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Deep Learning Revolution (2010-)

• Recent machine learning methods for training 
“deep” neural networks (NNs) have demonstrated 
remarkable progress on many challenging AI 
problems (e.g. speech recognition, visual object 
recognition, machine translation, game playing, 
chat bots)
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Very Brief History of Machine Learning

• Single-layer neural networks (1957-1969)

• Symbolic AI & knowledge engineering (1970-1985)

• Multi-layer NNs and symbolic learning (1985-1995)

• Statistical (Bayesian) learning and kernel methods 
(1995-2010)

• Deep learning (CNNs,RNNs,Transformers) (2010-?)
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Deep Learning Revolution (2010…)

• Improved methods developed for training deep 
neural works.

• Particular successes with:
– Convolutional neural nets (CNNs) for vision.

– Recurrent neural nets (RNNs) for machine 
translation (MT) and speech recognition (ASR).

– Deep reinforcement learning for game playing.

– Transformers for MT, LLMs, ChatBots, etc… 4



Massive Data and Specialized Hardware  

• Large collections of supervised (crowdsourced) 
training data has been critical.

• Self-supervision (e.g. LMs) on large internet 
data.

• Efficient processing of this big data using 
specialized hardware (Graphics Processing 
Units, GPUs) has been critical.
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CNNs

• Convolutional layers learn to extract local features from 
image regions (receptive fields) analogous to human vision 
(LeCun, et al., 1998).

• Deeper layers extract higher-level features.

• Pool activity of multiple neurons into one at the next layer 
using max or mean.

• Nonlinear processing with Rectified Linear Units (ReLUs)

• Decision made using final fully connected layers.
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CNNs

Increasingly

broader local

features extracted

from image regions
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ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC)

• Recognize 1,000 categories of objects in 150K test 
images (given 1.2M training images).

8

Mongoose Canoe Missile Trombone



ImageNet Performance Over Time
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Word Embeddings

• Represent words as dense vectors by building 
representations that capture the context in which 
they occur, i.e. by the Firth principle:
– You shall know a word by the company it keeps.

• Semantically similar words will have similar 
embeddings (close in Euclidian space).
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Word Association Matrix
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• Remember its early use for automated query 
expansion.

• Vector for a word is high-dimensional and sparse 
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Latent Semantic Analysis (LSA, 1998) 

• Use dimensionality reduction methods (Singular Value 
Decomposition, SVD) on the term-document matrix to 
compute a dense reduced-dimensional vector for each word.

• Maintain distance between word vectors while reducing 
their dimensionality.  
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Sample 2 to 1 D Dimensionality Reduction
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Sample 2 to 1 D Dimensionality Reduction
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Sample 2 to 1 D Dimensionality Reduction

15



Sample 2 to 1 D Dimensionality Reduction
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Sample Word Embedding Visualization
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Neural Net Word Embeddings

• Train a neural network to predict nearby 
words for a given word.

• Use the hidden layer representation in this 
neural network as the embedding. 
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Word2Vec (Mikolov et al., 2013)
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• Input and output words 
are represented as sparse 
“one hot” encodings.

• Hidden layer learns a 
dense encoding of the 
input word that allows it 
to predict its neighbors.



Problem with Polysemy and Homonymy

• Word meaning depends on context and having a 
fixed embedding for a word independent of 
context is problematic.

• Semantic similarity of words does not obey the 
“triangle inequality” and therefore cannot be 
represented as Euclidian distance between word 
types.
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bat

Triangle Inequality Violation Examples
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association

club

Chiroptera

association is similar to club

club is similar to bat

But association is not similar to bat

bat is similar to Chirpotera

But club is not similar to Chiroptera



Recurrent Neural Networks (RNNs)

• Add feedback loops where some units’ 
current outputs determine some future 
network inputs.

• RNNs can model dynamic finite-state 
machines, beyond the static combinatorial 
circuits modeled by feed-forward networks. 
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Simple Recurrent Network (SRN)

• Initially developed by Jeff Elman (“Finding 
structure in time,” 1990).

• Additional input to hidden layer is the state 
of the hidden layer in the previous time 
step.

23http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Unrolled RNN

• Behavior of RNN is perhaps best viewed by 
“unrolling” the network over time.
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Training RNN’s
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• RNNs can be 
trained using 
“backpropagation 
through time.”

• Can viewed as 
applying normal 
backprop to the 
unrolled network.



Vanishing/Exploding Gradient Problem

• Backpropagated errors multiply at each 
layer, resulting in exponential decay (if 
derivative is small) or growth (if derivative 
is large).

• Makes it very difficult train deep networks, 
or simple recurrent networks over many 
time steps.
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Long Distance Dependencies

• It is very difficult to train SRNs to retain 
information over many time steps.

• This make is very difficult to learn SRNs that 
handle long-distance dependencies, such as 
subject-verb agreement.
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Long Short Term Memory (LSTM)

• LSTM networks, add additional gating units in each 
memory cell (Hochreiter & Schmidhuber, 1997).
– Forget gate

– Input gate

– Output gate

• Prevents vanishing/exploding gradient problem and 
allows network to retain state information over 
longer periods of time.
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LSTM Network Architecture
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Bi-directional LSTM (Bi-LSTM)

• Separate LSTMs process 
sequence forward and 
backward and hidden 
layers at each time step 
are concatenated to form 
the cell output.
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Sequence to Sequence (Seq2Seq) Transduction

• Encoder/Decoder framework maps one sequence to a 
"deep vector" then another LSTM maps this vector 
to an output sequence (Sutskever et al., 2014).
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I1, I2,…,In
Encoder
LSTM

O1, O2,…,Omhn
Decoder
LSTM

• Train model "end to end" on I/O pairs of 
sequences.



Neural Machine Translation (NMT)

• LSTM Seq2Seq has led to a new approach 
to translating human language.

• NMT modestly outperforms previous 
statistical learning approaches to MT 
(SMT).
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NMT Results (Wu et al., 2016)

• Experimental results using automated 
(BLEU) and human evaluation for 
English French translation.
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Human RatingBLEUMethod

3.8737.0SMT

4.4640.35NMT

4.82Human 



LSTM Application Architectures
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Image Captioning Video Activity Recog
Text Classification

Video Captioning
Machine Translation

POS Tagging, IE,
Language Modeling



Bidirectional Language Model

• A standard statistical language model predicts 
the probability of the next word based on the 
previous context.
– Your program for Project 4 does not _____

• A bidirectional language model (BiLM) 
predicts the word at each position based on 
both prior and posterior context encoded using 
an RNN (e.g. LSTM). 35



Contextualized Word Embeddings

• Produce a vector representation for a 
specific occurrence of a word, by using 
textual context to compute its meaning.

• ELMo (Embeddings from Language 
Models, Peters et al., 2018) uses the hidden 
state of a BiLM to compute contextualized 
word embeddings.
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Transformer Networks

• An alternate Seq2Seq neural architecture based on 
attention rather than recurrence “Attention is all 
you need”(Vaswani et al., 2017).

• See website on “The Ilustrated Transfomer” by J.
Alammar for more details.

• Attention mechanisms compute the output at each 
position in the sequence by varying “attention” 
across different positions in the input sequence.
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Self-Attention

• Compute a context-sensitive embedding for 
each word as a weighted sum of initial 
embeddings of all words in the input. 
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Transformer Encoder

Context sensitive
Embeddings



Self-attention

• Consider: “The animal 
didn't cross the street 
because it was too tired”

• What meaning should we 
associate with the word 
“it”?



Self-attention

But there is nothing to learn here?



Self-attention

Introducing 3 types of weights, 
corresponding to 3 roles of 
each word w:
• Query: w is the current word 

under question
• Key: w is the word in context 

being compared with
• Value: learnable weights for 

the output



Self-attention

normalize

also multiply with v



Omitted Transformer Details

• Multiheaded attending

• Positional encoding

• Residual connections and layer normalization



Full Seq2Seq Transformer Architecture



BERT Pretrained Language Transformer

• Bidirectional Encoder Representations from 
Transformers (BERT, Devlin et al., 2018)

• Trains a transformer network to predict a fraction 
of “masked” tokens in an input sentence, or
predict the next sentence.

• Pretrained network can then be “fine tuned” to 
perform an end task such as text classification 
using a full document representation for a special 
“CLS” token added to the input. 46



BERT Architecture
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Neural Information Retrieval

• Word embeddings have been used to 
improve IR by allowing matching words 
based on semantic similarity.

• Can embed entire sentences or documents 
using an RNN or Transformer and perform 
vector-based retrieval on these dense 
vectors rather than sparse BOW vectors.
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Nearest Neighbor Retrieval

• Find the document embedding that is most
similar to the query embedding using
Euclidian distance or cosine similarity.

• Simplest is linear search of the list of 
documents to find the most similar item.

• Better approach is to use a retrieval index, 
but an inverted index does not work for 
dense vectors. 49



Locality Sensitive Hashing

• A hashing technique that hashes “similar” 
input items into the same “buckets” with 
high probability.

• Attempts to maximize hash collisions rather 
than minimize them.

• Allows for efficient approximate nearest 
neighbor (ANN) search (see NearPy on
gethub). 50



Conclusions

• Progress on training deep neural architectures 
such as CNNs, RNNs, and Transformers.

• These techniques can produce dense vector 
embeddings of words, sentences, and 
documents.

• Vector-space IR can be based on these deep
embeddings rather than sparse BOWs.
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