The GL Clause Processor

Sol Swords

September 23, 2009
Outline

About GL

About clause processors

The GL clause processor

Verifying the Clause Processor

Clause Processor Verification Tidbits

Conclusion
GL is a framework for proving difficult theorems by *symbolic simulation* using BDD-based Boolean reasoning.

High-level Specification

(\text{let}*\ (s0 \ (\text{xor} \ (\text{bit} \ 0 \ a) \ (\text{bit} \ 0 \ b)))
\ (c0 \ (\text{and} \ (\text{bit} \ 0 \ a) \ (\text{bit} \ 0 \ b)))
\ (x1 \ (\text{xor} \ (\text{bit} \ 1 \ a) \ (\text{bit} \ 1 \ b)))
\ (s1 \ (\text{xor} \ c0 \ x1))
\ (j1 \ (\text{and} \ (\text{bit} \ 1 \ a) \ (\text{bit} \ 1 \ b)))
\ (c1 \ (\text{or} \ j1 \ (\text{and} \ c0 \ x1)))
\ ...
\ ...
\ ...
\ (\text{list} \ s0 \ s1 \ s2 \ \ldots \ s10))

Low-level Implementation
GL is a framework for proving difficult theorems by *symbolic simulation* using BDD-based Boolean reasoning.

High-level Specification

```
+_{sym}
```

Low-level Implementation

```
A +_{sym} B
```

```
A_{sym} B
```
Seen last time: Code transform

- Code transform creates *symbolic counterparts* for ACL2 functions
- Symbolic counterparts proven to correctly simulate their original functions

![Diagram](https://via.placeholder.com/150)

- Problem: Many proofs necessary, many new functions introduced, lots of theorem proving time, unreliable automation for proofs.
The new way: Verified interpreter

- Interpreter carries out symbolic execution
 - Inputs (abstractly): term, symbolic bindings, set of definitions
 - Uses existing symbolic counterparts of some “primitives”
 - Can concretely execute a fixed set of functions

Term:
```
(EQUAL (+ A B) (A B))
```

Bindings:
```
((A . ...) (B . ...))
```

Definitions:
```
(EQUAL (FOO X) (LET ((Y ...)) (IF ...)))
```

Symbolic Interpreter:
- Primitive Symbolic Counterparts
- Concretely Executable Functions

Symbolic Result:

![Diagram showing the process of symbolic execution](image-url)
Verified Interpreter

- Interpreter and primitive symbolic counterparts are verified; no need to generate and verify other symbolic counterparts.
 - Contrast with the “verifying compiler” approach.
- Performance: Sometimes slow to interpret through recursive definitions.
 Solution: each interpreter has
 - a fixed set of functions which it can directly execute on concrete values
 - a fixed set of symbolic counterparts which it can directly execute.
May define new interpreters with different such sets of functions.
- Interpreter may be used in a clause processor to prove theorems.
What is a clause processor?

From ACL2 documentation: “A simplifier at the level of goals, where a goal is represented as a clause.”

- User-defined function that takes one goal clause and produces a list of new clauses.
- Soundness contract: proving all of the new clauses suffices to prove the goal.
- May be verified (requires meta-level proof) or not (requires trust tag.)
Prove correctness with respect to an *evaluator* function
\[\text{eval} \left(\text{Term}, \text{Alist} \right) \to \text{Object} \] which gives a semantics to quoted terms. Example:

\[
(\text{eval '}(\text{if} \ a \ (\text{cons} \ a \ 'b) \ 'foo) \ '((a . \text{bar}))) \Rightarrow (\text{bar . b})
\]

Clause processor correctness statement:

\[
(\text{implies} \ (\text{and} \ ... \ ;; \text{well-formedness hyps} \\
(\text{eval} \ (\text{conjoin-clauses} \\
(\text{clause-proc} \ \text{goal} \ \text{hints} \ ...)) \\
\text{my-alist})) \\
(\text{eval} \ (\text{disjoin} \ \text{goal}) \ \text{alist}))
\]
GL Clause Processor Flow

- **Hints**
 - **Bindings**
 - A ← symbolic 9-bit integer
 - B ← symbolic 6-bit integer
 - **Hypothesis**
 - A is an 8-bit even natural
 - B is a 6-bit odd integer
 - **Conclusion**
 - \(\text{spec}(A, B) = \text{impl}(A, B) \)

- **Clause Processor**
 - **Predicate**
 - B[0] = 1
 - **Symbolic Interpreter**
 - **Parametrize**
 - A ← sym. 8-bit even natural
 - B ← sym. 6-bit odd integer

- **Side Conditions**
 - **Coverage**
 - Hypothesis holds for (a, b) => Bindings cover (a, b)
 - **Relevance**
 - Proving (Hyp => Concl) suffices to prove Clause

- **Result**
 - True
 - or
 - Counterexample
The GL clause processor

GL Clause Processor: Inputs

Hints

Bindings

- A \(\leftarrow\) symbolic 9-bit integer
- B \(\leftarrow\) symbolic 6-bit integer

Hypothesis

- A is an 8-bit even natural
- B is a 6-bit odd integer

Conclusion

\[
\text{spec}(A, B) = \text{impl}(A, B)
\]

Clause

If A is an 8-bit even natural and B is a 6-bit odd integer, then \(\text{spec}(A, B) = \text{impl}(A, B)\)

- Clause: the goal to be proved
- Hypothesis, conclusion, bindings: hints to the clause processor
- Bindings associate a symbolic object to each free variable in the clause
- Hypothesis gives “type”/”shape” constraints on variables
- Conclusion may further restrict variables (may itself be an IMPLIES term).
GL Clause Processor: Side Conditions

Hints

Bindings
- A \leftarrow symbolic 9-bit integer
- B \leftarrow symbolic 6-bit integer

Hypothesis
- A is an 8-bit even natural
- B is a 6-bit odd integer

Conclusion
- \[\text{spec}(A, B) = \text{impl}(A, B) \]

Clause

If A is an 8-bit even natural and B is a 6-bit odd integer, then \[\text{spec}(A, B) = \text{impl}(A, B) \]

Coverage:

- Symbolic simulation (if successful) proves: *The conclusion holds of input vector x if x is a possible value of the symbolic inputs used in the simulation.*
- To relate this to the hypothesis, must show: *If input vector x satisfies the hypothesis, then it is a possible value of the symbolic inputs.*

Side Conditions

Coverage
- Hypothesis holds for (a, b)
- \[\Rightarrow \]
- Bindings cover (a, b)

Relevance
- Proving \((\text{Hyp} \Rightarrow \text{Concl}) \) suffices to prove Clause
The GL Clause Processor: Side Conditions

Hints

* Bindings
 - \(A\) is a symbolic 9-bit integer
 - \(B\) is a symbolic 6-bit integer

* Hypothesis
 - \(A\) is an 8-bit even natural
 - \(B\) is a 6-bit odd integer

* Conclusion
 - \(\text{spec}(A, B) = \text{impl}(A, B)\)

Clause

If \(A\) is an 8-bit even natural and \(B\) is a 6-bit odd integer, then \(\text{spec}(A, B) = \text{impl}(A, B)\)

Relevance:

- Clause, hypothesis, conclusion are independent inputs to the clause processor
- Symbolic simulation (with coverage) effectively proves

 \[\text{hypothesis} \implies \text{conclusion}\]

- Therefore, prove that this implies the clause and we’re done.
- Typically trivial by construction.

Side Conditions

Coverage
- Hypothesis holds for \((a, b)\)
 - =>
 - Bindings cover \((a, b)\)

Relevance
- Proving \((\text{Hyp} \implies \text{Concl})\) suffices to prove Clause
Symbolic bindings may cover more than is accepted by the hypothesis - often better symbolic simulation performance is achievable if inputs cover less.

Symbolically simulating the hypothesis on the inputs yields a symbolic predicate.

Parametrization by that predicate yields new symbolic objects with coverage restricted to the space recognized by the hypothesis.

Hints

- **Bindings**
 - A \(\leftarrow\) symbolic 9-bit integer
 - B \(\leftarrow\) symbolic 6-bit integer

- **Hypothesis**
 - A is an 8-bit even natural
 - B is a 6-bit odd integer

- **Conclusion**
 - \(\text{spec}(A, B) = \text{impl}(A, B)\)

Clause

If A is an 8-bit even natural and B is a 6-bit odd integer, then \(\text{spec}(A, B) = \text{impl}(A, B)\).
Symbolically execute the conclusion to determine whether it holds on the space represented by the restricted bindings.

Result: often T or a set of counterexamples.

May fail or produce an ambiguous result (stack depth overrun, unimplemented primitive).
The GL clause processor

GL Clause Processor Flow: Recap

Hints

Bindings
A ← symbolic 9-bit integer
B ← symbolic 6-bit integer

Hypothesis
A is an 8-bit even natural
B is a 6-bit odd integer

Conclusion
spec(A, B) = impl(A, B)

Clause
If A is an 8-bit even natural and B is a 6-bit odd integer, then spec(A, B) = impl(A, B)

Clause Processor

Side Conditions
Coverage
Hypothesis holds for (a, b)
impl(A, B)

Relevance
Proving (Hyp => Concl) suffices to prove Clause

Result
True or Counterexample

Symbolic Interpreter

Predicate
B[0] = 1

Parametrize

Restricted Bindings
A ← sym. 8-bit even natural
B ← sym. 6-bit odd integer

Restricted Bindings
A ← sym. 8-bit even natural
B ← sym. 6-bit odd integer
First, verify the generic clause processor:

- Crux: symbolic interpreter is faithful to an evaluator’s interpretation of a given term (next slide)
- Show that given the side conditions, if the interpreter’s result is always true, then the clause is a theorem

Automate the correctness proof of new clause processors by functional instantiation of the generic one

- DEF-GL-CLAUSE-PROCESSOR macro provided; introduces and verifies a new GL clause processor.
Correctness of Interpreter

- **term**: what we’re symbolically simulating
- **bindings**: association of symbolic objects to free variables of term
- **defs**: function definitional equations given to interpreter
- **env**: environment for symbolic object evaluation
- **EVAL**(term, alist) → obj: Evaluator for quoted ACL2 terms
- **GL-EV**(sym-obj, env) → obj: Evaluator for symbolic objects.
- **INTERP**(term, bindings, defs) → sym-obj: Symbolic interpreter.

(Abstract) correctness statement:

\[\forall \text{term, bindings, defs, env} . \]
\[(\forall \text{alist} . \text{EVAL}(\text{conjoin}(\text{defs}), \text{alist})) \]
\[\Rightarrow \text{GL-EV} (\text{INTERP} (\text{term, bindings, defs}), \text{env}) \]
\[= \text{EVAL (term, GL-EV (bindings, env))} \]
Correctness of Interpreter

- **term**: what we’re symbolically simulating
- **bindings**: association of symbolic objects to free variables of term
- **defs**: function definitional equations given to interpreter
- **env**: environment for symbolic object evaluation
- **EVAL**(term, alist) → obj: Evaluator for quoted ACL2 terms
- **GL-EV**(sym-obj, env) → obj: Evaluator for symbolic objects.
- **INTERP**(term, bindings, defs) → sym-obj: Symbolic interpreter.
Assumed Definitions

- Definitions used by interpreter are not considered axiomatically true
- But we assume they are for the interpreter correctness statement
- Therefore, we are forced to emit them as output clauses from the clause processor.
- To automate their proofs, “label” each definition clause by adding a trivially true hypothesis and use computed hints to eliminate them
 - See “clause-processors/use-by-hint.lisp”.

```lisp
((not (use-these-hints
      ’((:by (:definition len))))

(equal (len x)
      (if (consp x)
          (+ 1 (len (cdr x))
               0)))
```
Instantiating derived clauses

(implies (eval (conjoin-clauses (clause-proc clause hints))
 some-alist)
 (eval (disjoin clause) original-alist))

▶ Problem: Certain derived clauses need to be instantiated with different alists or multiple times in the clause processor correctness proof
▶ Solution: May choose for some-alist any alist you want. Use a Skolem function:
 (defchoose falsifier (a) (x)
 (not (eval x a)))
and choose:
 (falsifier (conjoin-clauses (clause-proc clause hints))).
▶ If c is a clause in the list (clause-proc clause hints), then
 (eval (conjoin-clauses (clause-proc clause hints))
 (falsifier (conjoin-clauses (clause-proc clause hints))))
implies for all a, (eval c a).
Conclusions

- “Verified interpreter” rather than “verifying compiler” seems to be a win here.
 - Eliminates a lot of theorem proving
 - Little performance impact from interpretation (if you're careful)
- Challenging but surprisingly doable to verify complicated clause processors.
- Orchestration between clause processors and computed hints can be very powerful.