XDOC, and the Future of
ACL2 Documentation

Jared Davis
jared@centtech.com

mailto:jared@centtech.com

Part 1

Practical Stuff

What's an XDOC and where can
| get one”?

%) 0 XDOC — Top - Mozilla Firefox
File Edit VWiew History Bookmarks Tools Help

Q—E.I 2 file:///n/fv2/jared/newmake/e/ac|2/books/xdoc/fancy/index.html?topic=ACL2___ TOP vgi] [-r]v

{“iJared M [P| M8 £= [SFVv 3 FANCY [Lispv [SACL2v [Rubyv [Perlv [Pythonv [Verilogv [=LaTeXv [iPhone {}Issues

Y g
X ENEN jump to

=Top
+ACL2
SArithmetic

s~Boolean-reasoning \
sFDebugging
fHardware-verification \/

s=Interfacing-tools
=Macro-libraries

+B*
=Cutil User manual for the ACL2 Theorem Prover#® and the ACL2 Community Bookse.
T*Defaggregate
" Defalist Introduction
: Defenum
=t
#gzgin; ACL2# is an interactive theorem prover. It combines a Lisp-based programming
i language for developing formal models of systems with a reasoning engine that
Defmapappend ~ | can prove properties about these models. It has been used to formally verify#
- Defmvtypes many interesting systems in academia and industry.
= Defprojection
+Defrule The ACL2 Community Books# are the canonical set of open-source libraries
" 3P development, please join the acl2-books# project!
= Tuple-listp

= Tuplep

HKdoc

How to document your books

(the tedious, manual way, for starters)

(include-book ‘“xdoc/top” :dir :system)
(defxdoc str

:short "ACL2 String Library”
:long "<p>This is a rudimentary string library for ACL2.</p>

<p>The functions here are all in logic mode, with verified guards. In
cases, some effort has been spent to make them both efficient and relat
straightforward to reason about.</p>

<h3>Loading the library</h3>

<p>0Ordinarily, to use the library one should run</p>

@({
(include-book \"str/top\" :dir :system)
})
<p>The documentation is then ava 0

library's functions are found if Documentation as Code

<p>If you are willing to accept
@('fast-cat') book for faster si R
details.</p> ...”)

(include-book “xdoc/top” :dir :system)

(defxdoc str
"ACL2 Sting Library"
"<p>This {s a rudimentary string library for ACL2.</p>

<p>The fun E verified guards. In

cases, som . . th efficient and relat
straightfo nghtWElght

<h3>Loadin | oads QU|CkIy (< 0.1 SeC)

<p>0Ordinar </p>

@({
(include-book \"str/top\" :dir :system)

1)

<p>The documentation is then available by typing @(':xdoc str'). All o
library's functions are found in the @('STR') package.</p>

<p>If you are willing to accept a trust tag, you may also include the
@('fast-cat') book for faster string-concatenation; see @(see cat) for
details.</p> ...”)

(include-book “xdoc/top”)

(defxdoc str
:short "ACL2 String Library”
:long "<p>This is a rudimentary string library for ACL2.</p>

ere are all in logic mode, with verifj guards. 1In
s been spent to make them bot ficient and relat
n about.</p>

<p>The function
cases, some effort
straightforward to rea

<h3>Loading t

Standard XML Syntax

<p>Ordinarily, l

@({

}ginclude-book Tags must be balanced!

<p>The documentation is then available by typing @(':xdoc str'). All o
library's functions are found in the @('STR') package.</p>

<p>If you are willing to accept a trust tag, you may also include the
@('fast-cat') book for faster string-concatenation; see @(see cat) for
details.</p> ...”)

Str

[books]/str/top.lisp

Preprocessor! }asuinguirar

is a rudimentary string library for ACL2.

- The functions here are all in logic mode, with verified guards. In many cases, some

"< p >This 1s a r effort has been spent to make them both efficient and relatively straightforward
to reason about.

<p>The functions here a:] Loading the library
cases, some effort has

straightforward to reas

Ordinarily, to use the library one should run

|{include—b00k "str/top" :dir :system)

The documentation is then available by typing :xdoc str. All of the library's
functions are found in the STR package.

<h3>Loading the 1libr

If you are willing to accept g§rust tag, you may also ilglude the fast-cat book

for faster string-concatenatign; see cat for details.

<p>0Ordinarily”To use t

@({
(include-book \"str/top\" :dir :system)

1)

<p>The documentation is then available byltyping @(':X¥oc str'). All o

library's functions are found in the @('STR') package.<

<p>If you are willing to accept a trust tag, you may also imlude the
@('fast-cat') book for faster string-concatenation; see @(see cat) for
details.</p> ...”)

(defxdoc raise

:parents (support define)
:short "Shorthand for causing hard e Fights Bitrot!

:long "<p>@(call raise) 1is equivalen , b

automatically
works 1n contex
define) or withi
write something 1

Q({

(er hard? _ functio

})

<p>You can just writ

@({
(raise \"bad 1input

})

<p>Logically @('rais

Raise

[books]/cutil/support.lisp
Shorthand for causing hard errors.

(raise &rest args) is equivalent to (er hard? ...), but it automatically fill:
the function name using function . This only works in contexts where
~_function is bound, e.g., the body of a define or within a defconsts form. In
these contexts, rather than write something like:

| (er hard? _ function_ _ "bad input value -x0-%" x)
You can just write:
| (raise "bad input value ~x0-%" X)

Logically raise just returns nil.

Definition: raise

(defmacro raise (&rest args)

@Q(def raise) '—————— (cons ‘er

(cons 'hard?
(cons ' function__ args))))

A\
HKdoc
How to document your books

/

organize and

(the fancy, less tedious way)

(defxdoc flatten
:parents (std/lists)
:short "@(call flatten) appends together the elements of @('x').”
:long "<p>Typically @('x"') is a list of lists that you want

To merge together. For example:</p>

<h3>Definitions and Theorems</h3>
@(def flatten)

@(thm true-listp-of-flatten)
@(thm flatten-when-not-consp)
@(thm flatten-of-cons)

@(thm flatten-of-1list-fix) ...”)

(defund flatten (x)
(declare (xargs :guard t))
(if (consp Xx)
(append-without-guard (car x) (flatten (cdr x)))
nil))

(encapsulate ()
(local (in-theory (enable flatten)))
(defthm true-listp-of-flatten ...)
(defthm flatten-when-not-consp ...)

c.))

Std/lists

(defxdoc flatten
:parents (std/listsg
:short "@(call flat
:long "<p>Typically

To merge together. K

<h3>Definitions and T

@(def flatten)

@(thm true-listp-of-f

@(thm flatten-when-nc

@(thm flatten-of-consg

@(thm flatten-of-1ist

(defund flatten (x)
(declare (xargs :gu
(if (consp Xx)

(append-without
nil))

(encapsulate ()
(local (in-theory (
(defthm true-listp-
(defthm flatten-whe

)

Flatten

[books]/std/lists/flatten.lisp
(flatten x) appends together the elements of x.

Typically x is a list of lists that you want to merge together. For example:

(flatten
=

(abcl23xy z)

‘(la bc) (123) (xy z)))

This is a "one-level" flatten that does not necessarily produce an atom-listp. For
instance,

(flatten "(((a . 1) (b . 2))

((x . 3) (y .
-->

((a . 1) (b . 2) (x .

Definitions and Theorems

Definition: flatten

(defun flatten (x)
(declare (xargs
(1T (consp x)
(append-without-guard (car x)
(flatten (cdr x)))

rquard t))

nil))

Definition: true-listp-of-flatten

(defthm true-listp-of-flatten

(defxdoc flatten
:parents (std/lists)
:short "@(call flatten) appends together the elements of @('x').”
:long "<p>Typically @('x"') is a list of lists that you want

To merge together. For example:</p>

<h3>Definitions and Theorems</h3>
@(def flatten)
@(thm true-listp-of-flatten)

@(thm flatten-when-not-consp)
@(thm flatten-of-cons)
@(thm flatten-of-1list-fix)

Not very DRY!

(defund flatten (
(declare (xargs
(if (consp Xx)

(append-without-guard (car x)
nil))

sguard t))

flatten (cdr x)))

(encapsulate ()
(local (in-theory (enable flatten)))
(defthm true-listp-of-flatten ...)
(defthm flatten-when-not-consp ...)

c.))

(defsection flatten
:parents (std/lists)
:short "@(call flatten) appends together the elements of @('x').”
:long "<p>Typically @('x"') is a list of lists that you want

To merge together. For example:</p>

[examplel]

[example2]”

(defund flatten (x)
(declare (xargs :guard t))
(if (consp x)
(append-without-guard (car x) (flatten (cdr x)))
nil))

(local (in-theory (enable flatten)))

(defthm true-listp-of-flatten ...)
(defthm flatten-when-not-consp ...)

) DRYer
Organizes books
Improves :pbt
Indents nicely

How to organize and document
your books \

even better

(with less typing and stuff)

(defsection flatten
:parents (std/lists)
:short "@(call flatten) appends together the elements of @('x").”
:long "<p>Typically @('x"') is a list of lists that you want

To merge together. For example:</p>

[examplel]

[example2]”

(defund flatten (x)
(declare (xargs :guard t))
(if (consp x)
(append-without-guard (car x) (flatten (cdr x)))
nil))

(local (in-theory (enable flatten)))
(defthm true-listp-of-flatten
(true-listp (flatten x))

:rule-classes :type-prescription)

(defthm flatten-when-not-consp ...)

)

(define vl-annotate-plainargs
((args "plainargs that typically have no @(':dir') or @("':
information; we want to annotate them."
vl-plainarglist-p)
(ports "corresponding ports for the submodule”
(and (vl-portlist-p ports)
(same-lengthp args ports)))
(portdecls "port declarations for the submodule"
vl-portdecllist-p)
(palist "precomputed for fast lookups™
(equal palist (vl-portdecl-alist portdecls))))
: returns
(annotated-args "annotated version of @('args'), semantically ¢
but typically has @(':dir') and @(':portname';
vli-plainarglist-p :hyp :fguard)
:parents (argresolve)
:short "Annotates a plain argument list with port names and dil
:long "<p>This is a \"best-effort\" process ..."”

(b* (((when (atom args))
nil)
(name (vl-port->name (car ports)))
(expr (vl-port->expr (car ports)))

.)

Argresolve

(define vl-annotate-p
((args "plainargs th
information;
vl-plainargli
"correspondin
(and (vl-port
(same-le
(portdecls "port declara
vl-portdeclli
"precomputed
(equal palist

(ports

(palist

: returns
(annotated-args "annotate
but typi
vl-plaina
:parents (argresolve)
:short "Annotates a plain
:long "<p>This is a \"bes

(b* (((when (atom args))
nil)
(name (vl-port->name

(expr (vl-port->expr

con)

Vi-annotate-plainargs

[books]/centaur/vl/transforms/xf-argresolve.lisp

Annotates a plain argument list with port names and directions.

Signature

(vl-annotate-plainargs args ports portdecls palist)

-

annotated-args

Arguments
args — plainargs that typically have no :dir or :portname information;
we want to annotate them.
Guard (vl-plainarglist-p args).
ports — corresponding ports for the submodule.
Guard (and (vl-portlist-p ports) (same-lengthp args ports)).
portdecls — port declarations for the submodule.
Guard (vl-portdecllist-p portdecls).
palist — precomputed for fast lookups.
Guard (equal palist (vl-portdecl-alist portdecls)).

Returns
annotated-args — annotated version of args, semantically equivalent
but typically has :dir and :portname information.
Type (vl-plainarglist-p annotated-args), given the guard.

This is a "best-effort" process which may fail to add annotations to any or all
arguments. Such failures are expected, so we do not generate any warnings or
errors in response to them.

What causes these failures?

* Not all ports necessarily have a name, so we cannot add a :portname for
every port.

* The direction of a port may also not be apparent in some cases; see vl-port-
direction for details.

Definitions and Theorems

Definition: vl-annotate-plainargs

(defaggregate vl-loadconfig
:parents (loader)
:short "Options for how to load Verilog modules."”

((start-files string-listp
"A list of file names (not module names) that
load; @(see vl-load) begins by trying to reac
lex, and parse the contents of these files."

(start-modnames string-listp
"Instead of (or in addition to) explicitly pr¢
@('start-files'), you can also provide a Llisf
names that you want to load. @(see vl-load)
these modules 1in the search path, unless the)
loaded while processing the @('start-files').

(search-path string-listp
"A list of directories to search (in order) f«
Q('start-modnames') that were 1in the @('start
for <see topic='@(url vl-modulelist-missing)
modules</see>. This 1s similar to \"library
in tools like Verilog-XL and NCVerilog.")

(defaggreg

Loader

:parents (

:short "Op
((start-f1i
(start-mo
(search-p

Vi-loadconfig-p

[books]/centaur/vl/loader/loader.lisp
Options for how to load Verilog modules.
(vl-loadconfig-p x) is a defaggregate of the following fields.

e start-files — A list of file names (not module names) that you want to load;
vl-load begins by trying to read, preprocess, lex, and parse the contents of
these files.

Invariant (string-listp start-files).

e start-modnames — Instead of (or in addition to) explicitly providing the
start-files, you can also provide a list of module names that you want to
load. vl-load will look for these modules in the search path, unless they
happen to get loaded while processing the start-files.

Invariant (string-listp start-modnames).

e search-path — A list of directories to search (in order) for modules in
start-modnames that were in the start-files, and for missing modules. This
is similar to "library directories" in tools like Verilog-XL and NCVerilog.

Invariant (string-listp search-path).

e search-exts — List of file extensions to search (in order) to find files in the
search-path. The default is ("v"), meaning that only files like foo.v are
considered.

Invariant (string-listp search-exts).

e include-dirs — A list of directories that will be searched (in order) when

at
eda(

n "

pre
1s

modules</see>. This 1s similar to \"library

in tools like Verilog-XL and NCVerilog.")

Macros like these aren't hard.

Documentation as Data

The full docs are
just a table with
a list of topics.

HKdoc

How to get a fancy manual
with your stuff in it

(so you can show your friends)

HKdoc

How to get a fancy manual
with your stuff in it

(include-book “your-books”)
(xdoc::save “./my-manual”)

(by the way, it's embeddable)

=Top
FACL2
FACL2cn
FArithmetic
“*Boolean-reasoning
(86
“+Debugging
“FHardware-verification
< Interfacing-tools
“Iu-top
“Macro-libraries
FMetasm
+Mmx-top
“FProof-automation
+Regex
+Std
FStr
Flc
+Xdoc
4 Xib
FXval

Current status of efforts to formally verify parts of Centaur's processor design.

Introduction

A far-off goal for this work could be: prove that the whole chip properly implements

jump to XM

HKdoc

the X86 specification. For now we are addressing pieces of the problem like

* The Verilog for execution units (FADD, MMX, ...}
¢ Certain microcode routines (so-far mostly arithmetic).

Here's a big picture of how we relate these Verilog modules and microcode

routines to the X386 spec. Everything green is in the ACL2 theorem provers®.

XB6
Manuals

Hardwars mstructions

Machine State
Madel 1
Microingtruction 3
Specifications i

GL, ESEM, 5Tvs

l.-l

"d Instruction
Listimg

Lasder

JWiode ntructons

mastersp

XDOC
at
Centaur

Demo

Google

search 3

Google Search I'm Feeling Lucky

NG T Al Default.aspx™

ff <reference path="ASPxScriptIntelliSense.js" />

function OnGridRowClick(s, e) {
var gridInstance = ASPxClientGridView.Cast(s);
gridInstance.DeleteRowByKey(

Void DeleteRowByKey(key)

Deletes a row with the specified key value,

[R—]

key: An object that uniquely identifies the row.

Intellisense

1) Like ¥ Follow

ledit source]

[add a note]

remixes

i 7

‘Wisdom Linguistics Alchemy

Cirder Magic Distortion
vlagle

ﬁﬂfﬁ

Magic Light Transmute Chaos Magic

: : i -
Meditation SLITTIYEOTeET Diestruciion
o=y

]

-

Concentration Thesis

Part 2

Impractical Stuff

The future of ACL2 documentation

L||||1|||1|||I1F|I|l|

a4
R

Ill'IlIIIJIII
ltll"lll!lI||tlll|l|llll|!lllll Al
.

LR
! i
™l e o I

e

ey | s

The New Hork Ermes. =

ARMISTICE SIGNED, END OF THE WAR!
RERLIN SEIZED BY REVOLUTRNISTS;
NEW CHANCELLOR BEGS FOR ORDER;
OUSTED KAISER FLEES T0O HOLLAND

| by | s |4
1 winf | v |
fep=jm| ey a0

THECIEE LT
W= () e | 4]
U] s
| EEELTREST T
HjaiH] rmana ||
e i) sy 4
R [S
=] ¢ |4

1 i v e——
LT | e ——"

s | —— i 12t wn LA, HESIMNE 't N
------- 'r-'?": b = ™ par Bia o i Ml N

-.-.-::':::-..I!I!" T -t

SRR ECE TN = -
o - e - ey
- = K - n b i
_______________ = =TT
-

PROCEEDINGS OF THE AIR FORCE MATERIALS LABORATORY

ANNIVERSARY TECHNICAL CONFERENCE ON CORROSION OF I

ETC. FRED H. MEYER, JR. AIR FORCE MATERIALS LAB., WRI

PATTERSON AFB, OHIO. AFML TR 67 329. 2016P. NOV 67.
FLD/GP 11/6 13/8 11/3 9/3

BT WHAT STARTS HERE CHANGES THE WORLD
THE UNIVERSITY OF TEXAS AT AUSTIN Mobile | My Account | Renew Item

o Umv-:.:rs:tv of Texas Libraries c:elehrauug the life of rhe mind.

CATALOG DATABASES JOURNALS SITE SEARCH

Find articles, books, media, and more in one search

scolT Mobile scolUT Advanced Search Search Tips

Find Your Subject Ll ILAS Benson Student
MoodleTools (NoodleBib) Librarnian Photo Exhibit to Feature

| Cite Your Sources o Prize

Open Access Publishing
Reserve a Group Study and Other Scholarly NDDdIETDD|5 Librarnes, English Host
Room icati "

|1 Communication Issues || = W - Banned Books Week i
4 |] 3

Proceedings of the 11th
International Workshop on the
A COMPUTATIONAL LOGIC ACL2 Theorem.Prover and its
Applications

APPLICATIVE COMMON LISP

AC[2

WORKSHOFP 2013

Computer-Aided Reasoning:
An Approach

Matt Kauimann
Panagiotis Manolios
J Strother Moore

Thamas Ball
- Rebert B Jones (Ede}

B
Lambimad & P (1 |

 Computer Aided
Verification

Ttk intarstensl Conlpspac, A 7008
e, 1, U5, Aug 2006
Pscrsdiet

|lNCSQI44

% Interactive

WitoC 2000

LOOK INSIDE!

Computer-Aided Reasoning:
An Approach

\L E
Sealable
Techniques
for Formal
Verification

We really ought
to unifty this.

-

CPLICATIVE COMMON LISP

Ajded Reasonir
Studies

edited ..,
Matt K»+~

. WQOre

J Strother Moore

—=arem.Prover anga ..
Applications

i/ Computer Aided
£ Verificatio

1008

1. We should really
integrate the book
and system docs.

Defconst

ACL2 Sources

Define a constant

Examples:

(defconst *digits* "(8 1 2 3 4567 8 9))

(defconst *n-digits* (the unsigned-byte (length *digits*)))
General Form:

{(defconst name term doc-string)

where name is a symbol beginning and ending with the character *, term1is a variable-free term that is

evaluated to determine the value of the constant, and doe-string is an optional documentation string (see
doc-string).

When a constant symbol is used as a term, ACL2 replaces it by its value; see term.

Note that defconst uses a * "safe mode" to evaluate its form, in order to avoids soundness issues but
with an efficiency penalty (perhaps increasing the evaluation time by several hundred percent). If
efficiency 1s a concern, or if for some reason vou need the form to be evaluated without safe mode
(e.g., vou are an advanced svstem hacker using trust tags to traffic in raw Lisp code), consider using
the macro defconst-fast instead, defined in community book books/make-event/defconst-
fast.lisp, for example:

(defconst-fast *x* (expensive-fn ...))

g

A more general utility may be found in community book books/tools/defconsts. lisp. @ousing—

-
= | L Al AL et R p_— e P = m——um 3
n

Define a constant

Examples:

(defconst *d
{(defconst *n
General Form
{defconst na

where name is a symbo]
evaluated to determine
doc-string).

When a constant synj

Note that defconst
with an efficiency

eﬁﬁdmncyisacnngzj
(e.g., vou are an adva
the macro defconst
fast.lisp, for exan

(defconst-fa

e —

A more general utility may be found in

Defconsts

Define multiple constants

Examples:

{include-book "tools/defconsts”™ :dir :system)

{defconsts *foo* 1)

{defconsts (*foo®) 1)

{defconsts (*foo* *bar*) (mv 1 2))
{defconsts (*foo* *bar* &) (mv 1 2 3))

{defconsts (*hundred*® state)
{mv-let (col state)
{(fmt "Hello, world!" nil *standard-co® state nil)
{declare (ignore col))
{(mv 186 state)))

General form:

| {defconsts consts body)

where consts is a single symbol or a list of N symbols, and body is a form that returns IV values.

Each symbol in consts should either be: - A "starred" name like *foo*, - A non-starred name which
names a stobj (e.g., state), or - &, which means "skip this return value."

community book books/tools/defconsts. lisp. Aljo using-

= = = -
Fa B Rgw - L L T

e
Defstobj

ACL2 Sources

Define a new single-threaded object

Note: Novices are advised to avoid defstobi, perhaps instead using community books
books/cutil/defaggregate.lisporbooks/data-structures/structures. lisp. At the least,
consider using (set-verifv-guards-eagerness @) to avoid guard verification. On the other hand, after
vou learn to use defstobij, see defabsstobj for another way to introduce single-threaded objects.

Example:
{defconst *mem-size* 16) ; for use of *mem-size* just below
{defstob]j st
(reg :type (array (unsigned-byte 31) (8))
:initially @)
{(p-c :type (unsigned-byte 31)
:initially 555)
halt ; = (halt :type t :initially nil)
{mem :type (array (unsigned-byte 31) (*mem-size*))
rinitially @ :resizable t))

General Form:
{deftstobj name
(fieldl :type typel :initially wall :resizable bl)

(fieldk :type typek :initially wvalk :resizable bk)

Define a ns

Defaggregate

Note: No [books]/cutil/defaggregate.lisp
books/cu
consider Introduce a record structure, likea struct in C.
you learn
Introduction
Exam

(def{ Defaggregate introduces a recognizer, constructor, and accessors for a new record-like structure. It 1is
(def similarto struct in Cor defstruct in Lisp.

Basic example:
{defaggregate employee 33 structure name
{name salary position) ;3 Tields
:tag :employee ;3 options
)
This example would produce:

Gene|

s A recognizer, (employee-p x
(def gnizer, (employee-p xJ),

* A constructor, (employee name salary position),

* Anaccessor for each field, e.g., (employee->name x),

1o

ACL2 Sources

Input/output facilities in ACL2

Example:
{mv-let
{channel state)
{open-input-channel "foo.lisp” :object state)
{mv-let (eofp ob]j state)
{(read-object channel state)

(.

{(let ({state (close-input-channel channel state)))
{(mv final-ans state))..)))

Also see file-reading-example.
For advanced wayvs to control printing, see print-control.
For a discussion of formatted printing, see fmt.

To control ACLz abbreviation ("evisceration') of objects before printing them, see set-evisc-tuple,
see without-evise, and see set-iprint.

To redirect output to a file, see output-to-file.

File-reading-example

ACL2 Sources

Example of reading files in ACLz

This example illustrates the use of ACL2's I0 primitives to read the forms in a file. See io.

This example provides a solution to the following problem. Let's say that vou have a file that contains
s-expressions. Suppose that vou want to build a list by starting with nil, and updating it

{defun process-filel (current-list channel state)
(mv-let (eofp obj state)
{read-object channel state)
{cond
{eofp (mv current-list state))
(t (process-filel {update-list obj current-list)
channel state)))))

W

As an exercise, vou might want to add guards to the functions above and verify the guards (see verify-
guards). See args or make a call of the form (guard "“your-function nil (w state)) toseethe

guard of an existing function.

\ -~

Example of
This examy
This examy

s-expressiof

(d

Asgan ex

guards).
guard of|

File-reading-example

Read-file-objects

[books]/std/ic/read-file-objects. lisp
Eead an entire file into a list of ACL2 objects.
Signature: (read-file-objects filename state) returns (mv contents state).

On success, contents is a true-listp of ACL2 objects that have were found in the file, obtained by
repeatedly calling read-object.

On failure, e.g., perhaps filename does not exist, contents will be a stringp saving that we failed to
open the file.

Definitions and Theorems
Definition: read-file-objects

{defun
read-file-objects (filename state)
"Returns (MV ERRMSG/OBJECTS STATE)"
{declare (xargs :guard (and (state-p state)
{stringp filename))))
{b* ({(filename (mbe :logic (if (stringp filename) filename "")
rexec tilename))
{({mv channel state)

2. We should really
improve our topic

hierarchy.

Full Index

Ty

g ém - The topics on the left

ve k@ — side are descriptive but
Iops .

#Bridge kind of a hodge-podge.

4+l

+lex : " For example, perhaps

#Data-definitions osets" could be under a topic named

L "sets", and it doesn't seem to me that

i "esim” Is an intuitive name unless one

Hiadker knows the history...

+Ihs

TFMisc

ot -- We could use an "introduction to the

+Regex books" topic that could be the default page

+Std : o ") o

+Str and have a link to it sit above "full index" in

= Testing

U the top left frame...

“+Undocumented _

+Vi David Rager, acl2-books Issue 63

= With-timeout
TFWitness-cp
FXdoc

Full Index (defmacro xdoc::fix-the-hierarchy ()

+4v (progn . . .

+ACL? (xdoc::change-parents ihs (arithmetic))

+Aig

ig;@ 5 (xdoc::change-parents b* (macro-libraries))

+B,.idge (xdoc::change-parents data-definitions (macro-libraries))
+Clex (xdoc::.change-parents data-structures (macro-libraries))
< Cutil

FData-definitions

+Data-ctructures (xdoc::.change-parents io (interfacing-tools))

4Esim (xdoc::change-parents hacker (interfacing-tools))
*Faig
iﬁ'acker (xdoc::change-parents witness-cp (proof-automation))
2Ths (xdoc::change-parents esim (hardware-verification))
TFMisc
iggﬁ_‘tﬁf (xdoc::change-parents testing (debugging))
T*Regex :
+5td ;; S0 | got started on that, and decided to move around a whole
+otr ;; bunch of ACL2 doc topics. Much of this would probably make
g : more sense to do in ACL2 itself.
5
“+Undocumented _
W (xdoc::change-parents copyright (about-acl2))
+tj:$et£‘§@”t (xdoc::change-parents version (about-acl2))
+¥doc P (xdoc::change-parents release-notes (about-acl2))

(xdoc::change-parents bibliography (about-acl?))

Full Index

Ty

*+ACL2

FAig

FB*

<+Bitops

+Bridge

FClex

T Cutil
4rData-definitions
rData-structures
FESim

rFaig

Gl

FHacker

FIhs

FMisc

T (sets

T+ 3slib

T*Regex

T 5td

= Str

= Testing
“FiJbdds
*lUndocumented
VI

= With-timeout
TFWitness-cp
FXdoc

=Top

+ACL2

<FArithmetic
<*Boolean-reasoning
<*Debugging
“+Hardware-verification
<rInterfacing-tools
s*Macro-libraries
<rProof-automation
Regex

+5td

+Str

+Xdoc

Demo

Add-custom-keyword-hint

Add a new custom kevword hint Eve n tS

Assert-event
Assert that a given form returns a non-nil value

Comp
Compile some ACL2 functions

Def-functional-instance
Functionally instantiate a pre-existing theorem to prove a new one.

Defabsstobj-missing-events
Obtain the events needed to admit a defabsstobj event

Defattach
Execute constrained functions using corresponding attached functions

Defaxiom

AD 826 198 PROCEEDINGS OF THE AIR FOR‘CE MATERIALS LABORATORY FIFTIETH

[
r ANNIVERSARY TECHNICAL CONFERENCE ON CORROSION OF MILITARY,
J.J.l.dd al‘l a:‘ll.lcl 111 ETC. FRED H. MEYER, JR. AIR FORCE MATERIALS LAB., WRIGHT-
PATTERSON AFB, OHIO. AFML TR 67 329. 2016P. NOV 67.
UNCLAS FLD/GP 11/6 13/8 11/3 9/3 NO FORN

Defchoose
Define a Skolem (witnessing) function

Defcong
Prove co ngruence rule

Defconst
Define a constant

A & function name with a macro name SW| tC h es- P aram ete I'S-

Add-default-hints

Add to the default hints an d - M O d es

Add-default-hints!
Add to the default hints non-locally

Add-dive-into-macro
Associate proof-checker diving function with macro name

Add-include-book-dir
Link kevword for : dir argument of 1d and include-book

Add-invisible-fns
Make some unary functions invisible to the loop-stopper algorithm

Add-ld-keyword-alias

See ld-kevword-aliases.

Add-ld-keyword-alias!

See ld-kevword-aliases.

Add-macro-alias
Associate a function name with a macro name

Add-macro-fn
Associate a function name with a macro name

Add-match-free-override
Set :match-free valueto :once or :all in existing rules

Add-nth-alias
Associate one symbol with another for printing of nth/update-nth terms

Alistp
Eecognizer for association lists

Allocate-fixnum-range
Set aside fixnums in GCL

Alpha-char-p
Eecognizer for alphabetic characters

Alphorder
Total order on atoms

And
Conjunction

Append
concatenate zero or more lists

Ash
Arithmetic shift operation

Assert$

Cause a hard error if the given test is false
Assign

Assign to a global variable in state

ASsOC
Look up key in association list

Assoc-eq
See assoc.

acl2-built-ins

sz The New Hork E:mrﬁ SRR

=== et

.-UE"I.I'F‘:TJ'EE SIG.'I-'I- ﬂ' END E‘f- THFH’,{H’
RERLIN SEIZED BY REVOLUTRHINISTS;
NEW CHANCELLOR BEGS FOR ORDER;
QUSTED KAISER FLEES T0 HOLLAND

1 i Bl R T L "I.'I.-'_-L..: —l..-'- | R .y
e i D

= = ety | L THY RS E A

- - - ¥ L SRR R
l-l — - i
— g SRl T
— g - g e e b
= 3 g 1. T e—
B s e =] | } [
— - - : - o = o —
— = w = ey e |] A - e
= g — o e TR [p— (L]
= . I, - TS g =
T Sl e e
prp- s |FAE BN g - - oy e
T ol EF = = — e
o = o}
- === D i
= _'- - s o, T _
s T Y T i T —ro e REECE

A solution:

Multiple Parents

Defmacro

ACL2 Sources

pefineamacro I

Example Defmacros:

{defmacro xor (x y) MaCI'OS

(list "if x (list "not y] [books]/centaur/doc.lisp
. Macros allow vou to extend the syntax of ACL2.
{defmacro git (sym key)
(list "getprop sym key ni
"{quote current-acl
"(w state)))

Subtopics ©

Add-macro-alias

Associate a function name with a maero name
(defmacro one-of (x &rest r

(declare (xargs :guard (=
(cond (({null rst) nil)

Add-macro-fn
Associate a function name with a macro name

(t (list 'or Defabbrev
(list 'eg A convenient form of macro definition for simple expansions
(list® ‘“or Defmacro
Define a macro

Macro-aliases-table
A table used to associate function names with maero names

Macro-args
The formals list of a macro definition

Macro-libraries
Generally useful maeros for writing more concise code, and frameworks for quickly introducing
concepts like typed structures, tvped lists, defining functions with tvpe signatures, and

automating other common tasks.

Make-event

3. We should really
[iInk to external

resources.

Append

ACL2 Sources

concatenate zero or more lists

Append, which takes zero or more arguments, expects all the arguments except perhaps the last to be
true (null-terminated) lists. It returns the result of concatenating all the elements of all the given lists
into a single list. Actually, in ACL2 append is a macro that expands into calls of the binary function
binarv-append if there are at least two arguments; if there is just one argument then the expansion is
that argument; and finally, (append) expands to nil.

f'See any Common Lisp documentation for more information.

Append 1s a Common Lisp functioy

ACLZ-built-ins

concatenate zero or more lists

Append, which takes zero or more argy
true (null-terminated) lists. It returns t
into a single list. Actually, in ACL2 app
binarv-append if there are at least two
that argument; and finally, (append) ¢

Append is a Common Lisp functiogf Se

e~ TM
Wy LoFypensSpec || 1 =]

Function APPEND

Svatax:

append cre=st lists == result

Arguments and Values:

list---each must be a proper list except the last, which may be any object.

result---an phiect. This will be a [ist unless the last [iss was not a [ist and all preceding lists were 1
Description:

append returns a new [is¢ that is the concatenation of the copies. lists are left unchanged; the Jist s¢
last argument is not copied; it becomes the cdr of the final dorted pair of the concatenation of the p
preceding non-empey lists.

Examples:

fappend "{a b c) '{(de £} "() "(g)) == [(ABCDETF G
fappend '(a b c) 'd) =» (A B C . D)
(zetg 13t '"(a b c)) = (A B C)

Interesting-applications

|, executed on over fiftv microcode programs written by Motorola engineers and extracted from the
EOM mechanicallv. Hazards were found in some of these. (See, for example, Bishop Brock and
Warren. A. Hunt, Jr. " "Formal analvsis of the motorola CAP DSP." In Industrial-Strength Formal
Methods. Springer-Verlag, 109g.)

‘ ACL2 was used at Advanced Micro Devices (AMD) to verify the compliance of the AMD Athon's

(TM) elementary floating point operations with their IEEE 754 specifications. This followed ground-
éj:? breaking work in 1995 when ACL2 was used to prove the correctness of the microcode for floating-

point division on the AMD K5. The AMD Athlon work proved addition, subtraction, multiplication,
division, and square root compliant with the IEEE standard. Bugs were found in RTL designs. These
bugs had survived undetected in hundreds of millions of tests but were uncovered by ACLz proof
attempts. The RTL in the fabricated Athlon FPU has been mechanically verified by ACL=. Similar

s ACLs2 proofs have been carried out for everv major AMD FPU design fabricated since the Athlon. (See
for example, David Russinoff. * " A mechanicallv checked proof of correctness of the AMDs K86
floating-point square root microcode". Formal Methods in System Design Special Issue on Arithmetic
Circuits, 1997.)

Jun Sawada. * 'Formal verification of divide and square root algorithms using series calculation". In

. ACL2 was used at IBM to verify the floating point divide and square root on the IBM Power 4. (See
éj:? Proceedings of the ACL2 Workshop 2002, Grenoble, April zoo2.)

ACLz was used to verify floating-point addition/ subtraction instructions for the media unit from
Centaur Technology's 64-bit, X86-compatible microprocessor. This unit implements over one
hundred instructions, with the most complex being floating-point addition/subtraction. The media
unit can add, subtract four pairs of floating-point numbers every clock cycle with an industry-leading
two-cyele latency. The media unit was modeled by translating its Verilog design into an HDL deeply
embedded in the ACL2 logic. The proofs used a combination of AIG- and BDD-based syvmbolic

I simulation, case splitting, and theorem proving. (See Warren A. Hunt, Jr. and Sol Swords. * "Centaur
Technology Media Unit Verification". In CAV 'og: Proceedings of the 215t International
Conference on Computer Aided Verification, pages 353367, Berlin, Heidelberg, 2004.
Springer-Verlag.)

-

CPLICATIVE COMMON LISP

—=arem.Prover anga ..
Applications

Ajded Reasonir
Studies

edited ..,
Matt K»+~

. WQOre

J Strother Moore

i/ Computer Aided
£ Verificatio

1008

We should convert
ACL2's doc into xdoc
and make it editable
by the community.

Built into ACL2
Docs In Latex
Docs In Texinfo
Docs In Terminal
Docs In Browser
Standard markup
DRY code Insertion
Do what you want
Packages work
Custom manuals

'DOC

yes
yes
yes
yes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

