
February 1, 2006

An Executable
Model for JFKr
An ACL2 approach to key-establishment
protocol verification

Presented by: David Rager
February 1, 2006

February 1, 2006

Outline

� Derivation of JFKr
� Books developed for JFKr reasoning
� Demonstrate the JFKr executable model
� Presentation of properties

� Identity
�Session Key

� Wrap up

February 1, 2006

Design Objectives for a Key
Exchange Protocol
� Shared secret

� Create and agree on a secret which is known only to protocol
participants

� Authentication
� Participants need to verify each other’s identity

� Identity protection
� Eavesdropper should not be able to infer participants’ identities

by observing protocol execution
� Protection against denial of service

� Malicious participant should not be able to exploit the protocol to
cause the other party to waste resources

� Protection against replay attack
� Malicious participant should not be able to reuse old data

February 1, 2006

Ingredient 1: Diffie-Hellman

A → B: ga

B → A: gb

�Shared secret: gab

� Diffie-Hellman guarantees perfect forward secrecy

�Authentication
� Identity protection
�DoS protection

February 1, 2006

Ingredient 2: Challenge-Response
A → B: m, A
B → A: n, sigB{m, n, A}
A → B: sigA{m, n, B}

Shared secret
�Authentication

� A receives his own number m signed by B’s
private key and deduces that B is on the other
end; similar for B

� Identity protection
�DoS protection

February 1, 2006

DH + Challenge-Response

ISO 9798-3 protocol:
A → B: ga, A
B → A: gb, sigB{ga, gb, A}
A → B: sigA{ga, gb, B}

�Shared secret: gab

�Authentication
� Identity protection
�DoS protection

�������

��������

February 1, 2006

Ingredient 3: Encryption

Encrypt signatures to protect identities:
A → B: ga, A
B → A: gb, EK{sigB{ga, gb, A}}
A → B: EK{sigA{ga, gb, B}}

�Shared secret: gab

�Authentication
� Identity protection (for responder only!)
�DoS protection

February 1, 2006

Anti-DoS Cookie
� Typical protocol:

� Client sends request (message #1) to server
� Server sets up connection, responds with message #2
� Client may complete session or not (potential DoS)

� Cookie version:
� Client sends request to server
� Server sends hashed connection data back

� Send message #2 later, after client confirms
� Client confirms by returning hashed data
� Need extra step to send postponed message

February 1, 2006

Ingredient 4: Anti-DoS Cookie
“Almost-JFK” protocol:

A → B: ga, A
B → A: gb, hashKb{gb, ga}
A → B: ga, gb, hashKb{gb, ga}

EK{sigA{ga, gb, B}}
B → A: gb, EK{sigB{ga, gb, A}}

�Shared secret: gab

�Authentication
� Identity protection
�DoS protection?

	
���
���������
����������
�������������	�����
���������
�
���������
������
�

February 1, 2006

Additional Features of JFK
� Keep ga, gb values medium-term, use (ga,nonce)

� Use same Diffie-Hellman value for every connection
(helps against DoS), update every 10 minutes or so

� Nonce guarantees freshness
� More efficient, because computing ga, gb, gab is costly

� Two variants: JFKr and JFKi
� JFKr protects identity of responder against active

attacks and of initiator against passive attacks
� JFKi protects only initiator’s identity from active attack

February 1, 2006

JFKr

� �

�� ���
����

!�

�� ��� ��� ��� ���

����
!� �������"�#�� �� �� $%�&

�� ��� ��� ��� ��� ��� ���

������"�#$	� $	
� ��� ���"�#�� �� �� �� ��&&

��
!����

!���������"� � �������#�� �� '� � �(&

�������"�#)�* ��&

�� ���

������"�#$	� ��� ���"�#�� �� �� ��&& �������"�#)�* ��&

)����* �
�����
�!����������!��������
����

!������������
���������
�������!����������!��
����

������!�������
����������
�!��

�������������������
���!���������

+����!� �
�
�������
������
�

	����
��

$���������
����
��
��
���������!�����

[Aiello et al.] and Shmatikov

February 1, 2006

Executing the Model
(defmacro run-5-steps-honest (network-s initiator-constants responder-constants

public-constants initiator-s responder-s)

`(mv-let
(network-s-after-1 initiator-s-after-1)
(initiator-step1 ,network-s ,initiator-s ,initiator-constants ,public-constants)

(mv-let
(network-s-after-2 responder-s-after-2)
(responder-step1 network-s-after-1 ,responder-s ,responder-constants ,public-constants)

(mv-let
(network-s-after-3 initiator-s-after-3)
(initiator-step2 network-s-after-2 initiator-s-after-1 ,initiator-constants ,public-constants)

(mv-let
(network-s-after-4 responder-s-after-4)
(responder-step2 network-s-after-3 responder-s-after-2 ,responder-constants ,public-constants)

(mv-let
(network-s-after-5 initiator-s-after-5)
(initiator-step3 network-s-after-4 initiator-s-after-3 ,initiator-constants ,public-constants)

(mv network-s-after-5
initiator-s-after-5
responder-s-after-4)))))))

February 1, 2006

An Example Execution
;;; The below theorem illustrates an example of what a successful trace of the
;;; JFKr protocol looks like

(thm (mv-let (network-s initiator-s responder-s)
(run-5-steps-honest nil

initiator-constant-list
responder-constant-list
public-constant-list
nil
nil)

(declare (ignore network-s))
(and

;; responder stores the correct partner
(equal (id *initiator-constant-list*)

(id-i responder-s))

;; initiator stores the correct partner
(equal (id *responder-constant-list*)

(id-r initiator-s))

;; responder and initiator have the same session key
(equal (session-key initiator-s)

(session-key responder-s)))))

February 1, 2006

Executable Model Demonstration

Notes:
1. Ld “jfkr.lisp”
2. Run-5-steps-honest with constants

1. Notice both parties complete
2. Same key
3. Identities match up

February 1, 2006

Prerequisites to the Model

� Encryption book – we need:
� Functions that do primitive hash/encrypt/signature operations
� To prove that decrypting an encryption requires the key
� To prove that duplicating a hash of something requires the key
� To prove that verifying a signature requires the public key
� To prove that creating a signature that can be verified with a

public key requires the private key
� To then disable the definitions of the hash/encrypt/signature

functions, because we now have abstraction and no longer want
to reason about the functions themselves.

February 1, 2006

Prerequisites to the Model

� Encryption book – we need symmetric
encryption
(defun encrypt-symmetric-list (lst key)

(if (atom lst)
nil

(cons (+ (car lst) key)
(encrypt-symmetric-list (cdr lst) key))))

(defun decrypt-symmetric-list (lst key)
(if (atom lst)

nil
(cons (- (car lst) key)

(decrypt-symmetric-list (cdr lst) key))))

February 1, 2006

Prerequisites to the Model

� Encryption book – we need symmetric
encryption

(defthm decrypt-of-encrypt-symmetric-equals-plaintext
(implies (force (encryptable-listp lst))
(equal (decrypt-symmetric-list (encrypt-symmetric-list lst key)

key)
lst)))

(defthm decrypt-of-encrypt-symmetric-needs-key
(implies (and (encryptable-listp lst)

(not (null lst))
(keyp keyA)
(keyp keyB)
(not (equal keyA keyB)))

(not (equal (decrypt-symmetric-list (encrypt-symmetric-list lst keyA)
keyB)

lst))))

February 1, 2006

Prerequisites to the Model

� Encryption book – we need:
�A similar model for asymmetric encryption and

signature creation/verification
�To then disable the definitions of the

hash/encrypt/signature functions, because we
now have abstraction and no longer want to
reason about the functions themselves. So
crucial to keep ACL2 from blowing up.

February 1, 2006

Prerequisites to the Model
� Diffie Helman book – we need:

�A theorem that states that if each party derives
the key using their own private value and the
other party’s public-DH-value, then the keys
are equal

�A way to state that either the x-exponent or y-
exponent is necessary to derive the key.
� Can probably exploit this to prove nil

February 1, 2006

Prerequesites to the Model

(defun compute-public-dh-value (g exponent-value b)
(mod (expt g exponent-value) b))

(defun compute-dh-key (a-public-exponentiation a-private-value b)
(mod (expt a-public-exponentiation a-private-value) b))

(defthm dh-computation-works
(implies (and (integerp g)

(<= 1 g)
(integerp b)
(<= 1 b)
(integerp x-exponent)
(<= 1 x-exponent)
(integerp y-exponent)
(<= 1 y-exponent))

(equal (compute-dh-key (compute-public-dh-value g x-exponent b)
y-exponent
b)

(compute-dh-key (compute-public-dh-value g y-exponent b)
x-exponent
b)))))

� Diffie Helman book – we need key equality

February 1, 2006

Prerequesites to the Model

(defun session-key-requires-one-part-of-key
(g b x-exponent y-exponent i-exponent)
;; we set the guards to nil to ensure that this function never executes and
;; is only used in the logical reasoning of the proof
(declare (xargs :guard nil

:verify-guards nil))

(implies (and (force (integerp g)) #| etc. |#
(not (equal i-exponent x-exponent))
(not (equal i-exponent y-exponent)))

(let ((x-public-value (compute-public-dh-value g x-exponent b))
(y-public-value (compute-public-dh-value g y-exponent b))
(session-key
(compute-dh-key (compute-public-dh-value g x-exponent b)

y-exponent
b)))

(and (not (equal (compute-dh-key x-public-value i-exponent b)
session-key))

(not (equal (compute-dh-key y-public-value i-exponent b)
session-key))))))

� Diffie Helman book – we need key secrecy

February 1, 2006

Model “Features”

� Party constants are abstract

(defthm run-5-steps-with-badly-forged-attacker-yields-both-failure

(let ((initiator-constants (initiator-constants constants))
(responder-constants (responder-constants constants))
(public-constants (public-constants constants)))

; conclusion to come
)

February 1, 2006

Model “Features”

� Nondeterministic attacker

� ACL2 question – how do I hide the part inside of function-we-…?

(defstub function-we-know-nothing-about1 (*) => *)

(defthm run-5-steps-with-badly-forged-attacker-yields-both-failure

(mv-let
(network-s-after-1 initiator-s-after-1)
(initiator-step1 network-s initiator-s initiator-constants public-constants)

(let ((network-s-after-1-munged (function-we-know-nothing-about1 network-s-after-1)))
(mv-let
(network-s-after-2 responder-s-after-2)
(responder-step1 network-s-after-1-munged responder-s

responder-constants public-constants)

February 1, 2006

Model “Features”

� Separation of concepts like a well-formed
message versus a message that’s badly-
forged

(defun well-formed-msg3p (msg)
(declare (xargs :guard t))
(and (alistp msg)

(integerp (Ni-msg msg))
(integerp (Nr-msg msg))
(integerp (Xi-msg msg))
(<= 0 (Xi-msg msg))
(integerp (Xr-msg msg))
(<= 0 (Xr-msg msg))
(integerp (Tr-msg msg))
(integer-listp (Er-msg msg))
(integerp (Hi-msg msg))
(integerp (Src-ip-msg msg))))

February 1, 2006

Model “Features”

� Separation of concepts like a well-formed
message versus a message that’s badly-
forged

(defun badly-forged-msg3p-old(msg responder-constants initiator-private-key)
(let* ((dh-key (CRYPTO::compute-dh-key (xi-msg msg)

(dh-exponent responder-constants)
(b responder-constants)))

(session-key (compute-session-key (Ni-msg msg)
(Nr-msg msg)
dh-key))

(SigKi (compute-sig-Ki (Ni-msg msg)
(Nr-msg msg)
(Xi-msg msg)
(Xr-msg msg)
(g responder-constants)
(b responder-constants)
initiator-private-key))

(Ei-decrypted (CRYPTO::decrypt-symmetric-list (Ei-msg msg) session-key)))
(not (equal (nth 2 Ei-decrypted)

SigKi))))

February 1, 2006

Game Plan

Executable Model

Properties to Prove Initiator ID Agreement

2 Responder Steps

Responder ID Agreement

Key Agreement

3 Initiator Steps

Initiator allocates state and begins process
Responder receives a well formed network msg
Initiator receives a well formed network msg
Initiator does some calculation and saves some data
Responder receives a correctly signed network msg

that contains Responder’s cookie
Responder allocates state, saving the established

key and marking itself “successful”
Initiator receives a correctly signed network msg
Initiator saves some more data and marks itself “successful”

Success -> Key Agreement
Success -> Initiator ID Agreement
Success -> Responder ID Agreement

February 1, 2006

High Level Properties to Prove

(implies (and (initiator-success initiator-s)
(responder-success responder-s))

(and (equal (id-I responder-s)
(id initiator-constants))

(equal (id-r initiator-s)
(id responder-constants))))

� Identity Agreement
�Wouldn’t it be lovely:

February 1, 2006

Identity Agreement

� if they are not the id associated with a private key, then they
do not have the private key

� if they do not have the private key, then they will not sign this
message verifiable with the public key

� if they do not sign this message, then the protocol will not be
successful

� The last two are formalized in ACL2

February 1, 2006

Identity Agreement

� Translates by contra positive into:

� if they have the private key, then they are the id associated
with that private key

� if they sign the message verifiable with the public key, then
they have the private key

� if the protocol is successful, then they signed the message

February 1, 2006

Identity Agreement

� Reorders to:

� if the protocol is successful, then they signed the message
� if they sign the message verifiable with the public key, then

they have the private key
� if they have the private key, then they are the id associated

with that private key

February 1, 2006

Identity Agreement

� Gives us:

If the protocol is successful, then the
“other” identity is the id associated
with that private key

February 1, 2006

Identity Theorem
(defthm run-5-steps-with-badly-forged-attacker-yields-both-failure

(let ((initiator-constants (initiator-constants constants))
(responder-constants (responder-constants constants))
(public-constants (public-constants constants)))

(mv-let
(network-s-after-1 initiator-s-after-1)
(initiator-step1 network-s initiator-s initiator-constants public-constants)

(let ((network-s-after-1-munged (function-we-know-nothing-about1 network-s-after-1)))
(mv-let
(network-s-after-2 responder-s-after-2)
(responder-step1 network-s-after-1-munged responder-s

responder-constants public-constants)
; <snip>

(let ((network-s-after-4-munged (function-we-know-nothing-about4 network-s-after-4)))

(mv-let
(network-s-after-5 initiator-s-after-5)
(initiator-step3 network-s-after-4-munged initiator-s-after-3

initiator-constants public-constants)

(implies
(and (constantsp constants)

(badly-forged-msg3p (msg3 network-s-after-3-munged)
(responder-constants constants)
(public-key-i public-constants))

(badly-forged-msg4p (msg4 network-s-after-4-munged)
initiator-s-after-3
initiator-constants
(public-key-R public-constants)))

(and (protocol-failure responder-s-after-4)
(protocol-failure initiator-s-after-5)))))))))))))

February 1, 2006

High Level Properties to Prove

(implies (and (initiator-success initiator-s)
(responder-success responder-s))

(equal (session-key initiator)
(session-key responder)

� Key Agreement
�Wouldn’t it be lovely:

February 1, 2006

Key Agreement

� ID proof is targeted towards safety while Key agreement proof is
targeted towards liveness

� Say that when network messages check out as okay, the key
derived in the intiator’s step 2 is equal to something (TDB)

� Say that when network messages check out as okay, the key
derived in the responder’s step 2 is equal to something (TBD)

� Use the DH book to show that those two something’s are equal
� Prove that both parties show success only after all network

messages they have received “check out”
� Conclude that if all parties have received valid network messages,

then their keys must be equal (currently fuzzy)

February 1, 2006

Wrap-up
� Covered:

� Derivation of JFKr
� Books developed for JFKr reasoning
� Demonstration of the JFKr executable model
� Security Properties

� Identity
� Session Key

� Requires expertise in both ACL2 and security protocols
� Have more than a good start
� Original work so far as I know

� But JFKr has been formally “verified” before
� Maybe it’s time to move onto wireless protocols, etc.

February 1, 2006

Resources

� Abadi, Blanchet, Fournet. Just Fast Keying in the Pi
Calculus.

� Datta, Derek, Mitchell, and Pavlovic. A Derivation
System and Compositional Logic for Security Protocols.

� Kaufmann, Matt and Moore, J Strother. ACL2 FAQ. 2004.
� Levy, Benjamin (translator). Diffie-Helman Method for

Key Agreement. 1997.
� Paulson, Lawrence C. Proving Properties by Induction.

1997.
� Shmatikov, Vitaly. Just Fast Keying Slides. 2004.

February 1, 2006

Resources (cont’d)

Seriously. The derivation of JFKr slides are almost straight from
Vitaly Shmatikov’s course.

