Proving Invariants via Rewriting and Finite Search

ACL2 Seminar

August 18, 2004

Rob Sumners

robert.sumners@amd.com
What are Invariants?

- A Term is either a variable symbol, a quoted constant, or a function application
 - Example:
 \[(\text{cons (binary-+ x (quote 1)) '(t . nil))}\]
 - Every function is either a function symbol or a lambda expression

- A Predicate is a term with a single variable symbol \(n\) and is interpreted in an \(iff\) context
 - This is our non-standard definition of Predicate

- An Invariant is a predicate which we wish to prove is non-nil for all values of \(n\).
 - The variable \(n\) is intended to range over all values of natural-valued “time”
[Importance of Proving Invariants]

- Caution – over-generalized statement which I do not wish to debate:
 - Most properties of interest about concurrent, reactive systems can be effectively reduced to the proof of a sufficient invariant

- Invariants can be very difficult and tedious to prove for larger systems.
 - Many prime examples of this from our community and other formal methods communities
 - From ACL2 community: CLI stack work, Jun’s work, Pete’s work, JVM work, Sandip’s work, My work, etc.
(define-system mutual-exclusion)

(in-critical (n) nil
 (if (in-critical n-)
 (= (status (i n) n-) :try))
 (i n)
 (critical-id n-)))

(critical-id (n) nil
 (if (and (not (in-critical n-))
 (= (status (i n) n-) :try))
 (i n)
 (critical-id n-)))

(status (p n) :idle
 (if (/= (i n) p) (status p n-)
 (case (status p n-)
 (:try (if (in-critical n-)
 :try
 :critical))
 (:critical :idle)
 (t :try))))
[Specifying Mutual Exclusion]

- Property: No two distinct processes a and b can be in the :critical state at the same time

- Codified as the invariant (ok n):

 (encapsulate (((a) => *) ((b) => *)))
 (local (defun a () 1))
 (local (defun b () 2))
 (defthm a/=b (not (equal (a) (b))))
 (defthm a-non-nil (not (equal (a) nil)))
 (defthm b-non-nil (not (equal (b) nil)))

 (defun ok (n)
 (not (and (= (status (a) n) :critical)
 (= (status (b) n) :critical))))
[Approaches - Theorem Proving]

- Define and prove an *inductive invariant* which implies the target invariant.

 - For complex systems, the definition and/or proof of an inductive invariant is a non-trivial exercise

- For our mutual exclusion example:

 (defun ii-ok-for1 (n i)
 (iff (= (status i n) :critical)
 (and (in-critical n)
 (= (critical-id n) i))))

 (defun ii-ok (n)
 (and (ii-ok-for1 n (a)) (ii-ok-for1 n (b))))

 (defthm ok-is-invariant
 (and (ii-ok 0)
 (implies (ii-ok n)
 (and (ok n) (ii-ok (1+ n))))))
[Approaches - Model Checking]

• Explore an “effective” finite state graph of a system searching for failures

 – Specification is usually provided by a temporal logic formula: e.g. an invariant in CTL would be $AG(\text{ok})$

 – System definition languages: Verilog HDL, VHDL, SMV, Murϕ, SPIN, Limited variants of C/C++, etc.

 – Model checkers are generally classified into explicit-state and implicit-state

 – Several algorithms exist to reduce large-state systems to effectively finite abstract state systems: symmetry reductions, partial order reductions, etc.

• Hybrid approaches: too many to enumerate, but most involve some form of abstraction.
[Our Approach - Phase 1]

- Assume the definition of a term rewrite function \texttt{rewrt} which takes a term as an input and produces the rewritten term

- For a predicate \(\phi \), denote \(\phi' \) as the term:
 \[
 (\text{rewrt} '((\text{lambda} (n) ,\phi) (1+ n)))
 \]

- Assume the following function definition:
 \[
 \text{(defun state-ps (trm)}
 \text{ (cond ((or (atom trm) (quotep trm)) ()
 ((eq (first trm) 'if)
 (union-equal (state-ps (second trm))
 (union-equal (state-ps (third trm))
 (state-ps (fourth trm)))))))
 (t (and (state-predp trm) (list trm)))))
 \]

- Compute the least set of predicates \(\Psi \) s. t. :
 (a) the target invariant predicate \(\tau \in \Psi \), and
 (b) for every \(\phi \in \Psi \), \(\text{(state-ps } \phi') \subseteq \Psi \)
[Our Approach - Phase 2]

• Given the finite predicate set Ψ, we first compute the finite set of input predicates Γ

 – For each predicate ϕ in Ψ and Γ, define a boolean variable $bv(\phi)$

 – The boolean variables for Ψ are state var.s and the variables for Γ are input var.s

• For each α in Ψ, we replace the predicate subterms ϕ in α' with $bv(\phi)$

 – This gives us a propositional next-state function for $bv(\alpha)$ in terms of the state and input boolean var.s

• Explore the graph of nodes defined by next-state functions starting from initial node

 – If no path is found to a node where $bv(\tau)$ is nil, then return Q.E.D.

 – Otherwise, return a pruned version of the failing path to the user for further analysis
[Our Approach - Elaborations]

● The function (state-predp trm) is essentially defined as:

(defun state-predp (trm)
 (and (not (intersectp-eq (all-fnnames trm) '(t+ hide)))
 (equal (all-vars trm) '(n))))

 – Thus, the user can cause introduce an input predicate by introducing a hide

● We chose to define our own term rewriter because simplicity is more important than efficiency

 – The rewriter does extract rewrite rules from the current ACL2 world

● Our “model checker” is an compiled, optimized (to an extent), explicit-state, breadth-first search through the predicate state graph

● The prover also supports assume-guarantee reasoning through the use of forced hypothesis
Mutual Exclusion Continued

- Beginning with (ok n), the prover generates the following set of predicates:

 (ok n)
 (equal (status (a) n) ':critical)
 (equal (status (b) n) ':critical)
 (equal (status (a) n) ':try)
 (equal (status (b) n) ':try)
 (in-critical n)
 (equal (critical-id n) (a))
 (equal (critical-id n) (b))

- The resulting graph has 20 nodes and verifies that (ok n) is never nil

- We can further reduce the graph to 6 nodes by hiding :try terms:

 (defthm coerce-try-status-to-input
 (equal (equal (status p n) ':try)
 (hide (equal (status p n) ':try))))
More complex example: a high-level definition of the MESI cache coherence protocol

- Ok, technically we only model ESI cache states

System defined by following state variables:

- \((\text{mem } c \ n)\) – shared memory data for cache-line \(c\)

- \((\text{cache } p \ c \ n)\) – data for cache-line \(c\) at proc. \(p\)

- \((\text{valid } c \ n)\) and \((\text{excl } c \ n)\) – sets of processor id.s which define the ESI cache states

We will need a few constrained functions:

\[
\begin{align*}
\text{(encapsulate } ((\text{proc } *) \Rightarrow *) & (\text{op } *) \Rightarrow *) \\
((\text{addr } *) \Rightarrow *) & ((\text{data } *) \Rightarrow *))
\end{align*}
\]

- \((\text{local } (\text{defun proc } (n) n))\)
- \((\text{local } (\text{defun op } (n) n))\)
- \((\text{local } (\text{defun addr } (n) n))\)
- \((\text{local } (\text{defun data } (n) n))\)

\[
\begin{align*}
\text{(encapsulate } ((c-1 *) \Rightarrow *)) & (\text{local } (\text{defun c-1 } (a) a))
\end{align*}
\]
(define-system mesi-cache
 (mem (c n) nil
 (cond ((/= (c-l (addr n)) c) (mem c n-))
 ((and (= (op n) :flush)
 (in1 (proc n) (excl c n-)))
 (cache (proc n) c n-))
 (t (mem c n-))))

 (cache (p c n) nil
 (cond ((/= (c-l (addr n)) c) (cache p c n-))
 ((/= (proc n) p) (cache p c n-))
 ((or (and (= (op n) :fill) (not (excl c n-)))
 (and (= (op n) :fille) (not (valid c n-))))
 (mem c n-))
 ((and (= (op n) :store) (in1 p (excl c n-)))
 (s (addr n) (data n) (cache p c n-))
 (t (cache p c n-))))

 (excl (c n) nil
 (cond ((/= (c-l (addr n)) c) (excl c n-))
 ((and (= (op n) :flush)
 (implies (excl c n-)
 (in1 (proc n) (excl c n-))))
 (sdrop (proc n) (excl c n-))
 ((and (= (op n) :fille) (not (valid c n-)))
 (sadd (proc n) (excl c n-))
 (t (excl c n-))))

 (valid (c n) nil
 (cond ((/= (c-l (addr n)) c) (valid c n-))
 ((and (= (op n) :flush)
 (implies (excl c n-)
 (in1 (proc n) (excl c n-))))
 (sdrop (proc n) (valid c n-))
 ((or (and (= (op n) :fill) (not (excl c n-)))
 (and (= (op n) :fille) (not (valid c n-))))
 (sadd (proc n) (valid c n-))
 (t (valid c n-))))

 (t (mem c n-)))))
Mesi cache example-3

- Property: the value read by a processor is the last value stored.

- A codification in ACL2 of this property as the target invariant (ok n):

 (encapsulate (((p) => *) ((a) => *)))
 (local (defun p () t)) (local (defun a () t)))

 (define-system mesi-specification
 (a-dat (n) nil
 (if (and (= (addr n) (a))
 (= (op n) :store)
 (in1 (proc n) (excl (c-l (a)) n-)))
 (list (data n))
 (a-dat n-))))

 (ok (n) t
 (if (and (a-dat n-)
 (= (proc n) (p))
 (= (addr n) (a))
 (= (op n) :load)
 (in (p) (valid (c-l (a)) n-)))
 (= (g (a) (cache (p) (c-l (a)) n-))
 (car (a-dat n-)))
 (ok n-))))
Key rewrite rule to introduce case splits on the exclusive set (excl c n):

(defthm in1-force-split
 (equal (in1 e s)
 (cond ((not s) nil)
 (((c1 s) (equal e (scar s)))
 (t (hide (in1 e s))))))

Prover generates following predicate set and explores resulting graph (48 nodes):

(ok n)
(a-dat n)
(valid (c-l (a)) n)
(in (p) (valid (c-l (a)) n))
(excl (c-l (a)) n)
(in (p) (excl (c-l (a)) n))
(c1 (excl (c-l (a)) n))
(equal (scar (excl (c-l (a)) n)) (p))
(equal (g (a) (cache (scar (excl (c-l (a)) n))
 (c-l (a)) n))
 (car (a-dat n))
(equal (g (a) (cache (p) (c-l (a)) n))
 (car (a-dat n))
(equal (g (a) (mem (c-l (a)) n))
 (car (a-dat n)))
[Conclusions and Future Work]

- Prover can be effective but requires thought:
 - Careful consideration of system definition and specification relative to existing operators and rewrite rules
 - Determination of which terms should be hidden and the possible addition of auxiliary variables

- Improvements to the Prover:
 - Interfaces to external model checkers for Phase 2
 - Compress/Reduce resulting predicate graph based on equality reasoning between state and input predicates
 - Various improvements to built-in “model checker”

- Many more example systems and effort to integrate with RTL definitions and existing library

- Need to develop more comprehensive compositional methodology