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Outline

� Derivation of JFKr
� Books developed for JFKr reasoning
� Demonstrate the JFKr executable model
� Presentation of properties

� Identity
�Session Key

� Wrap up
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Design Objectives for a Key 
Exchange Protocol
� Shared secret

� Create and agree on a secret which is known only to protocol 
participants

� Authentication 
� Participants need to verify each other’s identity

� Identity protection 
� Eavesdropper should not be able to infer participants’ identities 

by observing protocol execution
� Protection against denial of service

� Malicious participant should not be able to exploit the protocol to 
cause the other party to waste resources

� Protection against replay attack
� Malicious participant should not be able to reuse old data
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Ingredient 1: Diffie-Hellman

A  → B:   ga

B  → A:   gb

�Shared secret: gab

� Diffie-Hellman guarantees perfect forward secrecy

�Authentication
� Identity protection
�DoS protection
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Ingredient 2: Challenge-Response
A  → B:  m, A
B  → A:  n, sigB{m, n, A}
A  → B:  sigA{m, n, B}

Shared secret 
�Authentication

� A receives his own number m signed by B’s 
private key and deduces that B is on the other 
end; similar for B

� Identity protection
�DoS protection
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DH + Challenge-Response 

ISO 9798-3 protocol:
A → B:  ga, A
B → A:  gb, sigB{ga, gb, A}
A → B:  sigA{ga, gb, B}

�Shared secret: gab

�Authentication
� Identity protection
�DoS protection
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Ingredient 3: Encryption

Encrypt signatures to protect identities:
A → B:  ga, A
B → A:  gb, EK{sigB{ga, gb, A}}
A → B:  EK{sigA{ga, gb, B}}

�Shared secret: gab

�Authentication
� Identity protection (for responder only!)
�DoS protection
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Anti-DoS Cookie
� Typical protocol:

� Client sends request (message #1) to server
� Server sets up connection, responds with message #2
� Client may complete session or not (potential DoS)

� Cookie version:
� Client sends request to server
� Server sends hashed connection data back

� Send message #2 later, after client confirms
� Client confirms by returning hashed data
� Need extra step to send postponed message
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Ingredient 4: Anti-DoS Cookie
“Almost-JFK” protocol:

A → B:  ga, A
B → A:  gb, hashKb{gb, ga}
A → B:  ga, gb, hashKb{gb, ga}

EK{sigA{ga, gb, B}}
B → A:  gb, EK{sigB{ga, gb, A}}

�Shared secret: gab

�Authentication
� Identity protection
�DoS protection?
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Additional Features of JFK
� Keep ga, gb values medium-term, use (ga,nonce)

� Use same Diffie-Hellman value for every connection 
(helps against DoS), update every 10 minutes or so

� Nonce guarantees freshness
� More efficient, because computing ga, gb, gab is costly

� Two variants: JFKr and JFKi
� JFKr protects identity of responder against active 

attacks and of initiator against passive attacks
� JFKi protects only initiator’s identity from active attack
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JFKr
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[Aiello et al.] and Shmatikov
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Executing the Model
(defmacro run-5-steps-honest (network-s initiator-constants responder-constants 

public-constants initiator-s responder-s)

`(mv-let 
(network-s-after-1 initiator-s-after-1)
(initiator-step1 ,network-s ,initiator-s ,initiator-constants ,public-constants)

(mv-let
(network-s-after-2 responder-s-after-2)
(responder-step1 network-s-after-1 ,responder-s ,responder-constants ,public-constants)

(mv-let 
(network-s-after-3 initiator-s-after-3)
(initiator-step2 network-s-after-2 initiator-s-after-1 ,initiator-constants ,public-constants)

(mv-let
(network-s-after-4 responder-s-after-4)
(responder-step2 network-s-after-3 responder-s-after-2 ,responder-constants ,public-constants)

(mv-let 
(network-s-after-5 initiator-s-after-5)
(initiator-step3 network-s-after-4 initiator-s-after-3 ,initiator-constants ,public-constants)

(mv network-s-after-5
initiator-s-after-5
responder-s-after-4)))))))
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An Example Execution
;;; The below theorem illustrates an example of what a successful trace of the
;;; JFKr protocol looks like

(thm (mv-let (network-s initiator-s responder-s)
(run-5-steps-honest nil 

*initiator-constant-list* 
*responder-constant-list* 
*public-constant-list* 
nil
nil)

(declare (ignore network-s))
(and

;; responder stores the correct partner
(equal (id *initiator-constant-list*)

(id-i responder-s))

;; initiator stores the correct partner
(equal (id *responder-constant-list*)

(id-r initiator-s))

;; responder and initiator have the same session key
(equal (session-key initiator-s)

(session-key responder-s)))))
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Executable Model Demonstration

Notes:
1. Ld “jfkr.lisp”
2. Run-5-steps-honest with constants

1. Notice both parties complete
2. Same key
3. Identities match up
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Prerequisites to the Model

� Encryption book – we need:
� Functions that do primitive hash/encrypt/signature operations
� To prove that decrypting an encryption requires the key
� To prove that duplicating a hash of something requires the key
� To prove that verifying a signature requires the public key
� To prove that creating a signature that can be verified with a 

public key requires the private key
� To then disable the definitions of the hash/encrypt/signature 

functions, because we now have abstraction and no longer want 
to reason about the functions themselves.
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Prerequisites to the Model

� Encryption book – we need symmetric 
encryption
(defun encrypt-symmetric-list (lst key)

(if (atom lst)
nil

(cons (+ (car lst) key)
(encrypt-symmetric-list (cdr lst) key))))

(defun decrypt-symmetric-list (lst key)
(if (atom lst)

nil
(cons (- (car lst) key)

(decrypt-symmetric-list (cdr lst) key))))
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Prerequisites to the Model

� Encryption book – we need symmetric 
encryption

(defthm decrypt-of-encrypt-symmetric-equals-plaintext
(implies (force (encryptable-listp lst))
(equal (decrypt-symmetric-list (encrypt-symmetric-list lst key)

key)
lst)))

(defthm decrypt-of-encrypt-symmetric-needs-key
(implies (and (encryptable-listp lst)

(not (null lst))
(keyp keyA)
(keyp keyB)
(not (equal keyA keyB)))

(not (equal (decrypt-symmetric-list (encrypt-symmetric-list lst keyA)
keyB)

lst))))
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Prerequisites to the Model

� Encryption book – we need:
�A similar model for asymmetric encryption and 

signature creation/verification
�To then disable the definitions of the 

hash/encrypt/signature functions, because we 
now have abstraction and no longer want to 
reason about the functions themselves.  So 
crucial to keep ACL2 from blowing up.
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Prerequisites to the Model
� Diffie Helman book – we need:

�A theorem that states that if each party derives 
the key using their own private value and the 
other party’s public-DH-value, then the keys 
are equal

�A way to state that either the x-exponent or y-
exponent is necessary to derive the  key. 
� Can probably exploit this to prove nil
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Prerequesites to the Model

(defun compute-public-dh-value (g exponent-value b)
(mod (expt g exponent-value) b))

(defun compute-dh-key (a-public-exponentiation a-private-value b)
(mod (expt a-public-exponentiation a-private-value) b))

(defthm dh-computation-works
(implies (and (integerp g)

(<= 1 g)
(integerp b)
(<= 1 b)
(integerp x-exponent)
(<= 1 x-exponent)
(integerp y-exponent)
(<= 1 y-exponent))

(equal (compute-dh-key (compute-public-dh-value g x-exponent b)
y-exponent
b)

(compute-dh-key (compute-public-dh-value g y-exponent b)
x-exponent
b)))))

� Diffie Helman book – we need key equality
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Prerequesites to the Model

(defun session-key-requires-one-part-of-key 
(g b x-exponent y-exponent i-exponent)
;; we set the guards to nil to ensure that this function never executes and
;; is only used in the logical reasoning of the proof
(declare (xargs :guard nil 

:verify-guards nil))

(implies (and (force (integerp g)) #| etc. |# 
(not (equal i-exponent x-exponent))
(not (equal i-exponent y-exponent)))

(let ((x-public-value (compute-public-dh-value g x-exponent b))
(y-public-value (compute-public-dh-value g y-exponent b))
(session-key
(compute-dh-key (compute-public-dh-value g x-exponent b)

y-exponent
b)))

(and (not (equal (compute-dh-key x-public-value i-exponent b)
session-key))

(not (equal (compute-dh-key y-public-value i-exponent b)
session-key))))))

� Diffie Helman book – we need key secrecy
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Model “Features”

� Party constants are abstract

(defthm run-5-steps-with-badly-forged-attacker-yields-both-failure

(let ((initiator-constants (initiator-constants constants))
(responder-constants (responder-constants constants))
(public-constants (public-constants constants)))

; conclusion to come
)
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Model “Features”

� Nondeterministic attacker

� ACL2 question – how do I hide the part inside of function-we-…?

(defstub function-we-know-nothing-about1 (*) => *)

(defthm run-5-steps-with-badly-forged-attacker-yields-both-failure

(mv-let 
(network-s-after-1 initiator-s-after-1)
(initiator-step1 network-s initiator-s initiator-constants public-constants)

(let ((network-s-after-1-munged (function-we-know-nothing-about1 network-s-after-1)))
(mv-let
(network-s-after-2 responder-s-after-2)
(responder-step1 network-s-after-1-munged responder-s 

responder-constants public-constants)
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Model “Features”

� Separation of concepts like a well-formed 
message versus a message that’s badly-
forged

(defun well-formed-msg3p (msg)
(declare (xargs :guard t))
(and (alistp msg)

(integerp (Ni-msg msg))
(integerp (Nr-msg msg))
(integerp (Xi-msg msg))
(<= 0 (Xi-msg msg))
(integerp (Xr-msg msg))
(<= 0 (Xr-msg msg))
(integerp (Tr-msg msg))
(integer-listp (Er-msg msg))
(integerp (Hi-msg msg))
(integerp (Src-ip-msg msg))))
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Model “Features”

� Separation of concepts like a well-formed 
message versus a message that’s badly-
forged

(defun badly-forged-msg3p-old(msg responder-constants initiator-private-key)
(let* ((dh-key (CRYPTO::compute-dh-key (xi-msg msg)

(dh-exponent responder-constants)
(b responder-constants)))

(session-key (compute-session-key (Ni-msg msg)
(Nr-msg msg)
dh-key))

(SigKi (compute-sig-Ki (Ni-msg msg)
(Nr-msg msg)
(Xi-msg msg)
(Xr-msg msg)
(g responder-constants)
(b responder-constants)
initiator-private-key))

(Ei-decrypted (CRYPTO::decrypt-symmetric-list (Ei-msg msg) session-key)))
(not (equal (nth 2 Ei-decrypted)

SigKi))))
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Game Plan

Executable Model

Properties to Prove Initiator ID Agreement

2 Responder Steps

Responder ID Agreement

Key Agreement

3 Initiator Steps

Initiator allocates state and begins process
Responder receives a well formed network msg
Initiator receives a well formed network msg
Initiator does some calculation and saves some data
Responder receives a correctly signed network msg

that contains Responder’s cookie
Responder allocates state, saving the established 

key and marking itself “successful”
Initiator receives a correctly signed network msg
Initiator saves some more data and marks itself “successful”

Success -> Key Agreement
Success -> Initiator ID Agreement
Success -> Responder ID Agreement
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High Level Properties to Prove

(implies (and (initiator-success initiator-s)
(responder-success responder-s))

(and (equal (id-I responder-s) 
(id initiator-constants))

(equal (id-r initiator-s)
(id responder-constants))))

� Identity Agreement 
�Wouldn’t it be lovely:
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Identity Agreement

� if they are not the id associated with a private key, then they 
do not have the private key

� if they do not have the private key, then they will not sign this 
message verifiable with the public key

� if they do not sign this message, then the protocol will not be 
successful

� The last two are formalized in ACL2
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Identity Agreement

� Translates by contra positive into:

� if they have the private key, then they are the id associated 
with that private key

� if they sign the message verifiable with the public key, then 
they have the private key

� if the protocol is successful, then they signed the message
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Identity Agreement

� Reorders to:

� if the protocol is successful, then they signed the message
� if they sign the message verifiable with the public key, then 

they have the private key
� if they have the private key, then they are the id associated 

with that private key



February 1, 2006

Identity Agreement

� Gives us:

If the protocol is successful, then the 
“other” identity is the id associated 
with that private key
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Identity Theorem
(defthm run-5-steps-with-badly-forged-attacker-yields-both-failure

(let ((initiator-constants (initiator-constants constants))
(responder-constants (responder-constants constants))
(public-constants (public-constants constants)))

(mv-let 
(network-s-after-1 initiator-s-after-1)
(initiator-step1 network-s initiator-s initiator-constants public-constants)

(let ((network-s-after-1-munged (function-we-know-nothing-about1 network-s-after-1)))
(mv-let
(network-s-after-2 responder-s-after-2)
(responder-step1 network-s-after-1-munged responder-s 

responder-constants public-constants)
; <snip>      

(let ((network-s-after-4-munged (function-we-know-nothing-about4 network-s-after-4)))

(mv-let 
(network-s-after-5 initiator-s-after-5)
(initiator-step3 network-s-after-4-munged initiator-s-after-3 

initiator-constants public-constants)

(implies 
(and (constantsp constants)

(badly-forged-msg3p (msg3 network-s-after-3-munged)
(responder-constants constants)
(public-key-i public-constants))

(badly-forged-msg4p (msg4 network-s-after-4-munged)
initiator-s-after-3
initiator-constants
(public-key-R public-constants)))

(and (protocol-failure responder-s-after-4)
(protocol-failure initiator-s-after-5)))))))))))))
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High Level Properties to Prove

(implies (and (initiator-success initiator-s)
(responder-success responder-s))

(equal (session-key initiator)
(session-key responder)

� Key Agreement
�Wouldn’t it be lovely:
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Key Agreement

� ID proof is targeted towards safety while Key agreement proof is
targeted towards liveness

� Say that when network messages check out as okay, the key 
derived in the intiator’s step 2 is equal to something (TDB)

� Say that when network messages check out as okay, the key 
derived in the responder’s step 2 is equal to something (TBD)

� Use the DH book to show that those two something’s are equal 
� Prove that both parties show success only after all network 

messages they have received “check out”
� Conclude that if all parties have received valid network messages, 

then their keys must be equal (currently fuzzy)
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Wrap-up
� Covered:

� Derivation of JFKr
� Books developed for JFKr reasoning
� Demonstration of the JFKr executable model
� Security Properties

� Identity
� Session Key

� Requires expertise in both ACL2 and security protocols
� Have more than a good start
� Original work so far as I know

� But JFKr has been formally “verified” before
� Maybe it’s time to move onto wireless protocols, etc.



February 1, 2006

Resources

� Abadi, Blanchet, Fournet. Just Fast Keying in the Pi 
Calculus.

� Datta, Derek, Mitchell, and Pavlovic. A Derivation 
System and Compositional Logic for Security Protocols.

� Kaufmann, Matt and Moore, J Strother. ACL2 FAQ. 2004. 
� Levy, Benjamin (translator). Diffie-Helman Method for 

Key Agreement. 1997.
� Paulson, Lawrence C. Proving Properties by Induction. 

1997.
� Shmatikov, Vitaly. Just Fast Keying Slides. 2004. 
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Resources (cont’d)

Seriously.  The derivation of JFKr slides are almost straight from 
Vitaly Shmatikov’s course.


