Clustering

• Partition unlabeled examples into disjoint subsets of clusters, such that:
 – Examples within a cluster are very similar
 – Examples in different clusters are very different

• Discover new categories in an unsupervised manner (no sample category labels provided).
Clustering Example
Hierarchical Clustering

- Build a tree-based hierarchical taxonomy (dendrogram) from a set of unlabeled examples.

- Recursive application of a standard clustering algorithm can produce a hierarchical clustering.

```
animal
  
vertebrate
  fish reptile amphib. mammal
  
invertebrate
  worm insect crustacean
```
Aglommerative vs. Divisive Clustering

- *Aglommerative* (**bottom-up**) methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.

- *Divisive* (**partitional, top-down**) separate all examples immediately into clusters.
Direct Clustering Method

• Direct clustering methods require a specification of the number of clusters, k, desired.

• A clustering evaluation function assigns a real-value quality measure to a clustering.

• The number of clusters can be determined automatically by explicitly generating clusterings for multiple values of k and choosing the best result according to a clustering evaluation function.
Hierarchical Agglomerative Clustering (HAC)

- Assumes a similarity function for determining the similarity of two instances.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.
HAC Algorithm

Start with all instances in their own cluster.
Until there is only one cluster:

Among the current clusters, determine the two clusters, \(c_i \) and \(c_j \), that are most similar.
Replace \(c_i \) and \(c_j \) with a single cluster \(c_i \cup c_j \)
Cluster Similarity

• Assume a similarity function that determines the similarity of two instances: \(\text{sim}(x, y) \).
 – Cosine similarity of document vectors.

• How to compute similarity of two clusters each possibly containing multiple instances?
 – Single Link: Similarity of two most similar members.
 – Complete Link: Similarity of two least similar members.
 – Group Average: Average similarity between members.
Single Link Agglomerative Clustering

- Use maximum similarity of pairs:
 \[sim(c_i, c_j) = \max_{x \in c_i, y \in c_j} sim(x, y) \]

- Can result in “straggly” (long and thin) clusters due to chaining effect.
 - Appropriate in some domains, such as clustering islands.
Single Link Example
Complete Link Agglomerative Clustering

- Use minimum similarity of pairs:
 \[\text{sim}(c_i, c_j) = \min_{x \in c_i, y \in c_j} \text{sim}(x, y) \]

- Makes more “tight,” spherical clusters that are typically preferable.
Complete Link Example
Computational Complexity

• In the first iteration, all HAC methods need to compute similarity of all pairs of \(n \) individual instances which is \(O(n^2) \).

• In each of the subsequent \(n-2 \) merging iterations, it must compute the distance between the most recently created cluster and all other existing clusters.

• In order to maintain an overall \(O(n^2) \) performance, computing similarity to each other cluster must be done in constant time.
Computing Cluster Similarity

- After merging \(c_i \) and \(c_j \), the similarity of the resulting cluster to any other cluster, \(c_k \), can be computed by:
 - Single Link:
 \[
 \text{sim}((c_i \cup c_j), c_k) = \max(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k))
 \]
 - Complete Link:
 \[
 \text{sim}((c_i \cup c_j), c_k) = \min(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k))
 \]
Group Average Agglomerative Clustering

- Use average similarity across all pairs within the merged cluster to measure the similarity of two clusters.

\[
sim(c_i, c_j) = \frac{1}{|c_i \cup c_j|(|c_i \cup c_j|-1)} \sum_{\tilde{x} \in (c_i \cup c_j)} \sum_{\tilde{y} \in (c_i \cup c_j): \tilde{y} \neq \tilde{x}} sim(\tilde{x}, \tilde{y})
\]

- Compromise between single and complete link.
- Averaged across all ordered pairs in the merged cluster instead of unordered pairs between the two clusters (to encourage tighter final clusters).
Computing Group Average Similarity

- Assume cosine similarity and normalized vectors with unit length.
- Always maintain sum of vectors in each cluster.
 \[\hat{s}(c_j) = \sum_{\hat{x} \in c_j} \hat{x} \]
- Compute similarity of clusters in constant time:
 \[
 \text{sim}(c_i, c_j) = \frac{(\hat{s}(c_i) + \hat{s}(c_j)) \cdot (\hat{s}(c_i) + \hat{s}(c_j)) - (|c_i| + |c_j|)}{(|c_i| + |c_j|)(|c_i| + |c_j| - 1)}
 \]
Non-Hierarchical Clustering

• Typically must provide the number of desired clusters, \(k \).
• Randomly choose \(k \) instances as seeds, one per cluster.
• Form initial clusters based on these seeds.
• Iterate, repeatedly reallocating instances to different clusters to improve the overall clustering.
• Stop when clustering converges or after a fixed number of iterations.
K-Means

• Assumes instances are real-valued vectors.

• Clusters based on centroids, center of gravity, or mean of points in a cluster, c:

$$\mu(c) = \frac{1}{|c|} \sum_{\tilde{x} \in c} \tilde{x}$$

• Reassignment of instances to clusters is based on distance to the current cluster centroids.
Distance Metrics

• Euclidian distance (L₂ norm):
 \[L_2(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} \]

• L₁ norm:
 \[L_1(\vec{x}, \vec{y}) = \sum_{i=1}^{m} |x_i - y_i| \]

• Cosine Similarity (transform to a distance by subtracting from 1):
 \[1 - \frac{\vec{x} \cdot \vec{y}}{||\vec{x}|| \cdot ||\vec{y}||} \]
K-Means Algorithm

Let \(d \) be the distance measure between instances.
Select \(k \) random instances \(\{s_1, s_2, \ldots, s_k\} \) as seeds.
Until clustering converges or other stopping criterion:
 For each instance \(x_i \):
 Assign \(x_i \) to the cluster \(c_j \) such that \(d(x_i, s_j) \) is minimal.
 (Update the seeds to the centroid of each cluster)
For each cluster \(c_j \):
 \(s_j = \mu(c_j) \)
K Means Example
(K=2)

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters
Converged!
Time Complexity

- Assume computing distance between two instances is $O(m)$ where m is the dimensionality of the vectors.
- Reassigning clusters: $O(kn)$ distance computations, or $O(knm)$.
- Computing centroids: Each instance vector gets added once to some centroid: $O(nm)$.
- Assume these two steps are each done once for I iterations: $O(Iknm)$.
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than $O(n^2)$ HAC.
K-Means Objective

• The objective of k-means is to minimize the total sum of the squared distance of every point to its corresponding cluster centroid.

\[\sum_{l=1}^{K} \sum_{x_i \in X_l} \| x_i - \mu_l \|^2 \]

• Finding the global optimum is NP-hard.
• The k-means algorithm is guaranteed to converge a local optimum.
Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
- Select good seeds using a heuristic or the results of another method.
Buckshot Algorithm

• Combines HAC and K-Means clustering.
• First randomly take a sample of instances of size \sqrt{n}
• Run group-average HAC on this sample, which takes only $O(n)$ time.
• Use the results of HAC as initial seeds for K-means.
• Overall algorithm is $O(n)$ and avoids problems of bad seed selection.
Text Clustering

- HAC and K-Means have been applied to text in a straightforward way.
- Typically use *normalized*, TF/IDF-weighted vectors and cosine similarity.
- Optimize computations for sparse vectors.
- Applications:
 - During retrieval, add other documents in the same cluster as the initial retrieved documents to improve recall.
 - Clustering of results of retrieval to present more organized results to the user (à la Northernlight folders).
 - Automated production of hierarchical taxonomies of documents for browsing purposes (à la Yahoo & DMOZ).
Soft Clustering

- Clustering typically assumes that each instance is given a “hard” assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- *Soft clustering* gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a probability distribution across a set of discovered categories (probabilities of all categories must sum to 1).
Expectation Maximization (EM)

- Probabilistic method for soft clustering.
- Direct method that assumes k clusters: $\{c_1, c_2, \ldots, c_k\}$
- Soft version of k-means.
- Assumes a probabilistic model of categories that allows computing $P(c_i \mid E)$ for each category, c_i, for a given example, E.
- For text, typically assume a naïve-Bayes category model.
 - Parameters $\theta = \{P(c_i), P(w_j \mid c_i): i \in \{1, \ldots, k\}, j \in \{1, \ldots, |V|\}\}$
EM Algorithm

• Iterative method for learning probabilistic categorization model from unsupervised data.
• Initially assume random assignment of examples to categories.
• Learn an initial probabilistic model by estimating model parameters θ from this randomly labeled data.
• Iterate following two steps until convergence:
 – Expectation (E-step): Compute $P(c_i | E)$ for each example given the current model, and probabilistically re-label the examples based on these posterior probability estimates.
 – Maximization (M-step): Re-estimate the model parameters, θ, from the probabilistically re-labeled data.
Initialize:
Assign random probabilistic labels to unlabeled data

Unlabeled Examples
Initialize:
Give soft-labeled training data to a probabilistic learner
EM

Initialize:
Produce a probabilistic classifier
EM

E Step:
Relabel unlabeled data using the trained classifier
EM

M step:
Retrain classifier on relabeled data

Continue EM iterations until probabilistic labels on unlabeled data converge.
Learning from Probabilistically Labeled Data

- Instead of training data labeled with “hard” category labels, training data is labeled with “soft” probabilistic category labels.
- When estimating model parameters θ from training data, weight counts by the corresponding probability of the given category label.
- For example, if $P(c_1 \mid E) = 0.8$ and $P(c_2 \mid E) = 0.2$, each word w_j in E contributes only 0.8 towards the counts n_1 and n_{1j}, and 0.2 towards the counts n_2 and n_{2j}.
Naïve Bayes EM

Randomly assign examples probabilistic category labels. Use standard naïve-Bayes training to learn a probabilistic model with parameters θ from the labeled data.

Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model θ to compute $P(c_i \mid E)$ for each category and example, and re-label each example using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the parameters θ using these new probabilistic category labels.
Semi-Supervised Learning

• For supervised categorization, generating labeled training data is expensive.
• Idea: Use unlabeled data to aid supervised categorization.
• Use EM in a *semi-supervised* mode by training EM on both labeled and unlabeled data.
 – Train initial probabilistic model on user-labeled subset of data instead of randomly labeled unsupervised data.
 – Labels of user-labeled examples are “frozen” and never relabeled during EM iterations.
 – Labels of unsupervised data are constantly probabilistically relabeled by EM.
Semi-Supervised EM
Semi-Supervised EM
Semi-Supervised EM

Training Examples

Prob. Learner

Prob. Classifier
Semi-Supervised EM
Semi-Supervised EM

Continue retraining iterations until probabilistic labels on unlabeled data converge.
Semi-Supervised EM Results

- Experiments on assigning messages from 20 Usenet newsgroups their proper newsgroup label.
- With very few labeled examples (2 examples per class), semi-supervised EM significantly improved predictive accuracy:
 - 27% with 40 labeled messages only.
 - 43% with 40 labeled + 10,000 unlabeled messages.
- With more labeled examples, semi-supervision can actually decrease accuracy, but refinements to standard EM can help prevent this.
 - Must weight labeled data appropriately more than unlabeled data.
- For semi-supervised EM to work, the “natural clustering of data” must be consistent with the desired categories
 - Failed when applied to English POS tagging (Merialdo, 1994)
Semi-Supervised EM Example

• Assume “Catholic” is present in both of the labeled documents for soc.religion.christian, but “Baptist” occurs in none of the labeled data for this class.
• From labeled data, we learn that “Catholic” is highly indicative of the “Christian” category.
• When labeling unsupervised data, we label several documents with “Catholic” and “Baptist” correctly with the “Christian” category.
• When retraining, we learn that “Baptist” is also indicative of a “Christian” document.
• Final learned model is able to correctly assign documents containing only “Baptist” to “Christian”.
Issues in Clustering

• How to evaluate clustering?
 – **Internal:**
 • Tightness and separation of clusters (e.g. k-means objective)
 • Fit of probabilistic model to data
 – **External**
 • Compare to known class labels on benchmark data
• Improving search to converge faster and avoid local minima.
• Overlapping clustering.
Conclusions

• Unsupervised learning induces categories from unlabeled data.
• There are a variety of approaches, including:
 – HAC
 – k-means
 – EM
• Semi-supervised learning uses both labeled and unlabeled data to improve results.