
Curry,
Howard,
Coq ψ(
εΩ+
1)

Thursday, February 24, 2011

Two Kinds O’ Proofs
Informal Proof

Convincing natural language argument

Formal Proof

Built from a strict set of rules

Syntactic manipulation

“Proof Theory” proofs

Machine checkable / manipulatable

Thursday, February 24, 2011

A Proof Theory

Axioms:

Inference Rules:

Build Derivations

T

[A]
᠁
B

A → B

 ᠁ ᠁
 A → B A

B
u

u

I→ E→

Thursday, February 24, 2011

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))

Thursday, February 24, 2011

(A → (B → C)) A (A → B) A
B → C B

C
A →C

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

Thursday, February 24, 2011

(A → (B → C)) A (A → B) A
B → C B

C
A →C

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

(A → (B → C)) A
 B → C

E→
u w

Thursday, February 24, 2011

(A → (B → C)) A (A → B) A
B → C B

C
A →C

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

E→
(A → B) A
B .

wv

Thursday, February 24, 2011

(A → (B → C)) A (A → B) A
B → C B

C
A →C

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

E→B → C B
C

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

Thursday, February 24, 2011

(A → (B → C)) A (A → B) A
B → C B

C
A →C

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

I→C
A →C

w

Thursday, February 24, 2011

(A → (B → C)) A (A → B) A
B → C B

C
A →C

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u

I→A →C
(A → B) →(A →C)

v

Thursday, February 24, 2011

(A → (B → C)) A (A → B) A
B → C B

C
A →C

(A → B) →(A →C)
(A → (B → C)) → ((A → B) →(A →C))

An Example Proof
Want to prove:

(A → (B → C)) → ((A → B) →(A →C))
u w wv

w

v

u I→
(A → B) →(A →C)

(A → (B → C)) → ((A → B) →(A →C))
u

Thursday, February 24, 2011

Something Completely
Different

Lambda Calculus:

Core Functional Language

Two typing rules:

Function
Abstraction

Function
Application

⊦λx:A.y:A →B
(x:A)⊦y:B

x y: B
x:A→B y:A

Thursday, February 24, 2011

Something Completely
Different

Lambda Calculus:

Core Functional Language

Two typing rules:

Function
Abstraction

Function
Application

?

⊦λx:A.y:A →B
(x:A)⊦y:B

x y: B
x:A→B y:A

Thursday, February 24, 2011

Something Completely
Different

Lambda Calculus:

Core Functional Language

Two typing rules:

Function
Abstraction

Function
Application

?

⊦λx:A.y:A →B
(x:A)⊦y:B

x y: B
x:A→B y:A I→ E→

Thursday, February 24, 2011

u:(A → (B → C) w:A v:(A → B) w:A
uw : B → C vw : B

(uw)(vw):C
λw.(uw)(vw):A →C

λvw.(uw)(vw):(A → B) →(A →C)
λuvw.(uw)(vw):(A → (B → C)) → ((A → B) →(A →C))

An Example Redux

Thursday, February 24, 2011

Two Coins

Application takes A’s to B’s
f:A→B, y:A ⊦ f y : B

Modus Ponens derives B
B

A A→B

λ-Calculus Propositional Logic

Thursday, February 24, 2011

Two Coins

Application takes A’s to B’s
f:A→B, y:A ⊦ f y : B

Modus Ponens derives B
B

A A→B

λ-Calculus Propositional Logic

?

Thursday, February 24, 2011

Two Coins?

Thursday, February 24, 2011

Two Sides !

Any derivation in intuitionistic propositional
logic corresponds to a typeable λ-term.

Curry–Howard Isomorphism:

ψ(
εΩ+
1)

Thursday, February 24, 2011

Two Sides !

Any derivation in intuitionistic propositional
logic corresponds to a typeable λ-term.

Curry–Howard Isomorphism:

We can show a formula is derivable if we can
build a term with the corresponding type!

ψ(
εΩ+
1)

Thursday, February 24, 2011

Two Sides !

Thursday, February 24, 2011

Two Sides
λ-Calculus Propositional Logic

!

Thursday, February 24, 2011

λ-Calculus Propositional Logic

!
Type Variable Propositional variable

Two Sides

Thursday, February 24, 2011

λ-Calculus Propositional Logic

!
Type Variable

Type
Propositional variable

Formula

Two Sides

Thursday, February 24, 2011

λ-Calculus Propositional Logic

!
Type Variable

Type

Inhabitation

Propositional variable
Formula

Proof

Two Sides

Thursday, February 24, 2011

λ-Calculus Propositional Logic

!
Type Variable

Type

Inhabitation

Type Constructor
Left (x:A)
(x:A, y:B)

Propositional variable
Formula

Proof
Connective

A∨B (A+B)
A∧B (A⨉B)

Two Sides

Thursday, February 24, 2011

L’Coq Proof Assistant

Built on Calculus of (Co)-Inductive Constructions
Dependently-Type Lambda Calculus + Inductive
Definitions
OCaml Implementation

Extraction to ML

Goal: Build a term with the desired type

Small, trusted type checker

DeBruijn Criterion

Thursday, February 24, 2011

L’Example

Thursday, February 24, 2011

L’Example

Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.

Thursday, February 24, 2011

L’Example

Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Definition app_assoc :=

list_ind

 (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)

 (fun b c : list A => refl_equal (b ++ c))

 (fun (a0 : A) (a1 : list A)

 (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)

 (b c : list A) =>

 let H :=

 eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: l)

 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in

 eq_ind_r (fun l : list A => a0 :: a1 ++ b ++ c = l)

 (eq_ind_r (fun l : list A => a0 :: l = a0 :: l)

 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a

Thursday, February 24, 2011

L’Example

Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Definition app_assoc :=

list_ind

 (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)

 (fun b c : list A => refl_equal (b ++ c))

 (fun (a0 : A) (a1 : list A)

 (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)

 (b c : list A) =>

 let H :=

 eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: l)

 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in

 eq_ind_r (fun l : list A => a0 :: a1 ++ b ++ c = l)

 (eq_ind_r (fun l : list A => a0 :: l = a0 :: l)

 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) aX
Agda Epigram

Thursday, February 24, 2011

Tactics
Recall: Want to build functions

Use program-generating functions called tactics

Backward reasoning:

Combined into Proof Scripts
3 kinds Tactics:

Basic Inference Rules
Derived Rules
Decision Procedures

A∧B

Thursday, February 24, 2011

Tactics
Recall: Want to build functions

Use program-generating functions called tactics

Backward reasoning:

Combined into Proof Scripts
3 kinds Tactics:

Basic Inference Rules
Derived Rules
Decision Procedures

A∧B
A

Thursday, February 24, 2011

Tactics
Recall: Want to build functions

Use program-generating functions called tactics

Backward reasoning:

Combined into Proof Scripts
3 kinds Tactics:

Basic Inference Rules
Derived Rules
Decision Procedures

A∧B
A B

Thursday, February 24, 2011

Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Definition app_assoc :=

list_ind

 (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)

 (fun b c : list A => refl_equal (b ++ c))

 (fun (a0 : A) (a1 : list A)

 (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)

 (b c : list A) =>

 let H :=

 eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: l)

 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in

 eq_ind_r (fun l : list A => a0 :: a1 ++ b ++ c = l)

 (eq_ind_r (fun l : list A => a0 :: l = a0 :: l)

 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a

L’Example Redux

Thursday, February 24, 2011

Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Lemma app_assoc : forall A (a b c : list A), a ++ b ++ c = (a ++ b) ++ c.

 induction a; simpl; intros.

 reflexivity.

 cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)).

 intros; rewrite H; rewrite IHa; reflexivity.

 rewrite IHa; reflexivity.

Qed.

L’Example Redux

Thursday, February 24, 2011

Goal : ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Lemma app_assoc : forall A (a b c : list A), a ++ b ++ c = (a ++ b) ++ c.

 induction a; simpl; intros.

 reflexivity.

 cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)).

 intros; rewrite H; rewrite IHa; reflexivity.

 rewrite IHa; reflexivity.

Qed.

L’Example Redux

Lemma Double_Even : forall n, Even (n + n).

induction n; simpl; try rewrite plus_comm; simpl; constructor.

exact IHn.

Qed.

Thursday, February 24, 2011

Proof Buffer
2 subgoals

 A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
 b : list A
 c : list A
 ============================
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
 a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Thursday, February 24, 2011

Proof Buffer
2 subgoals

 A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
 b : list A
 c : list A
 ============================
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
 a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Context

Thursday, February 24, 2011

Proof Buffer
2 subgoals

 A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
 b : list A
 c : list A
 ============================
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
 a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Thursday, February 24, 2011

2 subgoals

 A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
 b : list A
 c : list A
 ============================
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
 a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Proof Buffer

Thursday, February 24, 2011

2 subgoals

 A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
 b : list A
 c : list A
 ============================
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
 a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Current Goal

Proof Buffer

Thursday, February 24, 2011

2 subgoals

 A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
 b : list A
 c : list A
 ============================
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
 a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Proof Buffer

Thursday, February 24, 2011

2 subgoals

 A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
 b : list A
 c : list A
 ============================
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
 a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Proof Buffer

Thursday, February 24, 2011

2 subgoals

 A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
 b : list A
 c : list A
 ============================
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
 a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Remaining

Goals

Proof Buffer

Thursday, February 24, 2011

2 subgoals

 A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
 b : list A
 c : list A
 ============================
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
 a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is:
 a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

Proof Buffer

Thursday, February 24, 2011

Modular Mechanized
Metatheory

Ben Delaware

Thursday, February 24, 2011

Today’s Problem
- Programming Languages change:

- Java 5.0

- GFJ

- New features added

- Standard practice:

- Our goal: Extensible Definitions

Java 5.0

Thursday, February 24, 2011

Today’s Problem
- Programming Languages change:

- Java 5.0

- GFJ

- New features added

- Standard practice:

- Our goal: Extensible Definitions

 etc. foreach GenericsJava 4.0

 GenericsFJ Core

=

=

Java 5.0

Thursday, February 24, 2011

Today’s Problem
- Programming Languages change:

- Java 5.0

- GFJ

- New features added

- Standard practice:

- Our goal: Extensible Definitions

 etc. foreach GenericsJava 4.0

 GenericsFJ Core

=

=

Java 5.0

Java 4.0

Thursday, February 24, 2011

Today’s Problem
- Programming Languages change:

- Java 5.0

- GFJ

- New features added

- Standard practice:

- Our goal: Extensible Definitions

 etc. foreach GenericsJava 4.0

 GenericsFJ Core

=

=

Java 5.0

 etc. foreach GenericsJava 4.0

Thursday, February 24, 2011

- Arithmetic Expression Language (AL)

- Syntax:

 E ::= E + E | N

- Semantics:

- Assign meaning to expressions

- Interpreter:

Defining a Language
 5 + 6

 eval (“5 + 6”) = 11

Thursday, February 24, 2011

- Small-Step Operational Semantics
- Set of transitions:
- Presented as judgements

- Interpreters conform to these rules

Operational Semantics

s1 ↝ s1ʹ′
s1 + s2 ↝ s1ʹ′ + s2

s2 ↝ s2ʹ′
s1 + s2 ↝ s1 + s2ʹ′

n1 + n2 = n3 n1, n2 ∈ N
n1 + n2 ↝ n3

Thursday, February 24, 2011

Type Systems

- Approximation of run-time semantics

- Typing Rules:

- Disallow ‘misbehaving’ programs

 n ∈ N
⊢ n : nat

⊢s1 : nat ⊢s2 : nat
⊢s1 + s2 : nat

Thursday, February 24, 2011

Type Safety Proofs
- Want to prove approximation is correct

- Two key lemmas for AL:

Preservation

⊢ e : nat e ↝ eʹ′
⊢ eʹ′ : nat

⋮
Proof

⋮
Qed.

Progress

⊢ e : nat
e ↝ eʹ′ ∨ e ∈ N

⋮
Proof

⋮
Qed.

- These are our metatheory proofs
Thursday, February 24, 2011

- Full language definition:

- Proof assistants manage complexity

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational
Semantics

Type
System

Proofs

Thursday, February 24, 2011

- Full language definition:

- Proof assistants manage complexity

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational
Semantics

Type
System

Proofs

Syntax Operational
Semantics

Static
Semantics

Proofs

Thursday, February 24, 2011

- Full language definition:

- Proof assistants manage complexity

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational
Semantics

Type
System

Proofs

New
Syntax

New
Operational
Semantics

New Type
System

New
Proofs

Syntax Operational
Semantics

Static
Semantics

Proofs

Thursday, February 24, 2011

- Full language definition:

- Proof assistants manage complexity

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational
Semantics

Type
System

Proofs

Syntax Operational
Semantics

Static
Semantics

Proofs

Thursday, February 24, 2011

- Full language definition:

- Proof assistants manage complexity

- Coq, ACL2, Isabelle/HOL

- Reuse today:

Complete Language

Syntax Operational
Semantics

Type
System

Proofs

Syntax
Updates

Operational
Semantics
Updates

Static
Semantics
Updates

Proof
Updates

Syntax Operational
Semantics

Static
Semantics

Proofs

Thursday, February 24, 2011

Extending AL

Syntax Dynamic
Semantics

Static
Semantics

Proofs

E ::=
 | N
 | E + E

s1 ↝ s1ʹ′
s1 + s2 ↝ s1ʹ′ + s2

s2 ↝ s2ʹ′
s1 + s2 ↝ s1 + s2ʹ′

n1 + n2 = n3 n1, n2 ∈ N
n1 + n2 ↝ n3

 n ∈ N
⊢ n : nat

⊢s1 : nat ⊢s2 : nat
⊢s1 + s2 : nat

Progress:
∀ s : S, ⊢ s : A → ∃ sʹ′, s ↝ sʹ′

∨ Value s.
⋮

Proof
⋮

Qed.

Preservation:
∀ s sʹ′: S, ⊢ s : A → s ↝ sʹ′ →

⊢ sʹ′ : A
⋮

Proof
⋮

Qed.

- BAL = Booleans + AL
- New features make changes throughout

Thursday, February 24, 2011

Building BAL

Syntax Dynamic
Semantics

Static
Semantics

Proofs

E ::=
 | N
 | E + E
 | B
 | if E then E else E
 | E = E

s1 ↝ s1ʹ′
s1 + s2 ↝ s1ʹ′ + s2

s2 ↝ s2ʹ′
s1 + s2 ↝ s1 + s2ʹ′

n1 + n2 = n3 n1, n2 ∈ N
n1 + n2 ↝ n3

if T then s2 else s3 ↝ s2

if F then s2 else s3 ↝ s3

s1 ↝ s1ʹ′
if s1 then s2 else s3 ↝
if s1ʹ′ then s2 else s3

T = T ↝ T F = F ↝ T

T = T ↝ T F = F ↝ T
n1 = n2 n1 ≠ n2

n1 = n2 ↝ T n1 = n2 ↝ F

 n ∈ N
⊢ n : nat

⊢s1 : nat ⊢s2 : nat
⊢s1 + s2 : nat

b ∈ B
⊢ b : bool

⊢s1 : bool ⊢s2 : A ⊢s3 : A
⊢if s1 then s2 else s3 : A

⊢s1 : A ⊢s2 : A
⊢ s1 = s2 : bool

Progress:
∀ s : S, ⊢ s : A → ∃ sʹ′, s ↝ sʹ′ ∨

Value s.
⋮

Updated Proof
⋮

Qed.

Preservation:
∀ s sʹ′: S, ⊢ s : A → s ↝ sʹ′ →

⊢ sʹ′ : A
⋮

Updated Proof
⋮

Qed.

- BAL = Booleans + AL
- New features make changes throughout

Thursday, February 24, 2011

Language Modules
- Feature = Module with updates

- Language = Composition of Modules

Syntax
Dynamic

Semantics
Static

Semantics
Proofs

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

s ↝ sʹ′
s ↝(s ʹ′

if T then s2 else s3 ↝ s2

if F then s2 else s3 ↝ s3

s1 ↝ s1ʹ′
if s1 then s2 else s3 ↝
if s1ʹ′ then s2 else s3

T = T ↝ T F = F ↝ T

T = T ↝ T F = F ↝ T
n1 = n2 n1 ≠ n2

n1 = n2 ↝ T n1 = n2 ↝ F

⊢ s : A
⊢ʹ′ s : A

b ∈ B
⊢ b : bool

⊢s1 : bool ⊢s2 : A ⊢s3 : A
⊢if s1 then s2 else s3 : A

⊢s1 : A ⊢s2 : A
⊢ s1 = s2 : bool

Progress:
Proof Updates

Preservation:
Proof Updates

BAL ALBoolean= ⦁
Thursday, February 24, 2011

Extensible Syntax

Boolean Syntax

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

AL Syntax

E ::=
 | N
 | E + E

⦁

BAL Syntax

E ::=
 | N
 | E + E

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

=

Thursday, February 24, 2011

Extensible Syntax
- First stab: “Wrap” Syntax

Boolean Syntax

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

AL Syntax

E ::=
 | N
 | E + E

⦁

BAL Syntax

E ::=
 | N
 | E + E

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

=

Thursday, February 24, 2011

Extensible Syntax
- First stab: “Wrap” Syntax

Boolean Syntax

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

AL Syntax

E ::=
 | N
 | E + E

⦁

BAL Syntax

E ::=
 | N
 | E + E

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

=

?

Thursday, February 24, 2011

Extensible Syntax
- First stab: “Wrap” Syntax

- Need inductive updates!
- Can’t build (if T then 2 else 3) + 4

Boolean Syntax

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

AL Syntax

E ::=
 | N
 | E + E

⦁

BAL Syntax

E ::=
 | N
 | E + E

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

=

?

Thursday, February 24, 2011

Extensible Syntax
- First stab: “Wrap” Syntax

- Need inductive updates!
- Can’t build (if T then 2 else 3) + 4

- Nonterminals reference Final Language

Boolean Syntax

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

AL Syntax

E ::=
 | N
 | E + E

⦁

BAL Syntax

E ::=
 | N
 | E + E

Eʹ′ ::=
 | E
 | B
 | if Eʹ′ then Eʹ′ else Eʹ′
 | Eʹ′ = Eʹ′

=

?

Thursday, February 24, 2011

Extensible Syntax
- Solution: Leave definitions open:

- Final language closes the induction:

Boolean Syntax

EB(S) ::=
 | B
 | if S then S else S
 | S = S

AL Syntax

EA(S) ::=
 | N
 | S + S

Final Syntax
S::= EA (S) | EB (S)

Thursday, February 24, 2011

Extensible Judgements

- Operational Semantics: Abstract transitions

- Final judgement closes the induction:

- Typing Rules : Abstract typing judgement

s1 ↝ s1ʹ′
s1 + s2 ↝A s1ʹ′ + s2

s2 ↝ s2ʹ′
s1 + s2 ↝A s1 + s2ʹ′

↝

 n ∈ N
⊢A n : nat

⊢s1 : nat ⊢s2 : nat
⊢A s1 + s2 : nat

⊢

s ↝A sʹ′
s ↝ sʹ′

s ↝B sʹ′
s ↝ sʹ′

Thursday, February 24, 2011

“Open” Proofs
- Extensible definitions need Extensible Proofs

- Proofs over final language

- Module has proofs for its definitions

- Subterms from abstract language

- Progress uses ReduceEqual

Boolean Progress

ProgressB (S, ↝ ,⊢):
⊢ e : A

e ↝ eʹ′ ∨ Value e
Induction on s.
 Case B:
 ⋮
 Case if s1 then s2 else s3:
 ⋮
 Case s1 = s2:
 ⋮
 Use ReduceEqual
 ⋮

Qed.

ReduceEqual

 s1=s2 Value s1 Value s2

 s1=s2 ↝ s3

Thursday, February 24, 2011

Externalizing Assumptions
- Properties of S become assumptions:

- To use proof of Boolean Progress,
- Build proof of ReduceEqual as separate Lemma
- Pass to Boolean Progress

Boolean Progress

ProgressB (S, ↝ ,⊢) :
⊢ e : A ReduceEqual

e ↝ eʹ′ ∨ Value e
⋮

 Proof using ReduceEqual
⋮

Qed.

Thursday, February 24, 2011

Modular Inductive Proofs

- Progress can’t be externalized

- Inductive Hypothesis fills the hole

- Only use on subterms

Boolean Progress

ProgressB (S, ↝ ,⊢) :
⊢ e : A ReduceEqual Progress

e ↝ eʹ′ ∨ Value e
⋮

Qed.

Thursday, February 24, 2011

Building Inductive Proofs

Thursday, February 24, 2011

Building Inductive Proofs
- To build the final inductive proof,

Thursday, February 24, 2011

Building Inductive Proofs
- To build the final inductive proof,
1. Build external lemmas

ReduceEqual
Case s ∈ EA(S) :
 Proof of ReduceEqualA (S,↝)
Case s ∈ EB(S) :
 Proof of ReduceEqualB (S, ↝)

Thursday, February 24, 2011

Building Inductive Proofs
- To build the final inductive proof,
1. Build external lemmas
2. Proceed by induction

Boolean Progress

Progress : ∀ s : E, ⊢ s : E → ∃ sʹ′, s ↝ sʹ′ ∨ Value s.
 Induction on s
 Case s ∈ EA(S) :
 Proof of ProgressA(S, ReduceEqual, Progress)
 Case s ∈ EB(S) :
 Proof of ProgressB(S, ReduceEqual, Progress)

Qed.

ReduceEqual
Case s ∈ EA(S) :
 Proof of ReduceEqualA (S,↝)
Case s ∈ EB(S) :
 Proof of ReduceEqualB (S, ↝)

Thursday, February 24, 2011

Building Inductive Proofs
- To build the final inductive proof,
1. Build external lemmas
2. Proceed by induction
3. Pass IH to “close” the loop

Boolean Progress

Progress : ∀ s : E, ⊢ s : E → ∃ sʹ′, s ↝ sʹ′ ∨ Value s.
 Induction on s
 Case s ∈ EA(S) :
 Proof of ProgressA(S, ReduceEqual, Progress)
 Case s ∈ EB(S) :
 Proof of ProgressB(S, ReduceEqual, Progress)

Qed.

ReduceEqual
Case s ∈ EA(S) :
 Proof of ReduceEqualA (S,↝)
Case s ∈ EB(S) :
 Proof of ReduceEqualB (S, ↝)

Thursday, February 24, 2011

Building Inductive Proofs
- To build the final inductive proof,
1. Build external lemmas
2. Proceed by induction
3. Pass IH to “close” the loop

-Coq checks proper IH use

Boolean Progress

Progress : ∀ s : E, ⊢ s : E → ∃ sʹ′, s ↝ sʹ′ ∨ Value s.
 Induction on s
 Case s ∈ EA(S) :
 Proof of ProgressA(S, ReduceEqual, Progress)
 Case s ∈ EB(S) :
 Proof of ProgressB(S, ReduceEqual, Progress)

Qed.

ReduceEqual
Case s ∈ EA(S) :
 Proof of ReduceEqualA (S,↝)
Case s ∈ EB(S) :
 Proof of ReduceEqualB (S, ↝)

Thursday, February 24, 2011

Language Variations
- Can build 3 languages:

- Features can interact:

- Interactions are also features:

AL Boolean

n1 = n2 n1, n2 ∈ N
n1 = n2 ↝ T

n1 ≠ n2 n1, n2 ∈ N
n1 = n2 ↝ F

BAL
Interactions

AL Boolean

Thursday, February 24, 2011

Language Variations
- Can build 3 languages:

- Features can interact:

- Interactions are also features:

AL Boolean

n1 = n2 n1, n2 ∈ N
n1 = n2 ↝ T

n1 ≠ n2 n1, n2 ∈ N
n1 = n2 ↝ F

BAL
Interactions

AL Boolean

Thursday, February 24, 2011

Language Variations
- Can build 3 languages:

- Features can interact:

- Interactions are also features:

AL Boolean

n1 = n2 n1, n2 ∈ N
n1 = n2 ↝ T

n1 ≠ n2 n1, n2 ∈ N
n1 = n2 ↝ F

BAL
Interactions

AL Boolean

Thursday, February 24, 2011

More UpdatesModular Type Systems + Their Metatheory 3

FJ Expression Syntax FJ • Generic Expression Syntax

e ::= x
| e.f
| e.m (e)
| new C(e)
| (C) e

�⇒
e ::= x

| e.f

| e.m �T� β (e)

| new C �T� β (e)

| (C �T� β) e

FJ Subtyping T <: T GFJ Subtyping ∆ δ � T <: T

S<:T T<:V

S<:V
(S-Trans)

T<:T (S-Refl)

class C extends D {. . .}
C<:D

(S-Dir)

�⇒

∆ � X<:∆(X) (GS-Var)
α

∆ δ �S<:T ∆ δ �T<:V

∆ δ �S<:V
(GS-Trans)

∆ δ �T<:T (GS-Refl)

class C �X � N�
β
extends D �V�

β
{. . .}

∆
δ
� C �T�

β
<: [T/X]

η
D �V�

β

(GS-Dir)

FJ New Typing Γ � e : T GFJ New Typing ∆;
δΓ � e : T

fields(C) = D f Γ � e : C C<:D

Γ � new C(e) : C
(T-New)

�⇒
∆ � C�T�

γ
fields(C �T� β

) = V f

∆;
δ
Γ � e : U ∆

δ
� U<:V

∆;
δ
Γ � new C �T�

β
(e) : C

(GT-New)

Fig. 1: Selected FJ Definitions with GFJ Changes Highlighted

2 A Motivating Example

To illustrate the changes required when a new feature is added, consider the
extensions to the calculus of FJ [3] which produces the GFJ calculus. The changes
are woven throughout the syntax and semantics of FJ. Figure 1 presents a subset
of definitions for FJ in the lefthand column and the corresponding definitions for
GFJ on the right with the changes highlighted. In addition to the syntax of the
two languages, Figure 1 gives the complete definition for the subtyping relation
used to determine the inheritance hierarchy and the typing rule that ensures the
expression for object creation is well-formed.

The important categories of changes applied to these definitions are tagged
in Figure 1 with the following Greek letters:

Thursday, February 24, 2011

Contributions

- Developed technique for extensible language design
- Update syntax, semantics, and proofs

- Add new definitions
- Update existing definitions
- Reuse existing Proofs

- Modules independently mechanically verifiable
- ECOOP paper under construction

- Builds GFJ + Interfaces w/ our techniques

Thursday, February 24, 2011

Questions?

Thursday, February 24, 2011

Related Work

- R. Stärk, J. Schmid, and E. Börger. Java and the java
virtual machine - definition, verification, validation.

- P. D. Mosses.	

Modular structural operational
semantics.

- A. Chlipala. A verified compiler for an impure
functional language.

Thursday, February 24, 2011

