
111

Deep Learning and LLMs

Raymond J. Mooney
University of Texas at Austin

Deep Learning Revolution (2010-)

• Recent machine learning methods for training
“deep” neural networks (NNs) have demonstrated
remarkable progress on many challenging AI
problems (e.g. speech recognition, visual object
recognition, machine translation, game playing,
chat bots)

2

Very Brief History of Machine Learning

• Single-layer neural networks (1957-1969)

• Symbolic AI & knowledge engineering (1970-1985)

• Multi-layer NNs and symbolic learning (1985-1995)

• Statistical (Bayesian) learning and kernel methods
(1995-2010)

• Deep learning (CNNs,RNNs,Transformers) (2010-?)

3

Deep Learning Revolution (2010…)

• Improved methods developed for training deep
neural works.

• Particular successes with:
– Convolutional neural nets (CNNs) for vision.

– Recurrent neural nets (RNNs) for machine
translation (MT) and speech recognition (ASR).

– Deep reinforcement learning for game playing.

– Transformers for MT, LLMs, ChatBots, etc… 4

Massive Data and Specialized Hardware

• Large collections of supervised (crowdsourced)
training data has been critical.

• Self-supervision (e.g. LMs) on large internet
data.

• Efficient processing of this big data using
specialized hardware (Graphics Processing
Units, GPUs) has been critical.

5

CNNs

• Convolutional layers learn to extract local features from
image regions (receptive fields) analogous to human vision
(LeCun, et al., 1998).

• Deeper layers extract higher-level features.

• Pool activity of multiple neurons into one at the next layer
using max or mean.

• Nonlinear processing with Rectified Linear Units (ReLUs)

• Decision made using final fully connected layers.
6

CNNs

Increasingly

broader local

features extracted

from image regions
7

ImageNet Large Scale
Visual Recognition Challenge (ILSVRC)

• Recognize 1,000 categories of objects in 150K test
images (given 1.2M training images).

8

Mongoose Canoe Missile Trombone

ImageNet Performance Over Time

9

CNNs

introduced

Word Embeddings

• Represent words as dense vectors by building
representations that capture the context in which
they occur, i.e. by the Firth principle:
– You shall know a word by the company it keeps.

• Semantically similar words will have similar
embeddings (close in Euclidian space).

10

Word Association Matrix

11

w1 w2 w3 …………………..wn

w1

w2

w3

.

.
wn

c11 c12 c13…………………c1n

c21

c31

.

.
cn1

• Remember its early use for automated query
expansion.

• Vector for a word is high-dimensional and sparse
T1 T2 …. Tt

D1 w11 w21 … wt1

D2 w12 w22 … wt2

: : : :
: : : :

Dn w1n w2n … wtn

Latent Semantic Analysis (LSA, 1998)

• Use dimensionality reduction methods (Singular Value
Decomposition, SVD) on the term-document matrix to
compute a dense reduced-dimensional vector for each word.

• Maintain distance between word vectors while reducing
their dimensionality.

12

T1 T2 …. Tt

D1 w11 w21 … wt1

D2 w12 w22 … wt2

: : : :
: : : :
Dn w1n w2n … wtn

Sample 2 to 1 D Dimensionality Reduction

13

Sample 2 to 1 D Dimensionality Reduction

14

Sample 2 to 1 D Dimensionality Reduction

15

Sample 2 to 1 D Dimensionality Reduction

16

Sample Word Embedding Visualization

17

Neural Net Word Embeddings

• Train a neural network to predict nearby
words for a given word.

• Use the hidden layer representation in this
neural network as the embedding.

18

Word2Vec (Mikolov et al., 2013)

19

• Input and output words
are represented as sparse
“one hot” encodings.

• Hidden layer learns a
dense encoding of the
input word that allows it
to predict its neighbors.

Problem with Polysemy and Homonymy

• Word meaning depends on context and having a
fixed embedding for a word independent of
context is problematic.

• Semantic similarity of words does not obey the
“triangle inequality” and therefore cannot be
represented as Euclidian distance between word
types.

20

bat

Triangle Inequality Violation Examples

21

association

club

Chiroptera

association is similar to club

club is similar to bat

But association is not similar to bat

bat is similar to Chirpotera

But club is not similar to Chiroptera

Recurrent Neural Networks (RNNs)

• Add feedback loops where some units’
current outputs determine some future
network inputs.

• RNNs can model dynamic finite-state
machines, beyond the static combinatorial
circuits modeled by feed-forward networks.

22

Simple Recurrent Network (SRN)

• Initially developed by Jeff Elman (“Finding
structure in time,” 1990).

• Additional input to hidden layer is the state
of the hidden layer in the previous time
step.

23http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled RNN

• Behavior of RNN is perhaps best viewed by
“unrolling” the network over time.

24

time

Training RNN’s

25

Training
outputs

Training
inputs

backpropagated errors

yty2y0 y1

BBBB

• RNNs can be
trained using
“backpropagation
through time.”

• Can viewed as
applying normal
backprop to the
unrolled network.

Vanishing/Exploding Gradient Problem

• Backpropagated errors multiply at each
layer, resulting in exponential decay (if
derivative is small) or growth (if derivative
is large).

• Makes it very difficult train deep networks,
or simple recurrent networks over many
time steps.

26

Long Distance Dependencies

• It is very difficult to train SRNs to retain
information over many time steps.

• This make is very difficult to learn SRNs that
handle long-distance dependencies, such as
subject-verb agreement.

27

Long Short Term Memory (LSTM)

• LSTM networks, add additional gating units in each
memory cell (Hochreiter & Schmidhuber, 1997).
– Forget gate

– Input gate

– Output gate

• Prevents vanishing/exploding gradient problem and
allows network to retain state information over
longer periods of time.

28

LSTM Network Architecture

29

Bi-directional LSTM (Bi-LSTM)

• Separate LSTMs process
sequence forward and
backward and hidden
layers at each time step
are concatenated to form
the cell output.

30

xt+1xtxt-1

ht-1 ht+1ht

Sequence to Sequence (Seq2Seq) Transduction

• Encoder/Decoder framework maps one sequence to a
"deep vector" then another LSTM maps this vector
to an output sequence (Sutskever et al., 2014).

31

I1, I2,…,In
Encoder
LSTM

O1, O2,…,Omhn
Decoder
LSTM

• Train model "end to end" on I/O pairs of
sequences.

Neural Machine Translation (NMT)

• LSTM Seq2Seq has led to a new approach
to translating human language.

• NMT modestly outperforms previous
statistical learning approaches to MT
(SMT).

32

NMT Results (Wu et al., 2016)

• Experimental results using automated
(BLEU) and human evaluation for
English French translation.

33

Human RatingBLEUMethod

3.8737.0SMT

4.4640.35NMT

4.82Human

LSTM Application Architectures

34

Image Captioning Video Activity Recog
Text Classification

Video Captioning
Machine Translation

POS Tagging, IE,
Language Modeling

Bidirectional Language Model

• A standard statistical language model predicts
the probability of the next word based on the
previous context.
– Your program for Project 4 does not _____

• A bidirectional language model (BiLM)
predicts the word at each position based on
both prior and posterior context encoded using
an RNN (e.g. LSTM). 35

Contextualized Word Embeddings

• Produce a vector representation for a
specific occurrence of a word, by using
textual context to compute its meaning.

• ELMo (Embeddings from Language
Models, Peters et al., 2018) uses the hidden
state of a BiLM to compute contextualized
word embeddings.

36

Transformer Networks

• An alternate Seq2Seq neural architecture based on
attention rather than recurrence “Attention is all
you need”(Vaswani et al., 2017).

• See website on “The Ilustrated Transfomer” by J.
Alammar for more details.

• Attention mechanisms compute the output at each
position in the sequence by varying “attention”
across different positions in the input sequence.

37

Self-Attention

• Compute a context-sensitive embedding for
each word as a weighted sum of initial
embeddings of all words in the input.

38

Transformer Encoder

Context sensitive
Embeddings

Self-attention

• Consider: “The animal
didn't cross the street
because it was too tired”

• What meaning should we
associate with the word
“it”?

Self-attention

But there is nothing to learn here?

Self-attention

Introducing 3 types of weights,
corresponding to 3 roles of
each word w:
• Query: w is the current word

under question
• Key: w is the word in context

being compared with
• Value: learnable weights for

the output

Self-attention

normalize

also multiply with v

Omitted Transformer Details

• Multiheaded attending

• Positional encoding

• Residual connections and layer normalization

Full Seq2Seq Transformer Architecture

BERT Pretrained Language Transformer

• Bidirectional Encoder Representations from
Transformers (BERT, Devlin et al., 2018)

• Trains a transformer network to predict a fraction
of “masked” tokens in an input sentence, or
predict the next sentence.

• Pretrained network can then be “fine tuned” to
perform an end task such as text classification
using a full document representation for a special
“CLS” token added to the input. 46

BERT Architecture

47

Neural Information Retrieval

• Word embeddings have been used to
improve IR by allowing matching words
based on semantic similarity.

• Can embed entire sentences or documents
using an RNN or Transformer and perform
vector-based retrieval on these dense
vectors rather than sparse BOW vectors.

48

Nearest Neighbor Retrieval

• Find the document embedding that is most
similar to the query embedding using
Euclidian distance or cosine similarity.

• Simplest is linear search of the list of
documents to find the most similar item.

• Better approach is to use a retrieval index,
but an inverted index does not work for
dense vectors. 49

Locality Sensitive Hashing

• A hashing technique that hashes “similar”
input items into the same “buckets” with
high probability.

• Attempts to maximize hash collisions rather
than minimize them.

• Allows for efficient approximate nearest
neighbor (ANN) search (see NearPy on
gethub). 50

Conclusions

• Progress on training deep neural architectures
such as CNNs, RNNs, and Transformers.

• These techniques can produce dense vector
embeddings of words, sentences, and
documents.

• Vector-space IR can be based on these deep
embeddings rather than sparse BOWs.

51

