
Defattach: Support for

Calling Constrained Functions

and Soundly Modifying ACL2

Matt Kaufmann

ACL2 Seminar, February 3, 2010

1



OUTLINE

◮ Introduction
◮ Motivation
◮ Evaluation Semantics
◮ Some Tricky Aspects
◮ Conclusion

2



Disclaimer and Invitation

This is work in progress.

I welcome your feedback on this
design.

3



OUTLINE
◮ INTRODUCTION

◮ Basics
◮ Encapsulate requirement
◮ Proof Obligations
◮ Examples

◮ Motivation
◮ Evaluation Semantics
◮ Some Tricky Aspects

4



Basics
Basic act: (defattach f g)

◮ “Attach g to f.”
◮ “Function g is the attachment

of f.”
◮ “〈f,g〉 is an attachment pair.”

The effect:
◮ Any call of f is replaced by

the corresponding call of g.
5



Encapsulate requirement
Attach only to encapsulated fns.
(encapsulate ((f (x) t))
...) generates raw Lisp like:

(defun f (x)
(if <ok_to_run_attachment>

(funcall <attachment> x)
(error "Undefined!’’)))

(Hmmm... maybe follow trace$ approach?)
6



Proof Obligations
Consider (defattach f g).

◮ Constraint proof obligation:
“g satisfies the constraint, ϕ,
of f”:
⊢ ϕ\{f := g}.

◮ Guard proof obligation: For
guards Gf and Gg of f and g,
⊢ (Gf → Gg).

7



Examples
(defattach f g)

; Same as above:
(defattach ((f g)))

(defattach ((f1 g1)
(f2 g2)
(f3 g3)))

8



(defattach
((f g

:hints ; guards
(("Goal"

:in-theory
(enable foo))))))

(defattach
((f g))
:hints ; constraints
(("Goal" :use my-thm)))

9



(defattach ; both hint types
((f g

:hints ; guards
(("Goal"
:in-theory
(enable foo))))

(h j
:hints ; guards
(("Goal"
:in-theory
(enable bar)))))

:hints ; constraints
(("Goal" :use my-thm)))

10



(defattach f nil)

; Same as above:
(defattach ((f nil)))

(defattach ((f1 nil)
(f2 nil)
(f3 nil)))

11



OUTLINE

◮ Introduction
◮ MOTIVATION (one slide)
◮ Evaluation Semantics
◮ Some Tricky Aspects

12



MOTIVATION
This may be the key slide of the
talk; I’ll just talk through it.

◮ Constrained function
execution

◮ Sound modification of the
ACL2 system

◮ Program refinement

13



OUTLINE
◮ Introduction
◮ Motivation
◮ EVALUATION SEMANTICS

◮ Theory Review
◮ Theorem of WHAT?
◮ Evaluation Theory
◮ Evaluation Claim
◮ Consistency Claim
◮ Proving Consistency

◮ Some Tricky Aspects
14



Theory Review
◮ Axiomatic events: defun,
encapsulate (when
non-trivial), defchoose.
(Also defaxiom.)

◮ (First-order) Theory of a
session

◮ History, Chronology

15



Theorem of WHAT?
Consider for example:

ACL2 !>(+ 3 4)
7
ACL2 !>

Associated theorem:

??? ⊢ (+ 3 4) = 7
16



What does evaluation mean in
the presence of defattach?
Assume (defattach f +).

ACL2 !>(f 3 4)
7
ACL2 !>

Associated theorem:

??? ⊢ (+ 3 4) = 7
17



BUT WATCH OUT!!

Unsupported:

ACL2 !>(thm (equal (f 3 4) 7))

But we reduce the conjecture
to T,by case analysis.

Q.E.D.

18



Evaluation Theory
Defattach axiom for attachment
pair 〈f , g〉: f (...) = g(...).

Evaluation Theory: Axiomatized
by the session theory together
with the defattach axioms

If you are attaching g to f , then
you must want evaluate in a
theory where f is defined to be g!

19



Evaluation Claim
If expression E evaluates to
constant C, then E = C is a
theorem of the evaluation theory.

Follows from proof obligation that
the guard of f implies the guard
of g for each attachment pair
〈f , g〉.

20



Consistency Claim

The evaluation theory is
consistent, assuming no
defaxiom events. (Aside: It even
has a standard model.)

21



Proving Consistency (1)
Every chronology provides a
consistent theory.

So it suffices to define an
evaluation chronology whose
theory is the evaluation theory.

Consider (defattach f g).

22



Proving Consistency (2)
Replace (encapsulate ((f
(x) t)) ...)
by (defun f (x) (g x)).

Then the original constraint for f
is now a theorem, by the proof
obligation that g satisfies the
constraint for f.

23



Proving Consistency (3)

Catch: g might be defined after f!

Solution: We need to “move” the
event introducting g in front of the
encapsulate introducing f.

24



We can’t always introduce g
before f — for good reason!

(defstub f (x) t)
(defun g (x) (not (f x)))

Sufficient: acyclicity check,
where we add g as an ancestor
of f based on the new event
(defun f (x) (g x)).

25



Key Lemma. Let S be a finite set,
let < be a linear order on S, and
let P be a partial order on S.
Then there is a linear order that
contains P and is obtained from
< by a sequence of swaps, each
of which respects P.

Here, a “swap” is what you think,
and it “respects P” if we don’t
swap x and y when P(x , y).

26



OUTLINE
◮ Introduction
◮ Motivation
◮ Evaluation Semantics
◮ SOME TRICKY ASPECTS

◮ Unattachment
◮ Conditional Refinement
◮ Avoiding attachments during

proofs
◮ Include-Book Checks

27



SOME TRICKY
ASPECTS

Getting the details right is still a
work in progress!

28



Unattachment
(defstub f1 () t)
constraint f2=f1
constraint f3=f1
(defattach ((f1 0) (f2 0)))
(defattach ((f1 1) (f3 1)))

Must unattach f2 before
re-attaching f1: else
f1=1, f2=0, f3=1,
violating first constraint.29



Conditional Refinement
(encapsulate ((f (x) t)) C)
(defun g (x)

(if <test> <code> (f x)))
(defattach f g)

Sandip Ray might want such “tail”
calls (f x). But we can’t move
the second event in front of the
first! Solution:

30



(encapsulate ((g (x) t))
(local
(encapsulate ((f ...)) C))
(local
(defun g (x)

(if <test> <code> (f x))))
C\{f := g}
(g x)
= (if <test> <code> (g x)))

(defun f (x) (g x))
31



Avoiding attachments
during proofs

(defun f (x)
(if <ok_to_run_attachment>

(funcall <attachment> x)
(error "Undefined!’’)))

When is it OK to run
attachments?

32



◮ Top-level evaluation: YES
◮ System functions during

proofs: YES
◮ Simplifying terms: NO

Solution: Disable attachments for
function evaluation inside prover
processes (but not inside hints).

Technically: raw-ev-fncall and
ev-fncall! bind *disable-attachments*
to t when they are called under
waterfall-step.

33



Include-Book Checks
Question: Do we need to do our
acyclicity check during
include-book?
(Many checks are inhibited
during include-book, for
efficiency.)
I don’t know yet!
(I’m guessing: Yes.)

34



Include-Book Checks
Question: Do we need to do our
acyclicity check during
include-book?
(Many checks are inhibited
during include-book, for
efficiency.)
I don’t know yet!
(I’m guessing: Yes.)

35



CONCLUSION
◮ Constrained function

execution
◮ Sound modification of the

ACL2 system (towards the
“Open Architecture” vision)

◮ Program refinement
◮ Others? (Consider

proliferation of
make-event.)36


