WASTED TIME

Fast Records for ACL2

Jared Davis
ACL2 Seminar, October 12, 2005

Outline

* Kinds of Efficiency in ACL2

* What are Records?

* Rob Sumners' Records Library

* Memtrees

* Combining Memtrees with Records

* Optimizing the Combination

Kinds of Efficiency in ACL2

* Execution Efficiency

— How quickly do your functions execute?

— How much memory do they use?

— Important for running simulations, testing

* Reasoning Efficiency

— How quickly can your rewrite rules be applied?

* Fewer hypotheses = faster rule application

* Fewer case splits = fewer cases to consider

— Important for large-scale theorem proving

What are Records?

* Bindings of values to names

— Also called maps or finite functions
— (get key rec) returns the binding of key in rec

— (set key val rec) sets binds key to val in rec

* Possible implementations

— Positional lists (nth, update-nth)
— Alists (assoc, acons)

— Macros like defrec, defrecord

Rob Sumners' Records Library

* misc/records.lisp

— Matt Kaufmann and Rob Sumners. Efficient

Rewriting of Operations on Finite Data Structures in
ACL2. ACL2 Workshop 2002.

- (g ar) gets value of a from record r

- (savr) sets value of a to v in record r

* Focuses on efficient reasoning

The Record Theorems

* No type hypotheses!
-(ga(savr)=v
- Ifa#b,then(ga(sbvr))=(gar)

- (say(saxr))=(sayr)
-Ifa#b,then(sby(saxr))=(sax(sbyr))

-(sa(ganr)=r

e All these theorems can be satisfied
simultaneously?

Implementation

* (recordp x) recognizes only those alists, x, s.t. the
keys of x are fully ordered using <<, and the
values of x do not contain nil

* (g-aux ar) gets the value a 1s bound to in the
recordp r, or nil if a 1s not bound 1n .

* (s-aux a v r) updates the value bound to a in the
recordp r to v.

(Note: s-aux should return a valid recordp, so if v 1s nil,
1t must erase a fromr.)

Some Easy Theorems

e If (recordp r), then
- (g-aux a(s-auxavr))=v
- If a # b, then (g-aux a (s-aux b vr)) = (g-aux ar)
- (s-raux ay (s-aux axr)) =(s-aux ayr)
— If a # b, then
(s-aux by (s-aux a x 1)) = (s-aux a X (s-aux b y r))

- (s-raux a(g-aux ar)r)=r

* But these still have the type hypothesis about “r”

Fixing Functions

(no overlap)

“default object”
Fix @)= @ (defun foo (x y)
| (let ((x (fix x)))
F =
(Fix)= @ (y (fix y)

...)

Fixing Functions (2)

* Fixing arguments sometimes lets us remove type
hypotheses.

Examples:
(+a(*bc)) =(+(*ab)(*ac)))

Because + and * treat non-numeric arguments as “0”
(subset X X)

Because subset treats non-set arguments as “nil”

e Will this give us the record hypotheses?

“Inadequacy” of Fixing (1)

* Proposal:
- Let (g ar)=(g-aux a (fix r))
- Let(savr)=(s-aux av (fixr))
* Problem: can't prove (sa(gar)r)=r
- (sa(gar)r)=(s-auxa(gar) (fixr))
- (fix r) 1s good, and s-aux preserves goodness
- So(sa(gar)r)is always good.
— So any bad r 1s a counterexample.

* Fixing “forgets” which bad value we had.

“Inadequacy” of Fixing (2)

e Patch Proposal to Prove (sa(gar)r)=r

- Let (g ar)=(g-aux a (fix r))

- Let(savr)=(Qf(=(gar)v)r(s-aux av (fixr)))
e Can'tprove (sax(sayr))=(saxr)

Suppose X =y, (gar)=x, and r 1s bad

(saxr)=r.

(ga(s-auxay (fixr)) =y.

(sax(sayr))=(sax(s-auxay (fixr)))

= (s-aux a X (s-aux ay (fix r)))

= (s-aux a x (fix r)) (must be good!)

A Neat Trick

* (badp x) recognizes:
— Any object which 1s not an recordp

— Any recordp of the form ((nil . y)), where (badp y).

* Infinite overlap between our good and bad
objects; infinite “default objects”™

(infinite overlap)

Bad

Objects

(acl2->red x) = (if (badp x) (list (cons nil X)) X))
(red->acl2 x) = (if (badp x) (cdar x) x))
(acl2->red (X)) = (%)
(red->acl2 X)) = (x)

(acl2->red (x)) = '((nil . (x))) =@
(red->acl2 @)) = (red->acl2 '((nil .(x)) =(x)

(acl2->red &)) = "((nil . &) =@
(rcd->acl2 @) = (red->acl2 '((nil . &)) =&

Bad
Objects

Resulting Theorems

* (recordp (acl2->rcd x))
* (equal (rcd->acl2 (acl2->rcd x)) X)

* (implies (recordp x)

(equal (acl2->rcd (rcd->acl2 x)) x)

The G and S Functions

* (g ax)=(g-aux a (acl2->rcd x))

* (savXx)=(rcd->acl2 (s-aux a v (acl2->rcd x)))

e If x 1s a good recordp, then these conversions are

the 1dentity function; we j

e Otherwise, we find the *d

ust call g-aux or s-aux.

efault record” for x and

operate on 1t, and return ft]

he “uncoerced” result.

Example 1

(sa(gar)r)
==>

(rcd->acl? (s-aux a

CCCCC

rrrrr

==>
(rcd->acl?2 (acl2m;rcd 1))
==>

r

Example 2

(sax(sayr))

==>

(rcd->acl? (s-auxax o g
(acl2->rcd (red->acl2 Es—aux ay m r)))))))

==>

==>
(rcd->acl? (s-aux a x (acl2->rcd r)))

which 1s exactly (s a x r)

Example 3

(ga(savr))
==>
(g-aux a (acl2->rcd | = o i

F .%5
(rcd->acl2 (s-aux a v (acl2->rcd r)))))

==>
(g-aux a (s-aux a v (acl2->rcd r)))
==>

v

Execution Efficiency Notes

* We pay a premium for these theorems when it
comes to execution efficiency:

— recordp, g-aux, s-aux are O(n) 1n the number of keys
— badp calls recordp, so i1t is O(n)+

— acl2->rcd and rcd->acl2 call badp, so they are O(n)+
— g calls acl2->rcd, g-aux, so 1t 1s 2*0O(n)+

— s calls acl2->rcd, rcd->acl2, s-aux, so 1t 1s 3*O(n)+

Memtrees

e Bind 2”n values to the “names” 0,1,2....,2"n—1

* O(log_2 n) access, updates

(Just conses) : S
CJ ()
0 0
@ @) @,
0 1 4) I
values | a b c d e f g h
“07 “1” “2” “3” “4” “5” “6” T

(implicit addresses)

Canonical Memtrees

* Nil 1s our default value, collapse all-nil trees into
a single nil

— Canonical form for “equal” reasoning

— Large space savings if values are sparse

nil

a b C nil

Memtree Operations (1)

(defun _memtree-p (mtree depth)
(declare (xargs :guard (natp depth)))
(1f (zp depth)
t
(Lf (atom mtree)
(null mtree)
(and (_memtree-p (car mtree) (1- depth))
(_memtree-p (cdr mtree) (1- depth))
(not (and (null (car mtree))
(null (cdr mtree))))))))

(defun _memtree-load (addr mtree depth)
(declare (xargs :guard ...))
(i1f (zp depth)
mtree
(_memtree-load (floor addr 2)
(if (= (mod addr 2) 0)
(car mtree)
(cdr mtree))
(1- depth))))

Memtree Operations (2)

(defun _memtree-store (addr elem mtree depth)

(declare (xargs :guard ...))
(1f (zp depth)

elem

(let ((gquotient (floor addr 2)))
(if (= (mod addr 2) 0)
(cons (_memtree—-store quotient elem (car mtree)
(1- depth))
(cdr mtree))
(cons (car mtree)
(_memtree-store quotient elem (cdr mtree)

(1- depth)))))))

Memtree Operations (3)

(defun _memtree-store—-nil (addr mtree depth)

(declare (xargs :guard ...))
(1f (zp depth)
nil
(Lf (atom mtree)
nil

(let ((quotient (floor addr 2)))
(if (= (mod addr 2) 0)
(let ((left (_memtree-store—-nil quotient
(car mtree)
(1- depth)))
(right (cdr mtree)))
(1f (and (null left) (null right))
nil ;; collapse to canonical form
(cons left right)))
(let ((left (car mtree))
(right (_memtree-store—-nil quotient
(cdr mtree)
(1- depth))))
(if (and (null left) (null right))
nil ;; collapse to canonical form
(cons left right))))))))

Execution Efficiency Notes

* Optimizations with MBE and Guards

— Multiple versions of each function, each logically
equivalent, but...

— When depth becomes small enough, we use a purely
fixnum version of the function

— Logand and ash are used rather than mod and floor in
the executable counterparts (compiled into C's “&”
and “>>” operations by GCL; very fast!)

— Floor and mod used in :logic to take advantage of
arithmetic-3/tfloor-mod reasoning

Reasoning about Memtrees

* Memtrees must be well formed, like recordp
* Addresses (1.e., keys) are now also limited!

 Ugly depth parameter occurs throughout our
theorems

* With fixing, we can get somewhat close to the
record theorems, but not all the way.

Reasoning about Memtrees (2)

(defthm _memtree-load—-same—-store-1
(lmplies
(and (equal (_address—-fix a depth)
(_address—-fix b depth))

elem)
(equal (_memtree-load
a
(_memtree—-store b elem mtree depth)
depth)
elem))

(defthm memtree-load—-same—-store-2

(implies (equal (_address—-fix a depth)
(_address—-fix b depth))
(equal (_memtree-load
a

(_memtree-store—-nil b mtree depth)
depth)
nil))

Reasoning about Memtrees (3)

(defthm memtree—-load-diff-store-1
(implies (and (not (equal (_address—-fix a depth)
(_address—-fix b depth)))

elem)
(equal (_memtree-load
a
(_memtree—-store b elem mtree depth)
depth)

(_memtree—-load a mtree depth)))

(defthm memtree-load-diff-store-2

(implies (not (equal (_address—-fix a depth)
(_address—-fix b depth)))
(equal (_memtree-load
a

(_memtree-store—-nil b mtree depth)
depth)
(_memtree—-load a mtree depth)))

Reasoning about Memtrees (4)

(defthm memtree-store-same—-load
(implies (and (equal (_address—-fix a depth)
(_address—-fix b depth))

(_memtree—-load a mtree depth))

(equal (_memtree-store
a
(_memtree—-load b mtree depth)
mtree
depth)

(_memtree-fix mtree depth)))

(defthm memtree-store—-same—-load—-nil

(implies (and (equal (_address—-fix a depth)
(_address—-fix b depth))
(not (_memtree-load a mtree depth)))
(equal (_memtree-store-nil a mtree depth)

(_memtree-fix mtree depth)))

Memories

* The basic idea: glue a memtree to a record

— Valid numeric addresses stored in the memtree part,
other addresses stored 1n the record part, to fix
address limitations

— Depth of the tree can become part of the memory
structure 1tself, so we won't need depth parameters all
around

— Can we use another invertible mapping to get the
“real” record theorems?

— Can we use guards to get good execution efficiency?

Memories

memtree

(defun
(and

size >= 0

_memory-p (mem)
(consp mem) depth >=0
(consp (car mem))
(consp (cdr mem))
(consp (cddr mem))
(let ((mtree (caar mem))
(fast (cdar mem))
(size (cadr mem))
(depth (caddr mem)))

(and (

(
(
(
(
(

natp size)
natp depth)
booleanp fast)

record

implies fast (signed-byte-p 29 depth))

<= size (expt 2 depth))
_memtree-p mtree depth)))))

Bad Memories

X t 0
(defun _bad-memory-p (Xx) 0 nil
(or (not (_memory-p X))
(and (equal (_memory-fast x) t)

(equal (_memory-depth x) 0)
(equal (_memory-size x) 0)
(equal (_memory-record x) nil)
(

_bad-memory-p (_memory-mtree x)))))

(_to-mem x) = (if (_bad x) (list (cons x t) 0 O nil) x)

(_from-mem x) = (if (_bad x) (caar X) X)

(_to-mem ‘) = ‘
(_from-mem ‘) = ‘

(_to-mem x)='C.x.)=&
(_from-mem @) = (_from-mem '(....x...)) =x

(_to-mem ‘) = '(...‘...) = ‘
(_from—mem‘) = (_from-mem '(.......)) = ‘

Bad
Objects

Raw Memory Operations

(defun new (size)
(declare (xargs :guard (posp size)))
(1f (or (not (posp size))
(equal size 1))

(cons (cons nil t) (cons 1 (cons 1 nil)))
(let ((depth (_log2 (1- size))))
(cons

(cons nil (signed-byte-p 29 depth))
(cons size
(cons depth nil))))))

(defun _load (addr mem)
(declare (xargs :guard ...))

(let ((mtree (_memory-mtree mem))
depth (_memory-depth mem))
record (_memory-record mem)))

(
(
(1f (address—-p addr mem)
(_memtree—-load addr mtree depth)
(g addr record))))

Raw Memory Operations (2)

(defun _store (addr elem mem)
(declare (xargs :guard ...))

(let ((fast (_memory-fast mem))
mtree (_memory-mtree mem))
size (_memory—-size mem))
depth (_memory-depth mem))

m

)))

address—-p addr mem)

cons (cons (if elem
(_memtree-store addr elem mtree depth)
(_memtree-store—-nil addr mtree depth))

fast)
(cons size (cons depth record)))
(cons (cons mtree fast)
(cons size (cons depth (s addr elem record)))))))

(
(
(
(record (_memory-record me
(
(

Final Memory Operations

(defun load (addr mem)
(_load addr (_to—-mem mem)))

(defun store (addr elem mem)
(_from—mem (_store addr elem (_to—-mem mem)))

(equal (load a (store a elem mem))
elem))

(lmplies (not (equal a b))
(equal (load a (store b elem mem))
(load a mem))))

(equal (store a el (store a e2 mem))
(store a el mem))))

(implies (not (equal a b))
(equal (store a el (store b e2 mem))
(store b e2 (store a el mem)))))

(equal (store a (load a mem) mem)
mem))

Good Memories

memtree

size >0

depth > 0 record
(defun memory-p (mem)
(and (_memory-p mem)
(posp (_memory-size mem))
(posp (_memory-depth mem))))

Good
Memories

Memories

Optimizations

(defun _load (addr mem)
(declare (xargs :guard (and (memory-p mem)
(address—-p addr mem))))

(mbe :logic (let ((mtree (_memory-mtree mem))
depth (_memory-depth mem))

(1f (address—-p addr mem)
_memtree—-load addr mtree depth)

(g addr record))))

(
(
(record (_memory-record mem)))
(
(

rexec (let* ((fast (cdar mem))
(mtree (caar mem))
(depth (caddr mem)))
(1f fast
(_fixnum-memtree-load addr mtree depth)
(_memtree—-load addr mtree depth)))))

(defun _store (addr elem mem)
(declare (xargs :guard (and (memory-p mem)
(address-p addr mem))))
(mbe :logic (let ((fast (_memory-fast mem))
(mtree (_memory-mtree mem)) ...)
(1f (address—-p addr mem)
(cons (cons
(1f elem
(_memtree-store addr elem mtree depth)
(_memtree-store—-nil addr mtree depth)) fast)
(cons size (cons depth record)))

.))

:exec (let* ((mtree (caar mem))
(fast (cdar mem))
(memcdr (cdr mem)) ...))
(cons (cons (i1f fast
(1f elem
(_fixnum-memtree-store addr elem mtree depth)
(_fixnum-memtree-store-nil addr mtree depth))
(1f elem
(_memtree-store addr elem mtree depth)
(_memtree-store—-nil addr mtree depth)))
fast)
memcdr))))

Load

(defun load (addr mem)
(declare (xargs :guard (and (memory-p mem)
(address—-p addr mem))))
(mbe :logic (_load addr (_to-mem mem))
rexec (let* ((fast (cdar mem))
(mtree (caar mem))
(depth (caddr mem)))
(1f fast
(_fixnum-memtree-load addr mtree depth)
(_memtree—-load addr mtree depth)))))

Store

(defun store (addr elem mem)
(declare (xargs :guard (and (memory-p mem)
(address—-p addr mem))))
(mbe :logic (_from—-mem (_store addr elem (_to-mem mem)))

rexec
(let* ((mtree (caar mem))
(fast (cdar mem))

(memcdr (cdr mem))
(depth (cadr memcdr)))
(cons (cons (if fast
(1f elem
(_fixnum-memtree—-store addr elem mtree depth)
(_fixnum—-memtree-store—-nil addr mtree depth))
(L1f elem
(_memtree—-store addr elem mtree depth)
(_memtree—-store—-nil addr mtree depth)))
fast)
memcdr))))

Guard Verification Theorems

(defthm load—-new
(equal (load addr (new size))
nil))

(defthm store-memory
(implies (memory-p mem)
(memory-p (store addr elem mem))))

(defthm store-size
(implies (memory-p mem)
(equal (size (store addr elem mem))
(size mem))))

Performance Results

Dimebox; GCL 2.6.6; ACL2 2.9.2

8-bit Memories
Average 10,580,912 loads/second
Average 1,928,895 stores/second

16-bit Memories
Average 4,694,484 loads/second
Average 598,711 stores/second

32-bit Memories
Average 1,176,470 loads/second
Average 293,255 stores/second

64-bit Memories
Average 294,986 loads/second
Average 108,459 stores/second

64-bit Memories (on Allegro)
Average 437,636 loads/second
Average 101,522 stores/second

Final Comments

* Not convinced that equal 1s a good 1dea.

e [ots of thought required for properties that are
easy to do with equivalences.

* Mandatory nature of canonical form limits
options for other extensions.

* Records have really weird properties:

— S affects the domain 1n weird ways, e.g., removes a
key 1f value 1s nil, inserts a key otherwise

— Weird behavior: (s 'anil 3) = 3, so using S to erase
keys doesn't necessarily get you a smaller record

— This makes i1t harder to recur over records

