
Curry,  
Howard, 
Coq ψ(
εΩ+
1)
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Two Kinds O’ Proofs
Informal Proof

Convincing natural language argument

Formal Proof

Built from a strict set of  rules

Syntactic manipulation

“Proof  Theory” proofs

Machine checkable / manipulatable
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A Proof Theory

Axioms:

Inference Rules:

Build Derivations

T

[A]
᠁
B

A → B

     ᠁              ᠁   
 A → B        A

B
u

u

I→ E→
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An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
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(A → (B → C))       A            (A → B)     A
B → C                B

C
A →C              

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u
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(A → (B → C))       A            (A → B)     A
B → C                B

C
A →C              

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

(A → (B → C))       A
              B → C

E→
u w
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(A → (B → C))       A            (A → B)     A
B → C                B

C
A →C              

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

E→
(A → B)     A
B                 .    

wv
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(A → (B → C))       A            (A → B)     A
B → C                B

C
A →C              

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

E→B → C                B
C

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u
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(A → (B → C))       A            (A → B)     A
B → C                B

C
A →C              

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

I→C
A →C

w
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(A → (B → C))       A            (A → B)     A
B → C                B

C
A →C              

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

I→A →C              
(A → B) →(A →C)

v
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(A → (B → C))       A            (A → B)     A
B → C                B

C
A →C              

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u I→
(A → B) →(A →C)

(A → (B → C)) → ((A → B) →(A →C))
u
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Something Completely 
Different

Lambda Calculus:

Core Functional Language

Two typing rules:

Function
Abstraction

Function 
Application

⊦λx:A.y:A →B 
(x:A)⊦y:B 

x y: B 
x:A→B   y:A 
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Something Completely 
Different

Lambda Calculus:

Core Functional Language

Two typing rules:

Function
Abstraction

Function 
Application

?

⊦λx:A.y:A →B 
(x:A)⊦y:B 

x y: B 
x:A→B   y:A 
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Something Completely 
Different

Lambda Calculus:

Core Functional Language

Two typing rules:

Function
Abstraction

Function 
Application

?

⊦λx:A.y:A →B 
(x:A)⊦y:B 

x y: B 
x:A→B   y:A I→ E→
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u:(A → (B → C)   w:A         v:(A → B)  w:A
uw : B → C               vw : B

(uw)(vw):C
λw.(uw)(vw):A →C              

λvw.(uw)(vw):(A → B) →(A →C)
λuvw.(uw)(vw):(A → (B → C)) → ((A → B) →(A →C))

An Example Redux
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Two Coins

Application takes A’s to B’s 
f:A→B, y:A ⊦ f  y : B

Modus Ponens derives B 
B

A    A→B

λ-Calculus Propositional Logic
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Two Coins

Application takes A’s to B’s 
f:A→B, y:A ⊦ f  y : B

Modus Ponens derives B 
B

A    A→B

λ-Calculus Propositional Logic

?
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Two Coins?

Thursday, February 24, 2011



Two Sides !

Any derivation in intuitionistic propositional 
logic corresponds to a typeable λ-term.

Curry–Howard Isomorphism:

ψ(
εΩ+
1)
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Two Sides !

Any derivation in intuitionistic propositional 
logic corresponds to a typeable λ-term.

Curry–Howard Isomorphism:

We can show a formula is derivable if  we can 
build a term with the corresponding type!

ψ(
εΩ+
1)
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Two Sides !
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Two Sides
λ-Calculus Propositional Logic

!
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λ-Calculus Propositional Logic

!
Type Variable Propositional variable 

Two Sides
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λ-Calculus Propositional Logic

!
Type Variable 

Type
Propositional variable 

Formula

Two Sides
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λ-Calculus Propositional Logic

!
Type Variable 

Type

Inhabitation

Propositional variable 
Formula

Proof  

Two Sides
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λ-Calculus Propositional Logic

!
Type Variable 

Type

Inhabitation

Type Constructor
Left (x:A)
(x:A, y:B)

Propositional variable 
Formula

Proof  
Connective

A∨B    (A+B)
A∧B    (A⨉B)

Two Sides
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L’Coq Proof Assistant

Built on Calculus of  (Co)-Inductive Constructions
Dependently-Type Lambda Calculus + Inductive 
Definitions
OCaml Implementation

Extraction to ML

Goal: Build a term with the desired type

Small, trusted type checker

DeBruijn Criterion
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L’Example
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L’Example

Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
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L’Example

Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Definition app_assoc := 

list_ind

  (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)

  (fun b c : list A => refl_equal (b ++ c))

  (fun (a0 : A) (a1 : list A)

     (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)

     (b c : list A) =>

   let H :=

     eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: l)

       (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in

   eq_ind_r (fun l : list A => a0 :: a1 ++ b ++ c = l)

     (eq_ind_r (fun l : list A => a0 :: l = a0 :: l)

        (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a
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L’Example

Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Definition app_assoc := 

list_ind

  (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)

  (fun b c : list A => refl_equal (b ++ c))

  (fun (a0 : A) (a1 : list A)

     (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)

     (b c : list A) =>

   let H :=

     eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: l)

       (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in

   eq_ind_r (fun l : list A => a0 :: a1 ++ b ++ c = l)

     (eq_ind_r (fun l : list A => a0 :: l = a0 :: l)

        (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) aX
Agda Epigram
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Tactics
Recall: Want to build functions

Use program-generating functions called tactics

Backward reasoning:

Combined into Proof  Scripts
3 kinds Tactics:

Basic Inference Rules
Derived Rules
Decision Procedures

A∧B 
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Tactics
Recall: Want to build functions

Use program-generating functions called tactics

Backward reasoning:

Combined into Proof  Scripts
3 kinds Tactics:

Basic Inference Rules
Derived Rules
Decision Procedures

A∧B 
A
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Tactics
Recall: Want to build functions

Use program-generating functions called tactics

Backward reasoning:

Combined into Proof  Scripts
3 kinds Tactics:

Basic Inference Rules
Derived Rules
Decision Procedures

A∧B 
A B
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Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Definition app_assoc := 

list_ind

  (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)

  (fun b c : list A => refl_equal (b ++ c))

  (fun (a0 : A) (a1 : list A)

     (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)

     (b c : list A) =>

   let H :=

     eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: l)

       (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in

   eq_ind_r (fun l : list A => a0 :: a1 ++ b ++ c = l)

     (eq_ind_r (fun l : list A => a0 :: l = a0 :: l)

        (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a

L’Example Redux
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Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Lemma app_assoc : forall A (a b c : list A), a ++ b ++ c = (a ++ b) ++ c.

  induction a; simpl; intros.

  reflexivity.

  cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)).

  intros; rewrite H; rewrite IHa; reflexivity.

  rewrite IHa; reflexivity.

Qed.

L’Example Redux
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Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Lemma app_assoc : forall A (a b c : list A), a ++ b ++ c = (a ++ b) ++ c.

  induction a; simpl; intros.

  reflexivity.

  cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)).

  intros; rewrite H; rewrite IHa; reflexivity.

  rewrite IHa; reflexivity.

Qed.

L’Example Redux

Lemma Double_Even : forall n, Even (n + n).

induction n; simpl; try rewrite plus_comm; simpl; constructor.

exact IHn.

Qed.
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Proof Buffer
2 subgoals
  
  A : Type
  a : A
  a0 : list A
  IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
  b : list A
  c : list A
  ============================
   a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
   a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c
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Proof Buffer
2 subgoals
  
  A : Type
  a : A
  a0 : list A
  IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
  b : list A
  c : list A
  ============================
   a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
   a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Context
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Proof Buffer
2 subgoals
  
  A : Type
  a : A
  a0 : list A
  IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
  b : list A
  c : list A
  ============================
   a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
   a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c
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2 subgoals
  
  A : Type
  a : A
  a0 : list A
  IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
  b : list A
  c : list A
  ============================
   a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
   a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Proof Buffer
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2 subgoals
  
  A : Type
  a : A
  a0 : list A
  IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
  b : list A
  c : list A
  ============================
   a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
   a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Current Goal

Proof Buffer
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2 subgoals
  
  A : Type
  a : A
  a0 : list A
  IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
  b : list A
  c : list A
  ============================
   a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
   a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Proof Buffer
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2 subgoals
  
  A : Type
  a : A
  a0 : list A
  IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
  b : list A
  c : list A
  ============================
   a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
   a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Proof Buffer
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2 subgoals
  
  A : Type
  a : A
  a0 : list A
  IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
  b : list A
  c : list A
  ============================
   a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
   a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Remaining 

Goals

Proof Buffer
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2 subgoals
  
  A : Type
  a : A
  a0 : list A
  IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
  b : list A
  c : list A
  ============================
   a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
   a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Proof Buffer
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Modular Mechanized 
Metatheory

Ben Delaware
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Today’s Problem
- Programming Languages change:

- Java 5.0  

- GFJ

- New features added

- Standard practice: 

- Our goal: Extensible Definitions

Java 5.0
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Today’s Problem
- Programming Languages change:

- Java 5.0  

- GFJ

- New features added

- Standard practice: 

- Our goal: Extensible Definitions

  etc.   foreach   GenericsJava 4.0

   GenericsFJ Core

=

=

Java 5.0
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Today’s Problem
- Programming Languages change:

- Java 5.0  

- GFJ

- New features added

- Standard practice: 

- Our goal: Extensible Definitions

  etc.   foreach   GenericsJava 4.0

   GenericsFJ Core

=

=

Java 5.0

Java 4.0
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Today’s Problem
- Programming Languages change:

- Java 5.0  

- GFJ

- New features added

- Standard practice: 

- Our goal: Extensible Definitions

  etc.   foreach   GenericsJava 4.0

   GenericsFJ Core

=

=

Java 5.0

  etc.   foreach   GenericsJava 4.0
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- Arithmetic Expression Language (AL)

- Syntax:

 E ::= E + E | N 

- Semantics:

- Assign meaning to expressions

- Interpreter: 

Defining a Language
 5 + 6

 eval (“5 + 6”) = 11
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- Small-Step Operational Semantics
- Set of transitions: 
- Presented as judgements

- Interpreters conform to these rules

Operational Semantics

s1 ↝ s1ʹ′
s1 + s2 ↝  s1ʹ′ + s2

s2 ↝ s2ʹ′
s1 + s2 ↝  s1 + s2ʹ′

n1 + n2 = n3        n1, n2 ∈ N   
n1 + n2 ↝ n3
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Type Systems

- Approximation of run-time semantics

- Typing Rules:

- Disallow ‘misbehaving’ programs

 n ∈ N
⊢ n : nat

⊢s1 : nat    ⊢s2 : nat
⊢s1 + s2 : nat 
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Type Safety Proofs
- Want to prove approximation is correct

- Two key lemmas for AL:

Preservation

⊢ e : nat          e ↝ eʹ′  
⊢ eʹ′ : nat 

⋮
Proof

⋮
Qed.

Progress

⊢ e : nat 
e ↝ eʹ′ ∨ e ∈ N

⋮
Proof

⋮
Qed.

- These are our metatheory proofs
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- Full language definition:

- Proof assistants manage complexity 

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational 
Semantics

Type 
System

Proofs
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- Full language definition:

- Proof assistants manage complexity 

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational 
Semantics

Type 
System

Proofs

Syntax Operational 
Semantics

Static 
Semantics

Proofs
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- Full language definition:

- Proof assistants manage complexity 

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational 
Semantics

Type 
System

Proofs

New 
Syntax

New 
Operational 
Semantics

New Type 
System

New
Proofs

Syntax Operational 
Semantics

Static 
Semantics

Proofs
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- Full language definition:

- Proof assistants manage complexity 

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational 
Semantics

Type 
System

Proofs

Syntax Operational 
Semantics

Static 
Semantics

Proofs
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- Full language definition:

- Proof assistants manage complexity 

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational 
Semantics

Type 
System

Proofs

Syntax
Updates

Operational 
Semantics
Updates

Static 
Semantics
Updates

Proof
Updates

Syntax Operational 
Semantics

Static 
Semantics

Proofs

Thursday, February 24, 2011



Extending AL

Syntax Dynamic 
Semantics

Static 
Semantics

Proofs

E ::= 
 | N
 | E + E

s1 ↝ s1ʹ′
s1 + s2 ↝  s1ʹ′ + s2

s2 ↝ s2ʹ′
s1 + s2 ↝  s1 + s2ʹ′

n1 + n2 = n3        n1, n2 ∈ N   
n1 + n2 ↝ n3

 n ∈ N
⊢ n : nat

⊢s1 : nat    ⊢s2 : nat
⊢s1 + s2 : nat 

Progress:
∀ s : S, ⊢ s : A → ∃ sʹ′, s ↝ sʹ′ 

∨ Value s.
⋮

Proof
⋮

Qed.

Preservation:
∀ s sʹ′: S, ⊢ s : A → s ↝ sʹ′ → 

⊢ sʹ′ : A 
⋮

Proof
⋮

Qed.
 

- BAL = Booleans + AL
- New features make changes throughout
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Building BAL

Syntax Dynamic 
Semantics

Static 
Semantics

Proofs

E ::= 
 | N
 | E + E
 | B
 | if E then E else E
 | E = E

s1 ↝ s1ʹ′
s1 + s2 ↝  s1ʹ′ + s2

s2 ↝ s2ʹ′
s1 + s2 ↝  s1 + s2ʹ′

n1 + n2 = n3        n1, n2 ∈ N   
n1 + n2 ↝ n3

if T then s2 else s3 ↝ s2

if F then s2 else s3 ↝ s3

s1 ↝ s1ʹ′ 
if s1 then s2 else s3 ↝ 
if s1ʹ′ then s2 else s3

T = T ↝ T           F = F ↝ T

T = T ↝ T           F = F ↝ T
n1 = n2                     n1 ≠ n2

n1 = n2 ↝ T             n1 = n2 ↝ F

 n ∈ N
⊢ n : nat

⊢s1 : nat    ⊢s2 : nat
⊢s1 + s2 : nat 

b ∈ B
⊢ b : bool

⊢s1 : bool    ⊢s2 : A  ⊢s3 : A
⊢if s1 then s2 else s3 : A

⊢s1 : A       ⊢s2 : A
⊢ s1 = s2 : bool

Progress:
∀ s : S, ⊢ s : A → ∃ sʹ′, s ↝ sʹ′ ∨ 

Value s.
⋮

Updated Proof
⋮

Qed.

Preservation:
∀ s sʹ′: S, ⊢ s : A → s ↝ sʹ′ → 

⊢ sʹ′ : A 
⋮

Updated Proof
⋮

Qed.
 

- BAL = Booleans + AL
- New features make changes throughout
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Language Modules
- Feature = Module with updates

- Language = Composition of Modules

Syntax
Dynamic 

Semantics
Static 

Semantics
Proofs

Eʹ′ ::= 
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

s ↝ sʹ′
s ↝( s ʹ′

if T then s2 else s3 ↝ s2

if F then s2 else s3 ↝ s3

s1 ↝ s1ʹ′ 
if s1 then s2 else s3 ↝ 
if s1ʹ′ then s2 else s3

T = T ↝ T           F = F ↝ T

T = T ↝ T           F = F ↝ T
n1 = n2                     n1 ≠ n2

n1 = n2 ↝ T             n1 = n2 ↝ F

⊢ s : A
⊢ʹ′ s : A

b ∈ B
⊢ b : bool

⊢s1 : bool    ⊢s2 : A  ⊢s3 : A
⊢if s1 then s2 else s3 : A

⊢s1 : A       ⊢s2 : A
⊢ s1 = s2 : bool

Progress:
Proof  Updates

Preservation:
Proof  Updates

 

BAL ALBoolean= ⦁
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Extensible Syntax

Boolean Syntax

Eʹ′ ::= 
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

AL Syntax

E ::= 
 | N
 | E + E

⦁

BAL Syntax

E ::= 
 | N
 | E + E

Eʹ′ ::= 
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

=
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Extensible Syntax
- First stab:  “Wrap” Syntax

Boolean Syntax

Eʹ′ ::= 
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

AL Syntax

E ::= 
 | N
 | E + E

⦁

BAL Syntax

E ::= 
 | N
 | E + E

Eʹ′ ::= 
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

=
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Extensible Syntax
- First stab:  “Wrap” Syntax

Boolean Syntax

Eʹ′ ::= 
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

AL Syntax

E ::= 
 | N
 | E + E

⦁

BAL Syntax

E ::= 
 | N
 | E + E

Eʹ′ ::= 
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

=

?
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Extensible Syntax
- First stab:  “Wrap” Syntax

- Need inductive updates!
- Can’t build (if T then 2 else 3) + 4

Boolean Syntax
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 | E
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 | if Eʹ′ then Eʹ′ else Eʹ′
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⦁
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Extensible Syntax
- First stab:  “Wrap” Syntax

- Need inductive updates!
- Can’t build (if T then 2 else 3) + 4

- Nonterminals reference Final Language

Boolean Syntax

Eʹ′ ::= 
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

AL Syntax

E ::= 
 | N
 | E + E

⦁

BAL Syntax

E ::= 
 | N
 | E + E

Eʹ′ ::= 
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

=

?
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Extensible Syntax
- Solution: Leave definitions open:

- Final language closes the induction:

Boolean Syntax 

EB(S) ::= 
 | B
 | if S then S else S
 | S = S

AL Syntax

EA(S) ::= 
 | N
 | S + S

Final Syntax
S::= EA (S) | EB (S) 
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Extensible Judgements

- Operational Semantics: Abstract transitions

- Final judgement closes the induction:

- Typing Rules : Abstract typing judgement   

s1 ↝ s1ʹ′
s1 + s2 ↝A  s1ʹ′ + s2

s2 ↝ s2ʹ′
s1 + s2 ↝A  s1 + s2ʹ′

↝

 n ∈ N
⊢A n : nat

⊢s1 : nat    ⊢s2 : nat
⊢A s1 + s2 : nat 

⊢

s ↝A sʹ′
s ↝  sʹ′

s ↝B sʹ′
s ↝  sʹ′
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“Open” Proofs
- Extensible definitions need Extensible Proofs

- Proofs over final language

- Module has proofs for its definitions

- Subterms from abstract language

- Progress uses ReduceEqual

Boolean Progress 

ProgressB (S, ↝ ,⊢):
⊢ e : A 

e ↝ eʹ′ ∨ Value e
Induction on s.
   Case B:
     ⋮
   Case if s1 then s2 else s3:
        ⋮
   Case s1 = s2:
         ⋮
   Use ReduceEqual
        ⋮

Qed.

ReduceEqual

 s1=s2    Value s1   Value s2

 s1=s2 ↝ s3

Thursday, February 24, 2011



Externalizing Assumptions
- Properties of S become assumptions:

- To use proof of Boolean Progress, 
- Build proof of ReduceEqual as separate Lemma
- Pass to Boolean Progress

Boolean Progress 

ProgressB (S, ↝ ,⊢) :  
⊢ e : A      ReduceEqual

e ↝ eʹ′ ∨ Value e
⋮

   Proof  using ReduceEqual
⋮

Qed.
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Modular Inductive Proofs

- Progress can’t be externalized

- Inductive Hypothesis fills the hole

- Only use on subterms

Boolean Progress 

ProgressB (S, ↝ ,⊢) : 
⊢ e : A       ReduceEqual       Progress

e ↝ eʹ′ ∨ Value e
⋮

Qed.
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Building Inductive Proofs
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Building Inductive Proofs
- To build the final inductive proof,
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Building Inductive Proofs
- To build the final inductive proof,
1. Build external lemmas

ReduceEqual
Case s ∈ EA(S) : 
   Proof  of  ReduceEqualA (S,↝)
Case s ∈ EB(S) : 
   Proof  of  ReduceEqualB (S, ↝)
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Building Inductive Proofs
- To build the final inductive proof,
1. Build external lemmas
2. Proceed by induction

Boolean Progress 

Progress : ∀ s : E, ⊢ s : E → ∃ sʹ′, s ↝ sʹ′ ∨ Value s.
   Induction on s
    Case s ∈ EA(S) : 
      Proof  of  ProgressA(S, ReduceEqual, Progress)
    Case s ∈ EB(S) : 
      Proof  of  ProgressB(S, ReduceEqual, Progress)

Qed.

ReduceEqual
Case s ∈ EA(S) : 
   Proof  of  ReduceEqualA (S,↝)
Case s ∈ EB(S) : 
   Proof  of  ReduceEqualB (S, ↝)
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Building Inductive Proofs
- To build the final inductive proof,
1. Build external lemmas
2. Proceed by induction
3. Pass IH to “close” the loop

Boolean Progress 

Progress : ∀ s : E, ⊢ s : E → ∃ sʹ′, s ↝ sʹ′ ∨ Value s.
   Induction on s
    Case s ∈ EA(S) : 
      Proof  of  ProgressA(S, ReduceEqual, Progress)
    Case s ∈ EB(S) : 
      Proof  of  ProgressB(S, ReduceEqual, Progress)

Qed.

ReduceEqual
Case s ∈ EA(S) : 
   Proof  of  ReduceEqualA (S,↝)
Case s ∈ EB(S) : 
   Proof  of  ReduceEqualB (S, ↝)
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Building Inductive Proofs
- To build the final inductive proof,
1. Build external lemmas
2. Proceed by induction
3. Pass IH to “close” the loop

-Coq checks proper IH use

Boolean Progress 

Progress : ∀ s : E, ⊢ s : E → ∃ sʹ′, s ↝ sʹ′ ∨ Value s.
   Induction on s
    Case s ∈ EA(S) : 
      Proof  of  ProgressA(S, ReduceEqual, Progress)
    Case s ∈ EB(S) : 
      Proof  of  ProgressB(S, ReduceEqual, Progress)

Qed.

ReduceEqual
Case s ∈ EA(S) : 
   Proof  of  ReduceEqualA (S,↝)
Case s ∈ EB(S) : 
   Proof  of  ReduceEqualB (S, ↝)
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Language Variations
- Can build 3 languages: 

- Features can interact:

- Interactions are also features:

AL Boolean 

n1 = n2     n1, n2 ∈ N
n1 = n2 ↝ T 

n1 ≠ n2     n1, n2 ∈ N
n1 = n2 ↝ F 

BAL 
Interactions 

AL Boolean 
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Language Variations
- Can build 3 languages: 

- Features can interact:

- Interactions are also features:

AL Boolean 

n1 = n2     n1, n2 ∈ N
n1 = n2 ↝ T 
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Language Variations
- Can build 3 languages: 

- Features can interact:

- Interactions are also features:

AL Boolean 

n1 = n2     n1, n2 ∈ N
n1 = n2 ↝ T 

n1 ≠ n2     n1, n2 ∈ N
n1 = n2 ↝ F 

BAL 
Interactions 

AL Boolean 
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More UpdatesModular Type Systems + Their Metatheory 3

FJ Expression Syntax FJ • Generic Expression Syntax

e ::= x
| e.f
| e.m (e)
| new C(e)
| (C) e

�⇒
e ::= x

| e.f

| e.m �T� β (e)

| new C �T� β (e)

| (C �T� β) e

FJ Subtyping T <: T GFJ Subtyping ∆ δ � T <: T

S<:T T<:V

S<:V
(S-Trans)

T<:T (S-Refl)

class C extends D {. . .}
C<:D

(S-Dir)

�⇒

∆ � X<:∆(X) (GS-Var)
α

∆ δ �S<:T ∆ δ �T<:V

∆ δ �S<:V
(GS-Trans)

∆ δ �T<:T (GS-Refl)

class C �X � N�
β
extends D �V�

β
{. . .}

∆
δ
� C �T�

β
<: [T/X]

η
D �V�

β

(GS-Dir)

FJ New Typing Γ � e : T GFJ New Typing ∆;
δΓ � e : T

fields(C) = D f Γ � e : C C<:D

Γ � new C(e) : C
(T-New)

�⇒
∆ � C�T�

γ
fields(C �T� β

) = V f

∆;
δ
Γ � e : U ∆

δ
� U<:V

∆;
δ
Γ � new C �T�

β
(e) : C

(GT-New)

Fig. 1: Selected FJ Definitions with GFJ Changes Highlighted

2 A Motivating Example

To illustrate the changes required when a new feature is added, consider the
extensions to the calculus of FJ [3] which produces the GFJ calculus. The changes
are woven throughout the syntax and semantics of FJ. Figure 1 presents a subset
of definitions for FJ in the lefthand column and the corresponding definitions for
GFJ on the right with the changes highlighted. In addition to the syntax of the
two languages, Figure 1 gives the complete definition for the subtyping relation
used to determine the inheritance hierarchy and the typing rule that ensures the
expression for object creation is well-formed.

The important categories of changes applied to these definitions are tagged
in Figure 1 with the following Greek letters:
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Contributions

- Developed technique for extensible language design
- Update syntax, semantics, and proofs

- Add new definitions
- Update existing definitions
- Reuse existing Proofs

- Modules independently mechanically verifiable
- ECOOP paper under construction

- Builds GFJ + Interfaces w/ our techniques
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Questions?
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