Verifying Centaur’s Floating Point Adder

Sol Swords
sswords@cs.utexas.edu

April 23, 2008
Given:
- Verilog RTL for the Centaur CN processor’s FADD unit,
- Opcode and instructions for running a floating-point addition,
- An ACL2 specification function for floating point addition,

Prove, to the extent possible, that the design implements the spec.
Overview

- Dependency Checking
- Functional Simulation
- Delay Modeling

Verilog Files → E Modules → EMOD → And-Inverter Graphs → BDDify → Model Output BDDs

Case-splitting predicate → Input BDDs → BDDify

ACL2 Spec Function → GIFY → G-spec → Spec Output BDDs

Sol Swords () Verifying Centaur's Floating Point Adder April 23, 2008 3 / 21
Spec to BDDs

- Dependency Checking
- Functional Simulation
- Delay Modeling
- Verilog Files
- Case-splitting predicate
- ACL2 Spec Function
- GIFY

Flowchart:
- EMOD
 - And-Inverter Graphs
 - BDDify
 - Model Output BDDs
- Input BDDs
- Spec Output BDDs

ACL2 Spec Function
- GIFY
- G-spec
- Output BDDs
Want the spec represented as BDDs - Boolean functions, one for each output bit, over the bits of the input.

(GIFY 'SPEC) defines the (Common Lisp) function G–SPEC which now operates on symbolic objects.

Approximate, hypothetical contract of a G-function:

\[
\text{(equal (eval-g (g-foo a b c) vals)} \right. \\
\left. (\text{foo (eval-g a vals)} \right. \\
\left. (\text{eval-g b vals)} \right. \\
\left. (\text{eval-g c vals)})\}
\]

where EVAL-G maps a symbolic object to a concrete object.
Case Splitting

- BDDs for fully general FP addition are too big.
 - We have built them for the single-precision case: 2-4 hours computation, 20 million hash-conses. Not happening for double-precision.

- Case-splitting lets the BDD order be chosen for each case
 - Also makes it easier to eliminate irrelevant intermediate computations (more later.)

Where do we split?
Why?

- Adding the same mantissas at the same exponent difference is the same addition operation
- Best BDD order for addition has bits in order of significance
- Separates Near Path from Far Path cases
- Can consolidate cases where mantissas don’t overlap
Input BDD Generation

Exponent 1

Max

Outer Triangle

Inner Diagonals

Outer Triangle

Denorms, Zeros

NaNs, Infinities

Exponent 2

0

Exponent 2

0

Exponent 1

Max

Verifying Centaur’s Floating Point Adder

Sol Swords ()

April 23, 2008 9 / 21
Define as an ACL2 function:\((\text{ops-ok } \text{op1 op2 case}) \)

- case specifies which of the cases to accept
- Equals \(t \) if the operands fit that case, \(\text{nil} \) otherwise.
- Gify this function to get \(g\text{-ops-ok} \)
- Use the Gified function to get a BDD that shows when the symbolic operands satisfy the predicate.
Parameterized Inputs

For the inputs to symbolic simulations we want symbolic values that

- Always satisfy the predicate
- Cover all possible inputs that satisfy the predicate.

Implemented by function (Q-PARAM P N)

- P - predicate BDD
- N - Number of variables to create parameterized values for
- (Q-PARAM P N) makes a list of N BDDs which
 - evaluate to values satisfying P for all variable settings
 - are general enough so that every set of values satisfying P can be generated.
(defthm forall-y-p-of-param-of-y-is-true
 (implies
 (and (normp p) ;; P is a BDD
 p ;; P is satisfiable
 ;; N is an integer
 ;; and is >= the number of variables used in P
 (integerp n)
 (<= (max-depth p) n))
 ;; Every case covered by (Q-PARAM P N) satisfies P.
 (equal (eval-bdd p
 (eval-bdd-list (q-param p n) y))
 t)))
Q-PARAM theorems: 2

(defthm exists-y-such-that-x-is-param-of-y
 (implies
 (and ;; X is a list of Booleans that satisfies P
 (boolean-listp x)
 (equal (eval-bdd p x) t)
 ;; X is long enough to cover all variables of P
 (<= (max-depth p) (len x)))
 ;; There exists Y for which (Q-PARAM P (LEN X))
 ;; evaluates to X.
 (let ((y (eval-bdd-list (q-param-inv p (len x)) x)))
 (equal (eval-bdd-list (q-param p (len x))
 y)
 x))))
Model to BDDs

- Dependency Checking
- Functional Simulation
- Delay Modeling
- Verilog Files
- Case-splitting predicate
- ACL2 Spec Function
- Input BDDs
- EMOD
- And-Inverter Graphs
- BDDify
- Model Output BDDs
- Spec Output BDDs
- GIFY
- G-spec
- Sol Swords ()

Verifying Centaur's Floating Point Adder
April 23, 2008 15 / 21
Model-side summary

- We read the model from Centaur’s Verilog RTL (about 20,000 LOC.)
- Synthesize the Verilog to gates and translate the gates to E
- Results in an ACL2 defconst called |*fadd*|
- Run several cycles of
 \[(\text{emod } \text{'faig } |*fadd*| < \text{inputs} > < \text{state} >)\]
 to get a pair of And-Inverter Graphs (AIGs) for each output bit.
- Using the BDD inputs generated by case-splitting, build the BDD for each AIG using an iterative process.
AIG introduction

An AIG is a recursive data structure:

- **Booleans:** T and NIL
- **Variables:** non-Boolean atoms
- **Negation of an AIG x:** (CONS X NIL)
- **Conjunction of AIGs x and y:** (CONS X Y)
AIG to BDD, simple algorithm

Given an assignment of BDDs to the variables present in an AIG, make an equivalent BDD:

```lisp
(defun aig-to-bdd (x al)
  (cond ((booleanp x) ;; Boolean
     x)
     ((atom x) ;; Variable
       (cdr (hons-get x al)))
     ((eq (cdr x) nil) ;; Negation
       (q-not (aig-to-bdd (car x) al)))
     (t ;; Conjunction
       (q-and (aig-to-bdd (car x) al)
              (aig-to-bdd (cdr x) al))))
```

Too inefficient, can’t use.
AIG to BDD, practical approach

At a conjunction node $A \land B$, suppose A can be cheaply translated into a BDD but B cannot.

Observation: We may not need to BDDify B in order to BDDify $A \land B$.

- If $\text{BDDify}(A) = \text{NIL}$, then $\text{BDDify}(A \land B) = \text{NIL}$.
- More generally, if A is never true when B is false, then $\text{BDDify}(A \land B) = \text{BDDify}(A)$.
- Strategy: Set an upper bound on the size of BDDs to work on. If we can detect the above situation before fully BDDifying B, we win. Otherwise, may need to increase the upper bound and try again.
AIG to BDD, practical approach

- Use one of two strategies for dealing with too-big BDDs:
 - More conservative, faster: Use pairs of BDDs to represent upper and lower bounds of the true BDD values. Set the upper bound to T or the lower bound to NIL when too big.
 - Less conservative, slower: Associate each too-large BDD created with a fresh BDD variable.

- In either case, we may sometimes prune the AIG even when we have no exact BDD results.

- Have ACL2 proofs that both approaches are sound.

- Our approach: Alternate between the two strategies while iteratively increasing the size limit until an exact result is reached.
Results

- Works pretty well:
 - Single-precision: 8 minutes to verify
 - Double/extended precision: 1 hour each

- Future directions:
 - Fight our way toward an ACL2 theorem.
 - Prove that we really have a proof.
 - Need a logical story for Gification.
 - Adapt the approach to other kinds of hardware.
 - Need to decompose the problem in other ways than by case-splitting on the inputs.