.
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Nearest Neighbor with Inverted Index

• Determining k nearest neighbors is the same as 
determining the k best retrievals using the test 
document as a query to a database of training 
documents.

• Use standard VSR inverted index methods to find 
the k nearest neighbors.

• Testing Time: O(B|Vt|)                                     
where B is the average number of training documents in 
which a test-document word appears.

• Therefore, overall classification is O(Lt + B|Vt|) 
– Typically B << |D|
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Bayesian Methods

• Learning and classification methods based 
on probability theory.

• Bayes theorem plays a critical role in 
probabilistic learning and classification.

• Uses prior probability of each category 
given no information about an item.

• Categorization produces a posterior
probability distribution over the possible 
categories given a description of an item.
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Axioms of Probability Theory

• All probabilities between 0 and 1

• True proposition has probability 1, false has 
probability 0. 

P(true) = 1        P(false) = 0.

• The probability of  disjunction is:
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Conditional Probability 

• P(A | B) is the probability of A given B

• Assumes that B is all and only information 
known.

• Defined by:
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Independence

• A and B are independent iff:

• Therefore, if A and B are independent:

)()|( APBAP 

)()|( BPABP 
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These two constraints are logically equivalent
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Joint Distribution

• The joint probability distribution for a set of random variables, 
X1,…,Xn gives the probability of every combination of values (an n-
dimensional array with vn values if all variables are discrete with v
values, all vn values must sum to 1): P(X1,…,Xn)

• The probability of all possible conjunctions (assignments of values to 
some subset of variables) can be calculated by summing the 
appropriate subset of values from the joint distribution.

• Therefore, all conditional probabilities can also be calculated.

squarecircle

0.020.20red

0.010.02blue

squarecircle

0.300.05red

0.200.20blue

positive negative

25.005.020.0)(  circleredP

80.0
25.0

20.0

)(

)(
)|( 





circleredP

circleredpositiveP
circleredpositiveP

57.03.005.002.020.0)( redP



23

Probabilistic Classification

• Let Y be the random variable for the class which takes values 
{y1,y2,…ym}.

• Let X be the random variable describing an instance consisting 
of a vector of values for n features <X1,X2…Xn>, let xk be a 
possible value for X and xij a possible value for Xi.

• For classification, we need to compute P(Y=yi | X=xk) for i=1…m
• However, given no other assumptions, this requires a table 

giving the probability of each category for each possible instance 
in the instance space, which is impossible to accurately estimate 
from a reasonably-sized training set.
– Assuming Y and all Xi are binary, we need 2n entries to specify      

P(Y=pos | X=xk) for each of the 2n possible xk’s since
P(Y=neg | X=xk) = 1 – P(Y=pos | X=xk) 

– Compared to 2n+1 – 1 entries for the joint distribution P(Y,X1,X2…Xn)
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Bayes Theorem

Simple proof from definition of conditional probability:
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Bayesian Categorization

• Determine category of xk by determining for each yi

• P(X=xk) can be determined since categories are 
complete and disjoint.
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Bayesian Categorization (cont.)

• Need to know:
– Priors: P(Y=yi) 

– Conditionals: P(X=xk | Y=yi)

• P(Y=yi) are easily estimated from data. 
– If ni of the examples in D are in yi then P(Y=yi) =  ni / |D|

• Too many possible instances (e.g. 2n for binary 
features) to estimate all P(X=xk | Y=yi).

• Still need to make some sort of independence 
assumptions about the features to make learning 
tractable.
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Generative Probabilistic Models

• Assume a simple (usually unrealistic) probabilistic method 
by which the data was generated.

• For categorization, each category has a different 
parameterized generative model that characterizes that 
category.

• Training: Use the data for each category to estimate the 
parameters of the generative model for that category. 
– Maximum Likelihood Estimation (MLE): Set parameters to 

maximize the probability that the model produced the given 
training data.

– If Mλ denotes a model with parameter values λ and Dk is the 
training data for the kth class, find model parameters for class k
(λk) that maximize the likelihood of Dk:

• Testing: Use Bayesian analysis to determine the category 
model that most likely generated a specific test instance.

)|(argmax 

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Naïve Bayes Generative Model
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Naïve Bayes Inference Problem
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Naïve Bayesian Categorization

• If we assume features of an instance are independent given 
the category (conditionally independent).

• Therefore, we then only need to know P(Xi | Y) for each 
possible pair of a feature-value and a category.

• If Y and all Xi and binary, this requires specifying only 2n
parameters:
– P(Xi=true | Y=true) and P(Xi=true | Y=false) for each Xi

– P(Xi=false | Y) = 1 – P(Xi=true | Y)

• Compared to specifying 2n parameters without any 
independence assumptions.
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Naïve Bayes Example

negativepositiveProbability

0.50.5P(Y)

0.40.4P(small | Y)

0.20.1P(medium | Y)

0.40.5P(large | Y)

0.30.9P(red | Y)

0.30.05P(blue | Y)

0.40.05P(green | Y)

0.40.05P(square | Y)

0.30.05P(triangle | Y)

0.30.9P(circle | Y)

Test Instance:
<medium ,red, circle>
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Naïve Bayes Example

negativepositiveProbability

0.50.5P(Y)

0.20.1P(medium | Y)

0.30.9P(red | Y)

0.30.9P(circle | Y)

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)
0.5        *               0.1              *        0.9            *        0.9

=  0.0405 / P(X) 

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)
0.5       *              0.2               *        0.3             *     0.3

=  0.009 / P(X)

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1

P(X) = (0.0405 + 0.009) = 0.0495 

= 0.0405 / 0.0495 = 0.8181

= 0.009 / 0.0495 = 0.1818

Test Instance:
<medium, red, circle>
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Estimating Probabilities

• Normally, probabilities are estimated based on observed 
frequencies in the training data.

• If D contains nk examples in category yk, and nijk of these nk
examples have the jth value for feature Xi, xij, then:

• However, estimating such probabilities from small training 
sets is error-prone.

• If due only to chance, a rare feature, Xi, is always false in 
the training data, yk :P(Xi=true | Y=yk) = 0.

• If  Xi=true then occurs in a test example, X, the result is that 
yk: P(X | Y=yk) = 0 and yk: P(Y=yk | X) = 0

k

ijk
kiji n

n
yYxXP  )|(
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Probability Estimation Example

negativepositiveProbability

0.50.5P(Y)

0.50.5P(small | Y)

0.00.0P(medium | Y)

0.50.5P(large | Y)

0.51.0P(red | Y)

0.50.0P(blue | Y)

0.00.0P(green | Y)

0.00.0P(square | Y)

0.50.0P(triangle | Y)

0.51.0P(circle | Y)

CategoryShapeColorSizeEx

positivecircleredsmall1

positivecircleredlarge2

negativetriangleredsmall3

negativecirclebluelarge4

Test Instance X:
<medium, red, circle>

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 / P(X) = 0

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 / P(X) = 0
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Smoothing

• To account for estimation from small samples, 
probability estimates are adjusted or smoothed.

• Laplace smoothing using an m-estimate assumes that 
each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
“virtual” sample of size m.

• For binary features, p is simply assumed to be 0.5.
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Laplace Smothing Example

• Assume training set contains 10 positive examples:
– 4: small

– 0: medium

– 6: large

• Estimate parameters as follows (if m=1, p=1/3)
– P(small | positive) = (4 + 1/3) / (10 + 1) =     0.394

– P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03

– P(large | positive) = (6 + 1/3) / (10 + 1) =      0.576

– P(small or medium or large | positive) =        1.0
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Naïve Bayes for Text

• Modeled as generating a bag of words for a 
document in a given category by repeatedly 
sampling with replacement from a 
vocabulary V = {w1, w2,…wm} based on the 
probabilities P(wj | ci).

• Smooth probability estimates with Laplace         
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V|
– Equivalent to a virtual sample of seeing each word in 

each category exactly once.
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Naïve Bayes Classification 
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Text Naïve Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D
For each category ci   C

Let Di be the subset of documents in D in category ci

P(ci) = |Di| / |D|
Let Ti be the concatenation of all the documents in Di

Let ni be the total number of word occurrences in Ti

For each word wj  V
Let nij be the number of occurrences of wj in Ti

Let P(wj | ci) = (nij + 1) / (ni + |V|)  



41

Text Naïve Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

where ai is the word occurring the ith position in X

)|()(argmax
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Underflow Prevention

• Multiplying lots of probabilities, which are 
between 0 and 1 by definition, can result in 
floating-point underflow.

• Since log(xy) = log(x) + log(y), it is better to 
perform all computations by summing logs 
of probabilities rather than multiplying 
probabilities.

• Class with highest final un-normalized log 
probability score is still the most probable.
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Naïve Bayes Posterior Probabilities

• Classification results of naïve Bayes (the 
class with maximum posterior probability) 
are usually fairly accurate.

• However, due to the inadequacy of the 
conditional independence assumption, the 
actual posterior-probability numerical 
estimates are not.
– Output probabilities are generally very close to 

0 or 1.
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Evaluating Categorization

• Evaluation must be done on test data that are 
independent of the training data (usually a disjoint 
set of instances).

• Classification accuracy: c/n where n is the total 
number of test instances and c is the number of 
test instances correctly classified by the system.

• Results can vary based on sampling error due to 
different training and test sets.

• Average results over multiple training and test sets 
(splits of the overall data) for the best results.
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N-Fold Cross-Validation

• Ideally, test and training sets are independent on 
each trial.
– But this would require too much labeled data.

• Partition data into N equal-sized disjoint segments.
• Run N trials, each time using a different segment of 

the data for testing, and training on the remaining 
N1 segments.

• This way, at least test-sets are independent.
• Report average classification accuracy over the N

trials.
• Typically, N = 10.
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Learning Curves

• In practice, labeled data is usually rare and 
expensive.

• Would like to know how performance 
varies with the number of training instances.

• Learning curves plot classification accuracy 
on independent test data (Y axis) versus 
number of training examples (X axis).
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N-Fold Learning Curves

• Want learning curves averaged over 
multiple trials.

• Use N-fold cross validation to generate N 
full training and test sets.

• For each trial, train on increasing fractions 
of the training set, measuring accuracy on 
the test data for each point on the desired 
learning curve.
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Sample Learning Curve
(Yahoo Science Data)


