Mechanically checked proof on Dijkstra’s shortest path algorithm

Qiang Zhang
J Moore
October 13, 2004
Introduction

- Dijkstra’s shortest path algorithm: a classical algorithm to find the shortest path between two vertices in a finite graph with non-negative weighted edges

- Directed Finite Graph with non-negative weighted edges

- Correctness of the algorithm: "if both vertices a and b are in the graph g, then the algorithm does return a shortest path from a to b in the graph g"
Algorithm

1. $\lambda(u) \leftarrow 0$; for each vertex t other than u in V, $\lambda(t) \leftarrow \infty$; and $T \leftarrow V$;
2. Let s be a vertex in T such that $\lambda(s)$ is minimum;
3. If $s = v$, stop (or If $T = \emptyset$, stop);
4. For every edge from s to t, if $t \in T$ and $\lambda(t) > \lambda(s) + wt(st)$, then $\lambda(t) \leftarrow \lambda(s) + wt(st)$;
5. $T \leftarrow T - \{s\}$ and go to step 2.
Formalization

Graph representation: an association list ((u1 (v1 . w1) (v2 . w2) ...) ...)

Path table pt: ((u . path-from-a-to-u) ...)

Function returns the result

(defun dijkstra-shortest-path (a b g)
 (let ((p (dsp (all-nodes g) (list (cons a (list a))) g)))
 (path b p)))

Function maintains the iteration

(defun dsp (ts pt g)
 (cond ((endp ts) pt)
 (t (let ((u (choose-next ts pt g)))
 (dsp (del u ts)
 (reassign u (neighbors u g) pt g)
 g))))

Formalization

1. Let ts be initially all vertices in g;
2. Let pt be initially $(\text{list (cons a (list a))})$;
3. $(\text{path } n \ pt)$ returns the already discovered path associated with n in pt, i.e. initially $(\text{path } a \ pt) = (\text{list } a)$ and $(\text{path } n \ pt) = \text{nil}$ for all other vertices; and $(d \ n \ pt \ g)$ returns the weight of $(\text{path } n \ pt)$ in g. It is convenient to use NIL as "infinity";
4. Repeat until ts is empty:
 (a) Choose u in ts such that $(d \ u \ pt \ g)$ is minimal;
 (b) for each edge from u to some neighbor v with weight wt, if $(d \ v \ pt \ g) > (d \ u \ pt \ g) + wt$, then reassign $(\text{path } v \ pt)$ to be $(\text{append } (\text{path } u \ pt) \ (\text{list } v))$;
 (c) Delete u from ts.
Traditional Proof

When a vertex \(u \) is chosen by step 4(a), the path associated with \(u \) in the path table is the shortest path from the start vertex to \(u \) in the graph.

When a vertex \(u \) is chosen by step 4(a), for any vertex \(v \) chosen after \(u \), the path associated with \(v \) in the path table is the shortest path from the start vertex to \(v \) through the vertices (i.e., the internal vertices), which are chosen before \(u \).
Main Theorem:

(defthm main-theorem
 (implies (and (nodep a g)
 (nodep b g)
 (graphp g))
 (shortest-path a
 b
 (dijkstra-shortest-path a b g)
 g)))

Invariant:

(defun inv (ts pt g a)
 (let ((fs (comp-set ts (all-nodes g))))
 (and (prop-ts-node a ts fs pt g)
 (prop-fs-node a fs fs pt g)
 (paths-from-s-table a pt g))))
Function details

(all-nodes g) returns all the nodes in the graph g
(defun all-nodes (g)
 (cond ((endp g) nil)
 (t (cons-set (caar g)
 (my-union (strip-cars (cdar g))
 (all-nodes (cdr g)))))))

(nodep n g) returns t iff a is a vertex in the graph g
(defun nodep (n g) (mem n (all-nodes g)))

(graphp g) returns t iff g is a legal graph:
(defun graphp (g)
 (cond ((endp g) (equal g nil))
 ((and (consp (car g))
 (edge-weightsp (cdar g))
 (graphp (cdr g)))
 (t nil)))
Function details

Function edge-weightsp lst returns true iff lst is a legal list of edges:

```lisp
(defun edge-weightsp (lst)
  (cond ((endp lst) (equal lst nil))
        ((and (consp (car lst))
              (rationalp (cdar lst))
              (<= 0 (cdar lst))
              (not (assoc (caar lst) (cdr lst))))
              (edge-weightsp (cdr lst)))
        (t nil)))
```

Function comp-set ts s returns the set deleting ts from s:

```lisp
(defun comp-set (ts s)
  (if (endp s) nil
      (if (mem (car s) ts)
          (comp-set ts (cdr s))
          (cons (car s) (comp-set ts (cdr s))))))
```
Function details

(shortest-path a b p g) returns t iff p is the shortest path from a to b in g

(defun-sk shortest-path (a b p g)
 (forall path (implies (path-from-to path a b g)
 (shorter p path g))))

(paths-from-s-table s pt g) returns t iff for any path in pt, it is associated with a key vertex u, then the path is a path from s to u in g

(defun paths-from-s-table (s pt g)
 (if (endp pt) t
 (and (if (not (cdar pt)) t
 (and (path-from-to (cdar pt) s (caar pt) g))
 (paths-from-s-table s (cdr pt) g))))
Function details

(prop-ts-node a ts fs pt g)

(defun prop-ts-node (a ts fs pt g)
 (if (endp ts) t
 (and (shorter-all-inter-path a (car ts)
 (path (car ts) pt) fs g)
 (all-but-last-node (path (car ts) pt) fs)
 (prop-ts-node a (cdr ts) fs pt g))))

(all-but-last-node p fs)

(defun all-but-last-node (p fs)
 (if (endp p) t
 (if (endp (cdr p)) t
 (and (mem (car p) fs)
 (all-but-last-node (cdr p) fs))))))
Function details

(shorter-all-inter-path a b p fs g)

(defun-sk shorter-all-inter-path (a b p fs g)
 (forall path (implies (and (path-from-to path a b g)
 (all-but-last-node path fs))
 (shorter p path g))))

(prop-fs-node a fs s pt g)

(defun prop-fs-node (a fs s pt g)
 (if (endp fs) t
 (and (shortest-path a (car fs) (path (car fs) pt) g)
 (all-but-last-node (path (car fs) pt) s)
 (prop-fs-node a (cdr fs) s pt g)))))
Proof sketch

- Initially the invariant is correct

 (defthm inv-0
 (implies (nodep a g)
 (inv (all-nodes g) (list (cons a (list a))) g a)))

- The invariant is maintained by the iteration

 (defthm inv-choose-next
 (implies (and (inv ts pt g a)
 (my-subsetp ts (all-nodes g))
 (graphp g)
 (consp ts)
 (setp ts)
 (nodep a g)
 (equal (path a pt) (list a)))
 (let ((u (choose-next ts pt g)))
 (inv (del u ts)
 (reassign u (neighbors u g) pt g) g a))))
Proof sketch

- the final form of the invariant is correct

 (defthm inv-last
 (implies (and (nodep a g)
 (graphp g))
 (inv nil
 (dsp (all-nodes g)
 (list (cons a (list a)))
 g)
 g a)))

- main lemma

 (defthm main-lemma
 (implies (and (inv nil pt g a)
 (nodep b g))
 (shortest-path a b (path b pt) g)))
Prove inv-0

sub-goal 1

(implies (mem a (all-nodes g))
 (prop-fs-node a
 (comp-set (all-nodes g) (all-nodes g))
 (comp-set (all-nodes g) (all-nodes g))
 (list (list a a)) g))

lemma 1

(deffthm comp-set-id
 (not (comp-set s s)))
Prove inv-0

sub-goal 2

(implies (mem a (all-nodes g))
 (prop-ts-node a (all-nodes g) nil (list (list a a)) g))

lemma 2

(defthm prop-path-nil
 (prop-ts-node a s nil (list (cons a (list a))) g))
Prove inv-choose-next

lemma 1

(defthm paths-from-s-table-reassign
 (implies (and (paths-from-s-table a pt g)
 (graphp g)
 (my-subsetp v-lst (all-nodes g)))
 (paths-from-s-table a (reassign u v-lst pt g) g))

not hard to prove this lemma
Prove inv-choose-next

Lemma 2

(defthm prop-fs-node-choose
 (implies (and (inv ts pt g a)
 (my-subsetp ts (all-nodes g))
 (graphp g)
 (consp ts)
 (setp ts))
 (let ((u (choose-next ts pt g)))
 (prop-fs-node a
 (comp-set (del u ts) (all-nodes g))
 (comp-set (del u ts) (all-nodes g))
 (reassign u (neighbors u g) pt g)
 g))))
lemma 3

(defun prop-ts-node-choose-next
 (implies (and (inv ts pt g a)
 (my-subsetp ts (all-nodes g))
 (setp ts)
 (consp ts)
 (graphp g)
 (nodep a g)
 (equal (path a pt) (list a)))
 (let ((u (choose-next ts pt g)))
 (prop-ts-node a (del u ts)
 (comp-set (del u ts)
 (all-nodes g))
 (reassign u (neighbors u g) pt g) g))))
Prove prop-fs-node-choose-next

- The form of \((\text{prop-fs-node } a \, ss\, ss\, pt\, g)\), has to be generalized

- \((\text{comp-set } (\text{del } u \, ts)\, s)\, \text{VS}\, (\text{cons } u\, (\text{comp-set } ts\, s))\)

- \(u\) is the chosen vertex, which should have the shortest path

- General lemma

\[
\text{(defthm prop-fs-node-choose-lemma2)}
\]
\[
\text{(implies (and (prop-fs-node } a \, fs\, s\, pt\, g) }
\]
\[
\text{(my-subsetp} \, fs\, (\text{all-nodes } g))
\]
\[
(\text{all-but-last-node } (\text{path } u\, pt)\, s)
\]
\[
(\text{paths-from-s-table } a\, pt\, g)
\]
\[
(\text{nodep } u\, g)
\]
\[
(\text{graphp } g)
\]
\[
(\text{shortest-path } a\, u\, (\text{path } u\, pt)\, g))
\]
\[
(\text{prop-fs-node } a\, (\text{cons } u\, fs)\, s)
\]
\[
(\text{reassign } u\, (\text{neighbors } u\, g)\, pt\, g))\))
\]
Prove prop-fs-node-choose-next

consider \((\text{comp-set (del } u \text{ ts}) \ s)\) as a subset of \((\text{cons } u \text{ (comp-set ts s)})\)

(defthm prop-fs-node-choose-lemma3
 (implies (and (my-subsetp s fs)
 (my-subsetp fs (all-nodes g))
 (paths-from-s-table a pt g)
 (prop-fs-node a fs ss pt g))
 (prop-fs-node a s ss pt g)))

compare \((\text{comp-set ts s})\) with \((\text{comp-set (del } u \text{ ts) s})\)

(defthm prop-fs-node-choose-lemma4
 (implies (and (my-subsetp s ss)
 (prop-fs-node a fs s pt g))
 (prop-fs-node a fs ss pt g)))
Prove prop-fs-node-choose-next

has to establish (shortest-path a u (path u pt) g)

(defthm choose-next-shortest
 (implies (and (graphp g)
 (consp ts)
 (my-subsetp ts (all-nodes g))
 (inv ts pt g a))
 (shortest-path a (choose-next ts pt g)
 (path (choose-next ts pt g) pt) g)))

traditional proof: for the chosen vertex u and any path p from a to u in g, find the leftmost vertex v, which is in ts, in the path p, then the path associated with v in pt is shorter than the partial path from a to v in p, and the partial path is shorter than p, while u is chosen before v, which means the path associated with u in pt is shorter than the one associated with v
Prove choose-next-shortest

auxiliary function (find-partial-path p s)

(defun find-partial-path (p s)
 (if (endp p) nil
 (if (mem (car p) s)
 (cons (car p) (find-partial-path (cdr p) s))
 (list (car p))))

the partial path is shorter than the original one

(defun partial-path-shorter
 (implies (graphp g)
 (shorter (find-partial-path p s) p g)))
Prove choose-next-shortest

(find-partial-path p s) returns a path, whose internal vertices are all in s

(defthm pathp-partial-path
 (implies (pathp p g)
 (and (path-from-to (find-partial-path p s)
 (car p)
 (car (last (find-partial-path p s)))
 g)
 (all-but-last-node (find-partial-path p s) s))))
The last vertex of \((\text{find-partial-path } p \ (\text{comp-set } ts \ (\text{all-nodes } g)))\) is in \(ts\)

\[(\text{defthm find-partial-path-last-mem})\]
\[
(\text{implies} \ (\text{and} \ (\text{mem} \ (\text{car} \ (\text{last} \ p)) \ ts) \ \\
(\text{pathp} \ p \ g) \ \\
(\text{my-subsetp} \ ts \ (\text{all-nodes} \ g))) \ \\
(\text{mem} \ (\text{car} \ \\
(\text{last} \ \\
(\text{find-partial-path} \ p \ \\
(\text{comp-set} \ ts \ \\
(\text{all-nodes} \ g))))))) \ \\
ts)))\]
Prove choose-next-shortest

- for any vertex v in ts, the path associated with the chosen vertex is shorter than the one associated with v

(defthm choose-next-shorter-other
 (implies (mem v ts)
 (shorter (path (choose-next ts pt g) pt)
 (path v pt) g)))

- the transitivity of shorter relation

(defthm shorter-trans
 (implies (and (shorter p1 p2 g)
 (shorter p2 p3 g))
 (shorter p1 p3 g)))
(defthm prop-ts-node-choose-next
 (implies (and (inv ts pt g a)
 (my-subsetp ts (all-nodes g))
 (setp ts)
 (consp ts)
 (graphp g)
 (nodep a g)
 (equal (path a pt) (list a)))
 (let ((u (choose-next ts pt g)))
 (prop-ts-node a (del u ts)
 (comp-set (del u ts)
 (all-nodes g))
 (reassign u (neighbors u g) pt g)
 g))))
Prove prop-ts-node-choose-next

similarly consider (comp-set (del u ts) s) as (cons u (comp-set ts s))

(defthm prop-ts-node-lemma3
 (implies (and (paths-from-s-table a pt g)
 (graphp g)
 (nodep a g)
 (equal (path a pt) (list a))
 (prop-fs-node a fs fs pt g)
 (prop-ts-node a ts fs pt g)
 (mem u ts)
 (shortest-path a u (path u pt) g))
 (prop-ts-node a (del u ts) (cons u fs)
 (reassign u (neighbors u g) pt g) g))

(defthm prop-ts-node-lemma1
 (implies (and (my-subsetp s fs)
 (my-subsetp fs s)
 (prop-ts-node a ts fs pt g))
 (prop-ts-node a ts s pt g)))
Prove prop-ts-node-lemma3

2 sub-goals to prove:

- for any vertex \(v \) in \((\text{del} \ u \ \text{ts}) \), the path associated with \(v \) in the reassigned path table is shorter than any path from \(a \) to \(v \) with internal vertices in \((\text{cons} \ u \ \text{fs}) \), stated by prop-ts-node-lemma2

- internal vertices of all paths in the reassigned path table are in the set \((\text{cons} \ u \ \text{fs}) \), stated by prop-ts-node-lemma3-3

(defthm prop-ts-node-lemma3-3
 (implies (and (paths-from-s-table a pt g)
 (all-but-last-node (path v pt) fs)
 (all-but-last-node (path u pt) fs))
 (all-but-last-node (path v (reassign u v-lst pt g))
 (cons u fs)))))
Prove prop-ts-node-lemma2

prop-ts-node-lemma2

(defthm prop-ts-node-lemma2
 (implies (and (shorter-all-inter-path a v (path v pt) fs g)
 (graphp g)
 (nodep a g)
 (equal (path a pt) (list a))
 (prop-fs-node a fs fs pt g)
 (shortest-path a u (path u pt) g)
 (paths-from-s-table a pt g))
 (shorter-all-inter-path a v
 (path v (reassign u
 (neighbors u g)
 pt g))
 (cons u fs) g)))
Prove prop-ts-node-lemma2

prop-ts-node-lemma2-3

(defthm prop-ts-node-lemma2-3
 (implies (and (shorter-all-inter-path a v (path v pt) fs g)
 (graphp g)
 (prop-fs-node a fs fs pt g)
 (nodep a g)
 (path-from-to p a v g)
 (all-but-last-node p (cons u fs))
 (shortest-path a u (path u pt) g)
 (paths-from-s-table a pt g)
 (equal (path a pt) (list a)))
 (shorter (path v (reassign u (neighbors u g) pt g))
 p g))

two cases to prove
 a and v are identical, easy to prove
 a and v are not equal, by prop-ts-node-lemma2-2
prop-ts-node-lemma2-2

(defthm prop-ts-node-lemma2-2
 (implies (and (shorter-all-inter-path a v (path v pt) fs g)
 (graphp g)
 (prop-fs-node a fs fs pt g)
 (path-from-to p a v g)
 (not (equal a v))
 (shortest-path a u (path u pt) g)
 (all-but-last-node p (cons u fs))
 (paths-from-s-table a pt g))
 (shorter (path v (reassign u (neighbors u g) pt g))
 p g)))
two cases to prove

(path u pt) is NIL, (not (all-but-last-node p fs))
happens in the hypotheses. We know (shortest-path
a u (path u pt) g) holds and (path u pt) is NIL,
therefore there is no path from a to u, then u won’t
happen in any path, especially in the path p; and we
know (all-but-last-node p (cons u fs)) holds, therefore
(all-but-last-node p fs) holds.

(defthm not-path-implies-path-in-fs
 (implies (and (shortest-path a u (path u pt) g)
 (not (path u pt))
 (graphp g)
 (path-from-to p a v g)
 (all-but-last-node p (cons u fs)))
 (all-but-last-node p fs))

(path u pt) is not NIL, by prop-ts-node-lemma2-1
(defthm prop-ts-node-lemma2-1
 (implies (and (shorter-all-inter-path a v
 (path v pt) fs g)
 (graphp g)
 (prop-fs-node a fs fs pt g)
 (path-from-to p a v g)
 (not (equal a v))
 (path u pt)
 (shortest-path a u (path u pt) g)
 (all-but-last-node p (cons u fs))
 (paths-from-s-table a pt g))
 (shorter (path v (reassign u (neighbors u g) pt g))
 p g)))
two cases to prove

for the path p from a to v, the vertex neighbored to v in p is u
(path u pt) is the shortest path from a to u, so
(append (path u pt) (list v)) is shorter than p
(path v pt) is shorter than (append (path u pt) (list v))
(path v (reassign u (neighbors u g) pt g)) is shorter than (path v pt)

for the path p from a to v, the vertex neighbored to v in p isn’t u, we have to define two auxiliary functions

(defun find-last-next-path (p)
 (if (or (endp p) (endp (cdr p))) nil
 (cons (car p) (find-last-next-path (cdr p))))))
(defun last-node (p)
 (car (last (find-last-next-path p))))
Prove prop-ts-node-lemma2-1

1. \((\text{append} \ (\text{path} \ (\text{last-node} \ p) \ pt) \ (\text{list} \ v))\) is shorter than \((\text{append} \ (\text{find-last-next-path} \ p) \ (\text{list} \ v))\), by last-node-lemma1

2. \((\text{append} \ (\text{find-last-next-path} \ p) \ (\text{list} \ v))\) is actually the path \(p\), by last-node-lemma2

3. \((\text{path} \ v \ pt)\) is shorter than \((\text{append} \ (\text{path} \ (\text{last-node} \ p) \ pt) \ (\text{list} \ v))\), by shorter-than-append-fs
Prove prop-ts-node-lemma2-1

last-node-lemma2
(defthm last-node-lemma2
 (implies (and (equal (car (last p)) v)
 (pathp p g))
 (equal (append (find-last-next-path p) (list v)) p)))

shorter-than-append-fs
(defthm shorter-than-append-fs
 (implies (and (shorter-all-inter-path a v (path v pt) s g)
 (prop-fs-node a fs s pt g)
 (my-subsetp fs s)
 (path w pt)
 (paths-from-s-table a pt g)
 (mem w fs))
 (shorter (path v pt)
 (append (path w pt) (list v)) g)))
Prove last-node-lemma1

(last-node p) is not equal to u, but still in (cons u fs)

(path (last-node p) pt) is the shortest path from a to (last-node p), so shorter than (find-last-next-path p)

shorter-implies-append-shorter

(defun shorter-implies-append-shorter
 (implies (and (shorter p1 p2 g)
 (graphp g)
 (true-listp p1)
 (equal (car (last p1)) (car (last p2)))
 (pathp p2 g))
 (shorter (append p1 (list v))
 (append p2 (list v) g)))

to apply shorter-implies-append-shorter, establish (pathp (find-last-next-path p)), by path-from-to-implies-all-path-lemma
Prove last-node-lemma1

path-from-to-implies-all-path-lemma

(defthm path-from-to-implies-all-path-lemma
 (implies (and (path-from-to p a v g)
 (not (equal a v)))
 (and (pathp (find-last-next-path p) g)
 (mem v
 (neighbors
 (car (last (find-last-next-path p))
 g)))))

path p is from a to v, where a isn’t equal to v, the length of p is at least 2, by path-length

the length of path p is at least 2, then the conclusion of the lemma holds, by pathp-find-last-next
Prove last-node-lemma1

- **path-length**

 (deffthm path-length
 (implies (and (pathp p g)
 (not (equal (car p) (car (last p)))))
 (<= 2 (len p))))

- **pathp-find-last-next**

 (deffthm pathp-find-last-next
 (implies (and (pathp p g)
 (<= 2 (len p))
 (and (pathp (find-last-next-path p) g)
 (mem (car (last p))
 (neighbors
 (car (last (find-last-next-path p)))
 g))))

Oct. 13, 2004 – p.40/42
Prove inv-last

maintain some hypotheses

(defthm del-subsetp
 (implies (my-subsetp ts s)
 (my-subsetp (del u ts) s)))

(defthm del-true-listp
 (implies (true-listp ts)
 (true-listp (del u ts))))

(defthm del-noduplicates
 (implies (setp ts)
 (setp (del u ts))))

(defthm path-a-pt-reassign
 (implies (and (paths-from-s-table a pt g)
 (graphp g)
 (nodep a g)
 (equal (path a pt) (list a)))
 (equal (path a (reassign u v-lst pt g)) (list a))))
Conclusion

- Dijkstra’s shortest path algorithm
- 122 lemmas and 48 goals proved by hints, within which 27 hints are only the hint of in-theory kind, 6 hints are given on sub-goal level, 19 hints are explicit instantiation of lemmas, 2 hints are explicit induction scheme, and 2 hints are explicit expansion of functions
- follow the traditional proof scheme
- trying to find some common schemes and propose a ACL2 book for further proof in graph algorithms