Concurrent Maintenance of Rings

Xiaozhou Li Jayadev Misra C. Greg Plaxton

March 6, 2004

Concurrent Maintenance of Rings — p.1

m Nodes have neighbor variables

m The neighbor variables collectively form a certain
topology: ring, hypercube, etc

m Over time, nodes may join or leave, possibly
concurrently

m The neighbor variables should be properly
updated to maintain the topology

m Problem: Design, and prove the correctness of,
protocols that maintain the topology

m Focus of this paper: Ring topology

m Joins for a unidirectional ring

m Joins for a bidirectional ring

m |_eaves for a bidirectional ring

m Joins and leaves for a bidirectional ring
m Joins and leaves for multiple rings

m ring(z) = (Yu,v : vz # nil A v # nil : u <
vy, where v <= v =(3i:i>0: uz’ =v)

m Lemma In aring, distinct processes have distinct
neighbors.

E L enma

after Q\ ’(V}\
________ O// \\;O W

before
add remove

Joinsfor a Unidirectional Ring

change of topology exchange of messages

Concurrent Maintenance of Rings — p.5

process p
var s: {in,out,jng}; {state}
r: V', {right neighbor}
a : V' {auxiliary variable}
init s = out A r = nil
begin
[1s = out — {711}
a := contact();
ifa=p—or,s:=p,
[a # p— s:=jng; send join() to a fi
rev join() from g — {15}
if s = in — send grant(r) toq; r :==q
(1 s # in — send retry() to q fi
O rcv grant(a) from g — {13}
TS = a,in
O rev retry() from g — {14}
S 1= out
end

m ring(r)?
m Define u.r’ as:
v If m™(grant,u) =1 A

u.r = m~ (grant(x),u) =1
w.r otherwise.

mm~ (msg,w): number of incoming messages of
type msqg of u

m ring(r')?

m/=ANBACAring(r')
mA=NVu:(us=jng= fu)=1)A f(u) <1)
m B=(Vu:us=1in=ur #nil)

m C' = #grant(nil) = 0

m f(u) =m"(join,u) + m~ (grant,u) +
m~ (retry, u)

m #grant(nil): number of grant messages with
parameter nil in all channels

m [heorem I IS an Invariant.

m Proof: Check that every conjunct Is preserved by
every action

m T heorem If joins eventually subside, then
ring(r) eventually holds, and once joins subside,
ring(r) is stable.

{ring(r')} T {ring(r')}: (s = in)

T pr=wAp.s=1inAm(join,q,p) >0
= {A; B; def. of r'}
T pr'=wAm (grant,p) =0 A
q.r' = nil Am~(grant,q) = 0
= {action; p # ¢ because p.r’ # ¢.r’; def. of r'}
L pr'=qgnNnqgr =w

Joinsfor a Bidirectional Ring

change of topology exchange of messages

Concurrent Maintenance of Rings — p.11

process p
var s : {in, out, jng, busy}; {state}
r,l: V' {neighbors}
t,a : V' {auxiliary variables}
init s=out A\r =nil Al =nil At = nil
begin
(s = out — {711}
a := contact();
ifa=p—rl s:=p,p,in
da # p — s := jng; send join() to a fi
O rev join() from q¢ — {715}
if s = in — send grant(q) tor; r,s,t := q, busy, r
(s # in — send retry() to ¢ fi
drev grant(a) from ¢ — {715}
send ack(l) toa; | :==a
Orev ack(a) from g — {14}
r.l,s:=q,a,in; send done() tol
O rev done() from q — {715}
s,t := in,nil
O rev retry() from g — {15}
S = out
end

L eaves for a Bidirectional Ring

change of topology exchange of messages

o= O

Concurrent Maintenance of Rings — p.13

process p
var s : {in, out, lvg, busy}; {state}
r,l: V' {neighbors}
t,a : V' {auxiliary variables}
init s=out Ar =nilAl=nil At = nil
begin
s =1in— {11}
ifl=p— r,,s:=nil nil out
01 # p — s := lvg; send leave(r) to l fi
O rev leave(a) from q — {15}
if s =i Ar =q — send grant(q) to a; r,s,t := a, busy,r
(s #inVr+#q— send retry() to q fi
O rev grant(a) from ¢ — {715}
send ack(nil) toa; [:= ¢
Orev ack(a) from g — {14}
send done() tol; 7,1, s := nil, nil, out
O rev done() from q — {15}
s,t := in, nil
O rev retry() from g — {14}
S :=1in
end

The Combined Protocol

process p
var s : {in, out, jng, lvg, busy }; {state}
r,l: V'; {neighbors}
t,a : V' {auxiliary variables}
init s=out A\r =nilAl =nil At = nil
begin '
O s = out — {7} a:= contact();
ifa=p—rl,s:=p,p,in
Ha # p — s:= jng; send join() toa fi
s =1in— {T{}
if |l =p— r 1, s:=nil nil, out
01 # p— s:= lvg; send leave(r) tol fi
Orcv join() from g — {13}
if s = in — send grant(q) tor; r,s,t := q, busy, r
s # in — send retry() to g fi
O rev leave(a) from g — {T4}
if s =i Ar =q — send grant(q) toa; r,s,t := a, busy,r
s #inVr#q— send retry() to q fi
U rev grant(a) from g — {13}
if | =q — send ack(l)toa; | :=a
[l # q — send ack(nil) toa; | :=qfi
Hrev ack(a) from q — {14}
if s = jng — r,l,s:=q,a,in; send done() tol
[1s = lvg — send done() tol; r,l,s := nil, nil, out fi
L rev done() from g — {15} s,t:= in,nil
L rev retry() from g — {Ts}
ifs=jimg—s:=outls=1lvg —s:=mfi

end Concurrent Maintenance of Rings — p.15

m Theorems: Similar to those established for the
unidirectional join protocol

m Proofs: Define (more involved) /, I, and
Invariant 7 and check that every conjunct of 7 Is
preserved by every action

Next Step: Machine-Checked Proofs

Concurrent Maintenance of Rings — p.17

	Structured Peer-to-Peer Networks
	Maintenance of Rings
	Preliminaries
	Joins for a Unidirectional Ring
	The Protocol
	An Invariant
	The Invariant
	Theorems and Proofs
	Excerpt of a Proof
	Joins for a Bidirectional Ring
	The Join Protocol
	Leaves for a Bidirectional Ring
	The Leave Protocol
	The Combined Protocol
	Theorems and Proofs
	Next Step: Machine-Checked Proofs

