

Jared Davis
jared@centtech.com

XDOC, and the Future of
ACL2 Documentation

mailto:jared@centtech.com

Part 1

Practical Stuff

What's an XDOC and where can
I get one?

Fancy Viewer Demo

How to document your books

(the tedious, manual way, for starters)

(include-book “xdoc/top” :dir :system)

(defxdoc str
 :short "ACL2 String Library"
 :long "<p>This is a rudimentary string library for ACL2.</p>

<p>The functions here are all in logic mode, with verified guards. In many
cases, some effort has been spent to make them both efficient and relatively
straightforward to reason about.</p>

<h3>Loading the library</h3>

<p>Ordinarily, to use the library one should run</p>
@({
 (include-book \"str/top\" :dir :system)
})

<p>The documentation is then available by typing @(':xdoc str'). All of the
library's functions are found in the @('STR') package.</p>

<p>If you are willing to accept a trust tag, you may also include the
@('fast-cat') book for faster string-concatenation; see @(see cat) for
details.</p> ...”)

Documentation as Code

(include-book “xdoc/top” :dir :system)

(defxdoc str
 :short "ACL2 String Library"
 :long "<p>This is a rudimentary string library for ACL2.</p>

<p>The functions here are all in logic mode, with verified guards. In many
cases, some effort has been spent to make them both efficient and relatively
straightforward to reason about.</p>

<h3>Loading the library</h3>

<p>Ordinarily, to use the library one should run</p>
@({
 (include-book \"str/top\" :dir :system)
})

<p>The documentation is then available by typing @(':xdoc str'). All of the
library's functions are found in the @('STR') package.</p>

<p>If you are willing to accept a trust tag, you may also include the
@('fast-cat') book for faster string-concatenation; see @(see cat) for
details.</p> ...”)

Lightweight

Loads Quickly (< 0.1 sec)

(include-book “xdoc/top” :dir :system)

(defxdoc str
 :short "ACL2 String Library"
 :long "<p>This is a rudimentary string library for ACL2.</p>

<p>The functions here are all in logic mode, with verified guards. In many
cases, some effort has been spent to make them both efficient and relatively
straightforward to reason about.</p>

<h3>Loading the library</h3>

<p>Ordinarily, to use the library one should run</p>
@({
 (include-book \"str/top\" :dir :system)
})

<p>The documentation is then available by typing @(':xdoc str'). All of the
library's functions are found in the @('STR') package.</p>

<p>If you are willing to accept a trust tag, you may also include the
@('fast-cat') book for faster string-concatenation; see @(see cat) for
details.</p> ...”)

Standard XML Syntax

Tags must be balanced!

(include-book “xdoc/top” :dir :system)

(defxdoc str
 :short "ACL2 String Library"
 :long "<p>This is a rudimentary string library for ACL2.</p>

<p>The functions here are all in logic mode, with verified guards. In many
cases, some effort has been spent to make them both efficient and relatively
straightforward to reason about.</p>

<h3>Loading the library</h3>

<p>Ordinarily, to use the library one should run</p>
@({
 (include-book \"str/top\" :dir :system)
})

<p>The documentation is then available by typing @(':xdoc str'). All of the
library's functions are found in the @('STR') package.</p>

<p>If you are willing to accept a trust tag, you may also include the
@('fast-cat') book for faster string-concatenation; see @(see cat) for
details.</p> ...”)

Preprocessor!

(defxdoc raise
 :parents (support define)
 :short "Shorthand for causing hard errors."
 :long "<p>@(call raise) is equivalent to @('(er hard? ...)'), but it
automatically fills in the function name using @('__function__'). This only
works in contexts where @('__function__') is bound, e.g., the body of a @(see
define) or within a @(see defconsts) form. In these contexts, rather than
write something like:</p>

@({
 (er hard? __function__ \"bad input value ~x0~%\" x)
})

<p>You can just write:</p>

@({
 (raise \"bad input value ~x0~%\" x)
})

<p>Logically @('raise') just returns @('nil').</p>

@(def raise)"

Fights Bitrot!

How to document your books

(the fancy, less tedious way)

organize and

(defxdoc flatten
 :parents (std/lists)
 :short "@(call flatten) appends together the elements of @('x').”
 :long "<p>Typically @('x') is a list of lists that you want
To merge together. For example:</p>
...
<h3>Definitions and Theorems</h3>
@(def flatten)
@(thm true-listp-of-flatten)
@(thm flatten-when-not-consp)
@(thm flatten-of-cons)
@(thm flatten-of-list-fix) ...”)

(defund flatten (x)
 (declare (xargs :guard t))
 (if (consp x)
 (append-without-guard (car x) (flatten (cdr x)))
 nil))

(encapsulate ()
 (local (in-theory (enable flatten)))
 (defthm true-listp-of-flatten ...)
 (defthm flatten-when-not-consp ...)
 ...))

(defxdoc flatten
 :parents (std/lists)
 :short "@(call flatten) appends together the elements of @('x').”
 :long "<p>Typically @('x') is a list of lists that you want
To merge together. For example:</p>
...
<h3>Definitions and Theorems</h3>
@(def flatten)
@(thm true-listp-of-flatten)
@(thm flatten-when-not-consp)
@(thm flatten-of-cons)
@(thm flatten-of-list-fix) ...”)

(defund flatten (x)
 (declare (xargs :guard t))
 (if (consp x)
 (append-without-guard (car x) (flatten (cdr x)))
 nil))

(encapsulate ()
 (local (in-theory (enable flatten)))
 (defthm true-listp-of-flatten ...)
 (defthm flatten-when-not-consp ...)
 ...))

(defxdoc flatten
 :parents (std/lists)
 :short "@(call flatten) appends together the elements of @('x').”
 :long "<p>Typically @('x') is a list of lists that you want
To merge together. For example:</p>
...
<h3>Definitions and Theorems</h3>
@(def flatten)
@(thm true-listp-of-flatten)
@(thm flatten-when-not-consp)
@(thm flatten-of-cons)
@(thm flatten-of-list-fix) ...”)

(defund flatten (x)
 (declare (xargs :guard t))
 (if (consp x)
 (append-without-guard (car x) (flatten (cdr x)))
 nil))

(encapsulate ()
 (local (in-theory (enable flatten)))
 (defthm true-listp-of-flatten ...)
 (defthm flatten-when-not-consp ...)
 ...))

Not very DRY!

(defsection flatten
 :parents (std/lists)
 :short "@(call flatten) appends together the elements of @('x').”
 :long "<p>Typically @('x') is a list of lists that you want
To merge together. For example:</p>
[example1]
[example2]”

 (defund flatten (x)
 (declare (xargs :guard t))
 (if (consp x)
 (append-without-guard (car x) (flatten (cdr x)))
 nil))

 (local (in-theory (enable flatten)))
 (defthm true-listp-of-flatten ...)
 (defthm flatten-when-not-consp ...)
 ...) DRYer

Organizes books
Improves :pbt
Indents nicely

How to organize and document
your books

(with less typing and stuff)

even better

(defsection flatten
 :parents (std/lists)
 :short "@(call flatten) appends together the elements of @('x').”
 :long "<p>Typically @('x') is a list of lists that you want
To merge together. For example:</p>
[example1]
[example2]”

 (defund flatten (x)
 (declare (xargs :guard t))
 (if (consp x)
 (append-without-guard (car x) (flatten (cdr x)))
 nil))

 (local (in-theory (enable flatten)))

 (defthm true-listp-of-flatten
 (true-listp (flatten x))
 :rule-classes :type-prescription)

 (defthm flatten-when-not-consp ...)

 ...)

(define vl-annotate-plainargs
 ((args "plainargs that typically have no @(':dir') or @(':portname')
 information; we want to annotate them."
 vl-plainarglist-p)
 (ports "corresponding ports for the submodule"
 (and (vl-portlist-p ports)
 (same-lengthp args ports)))
 (portdecls "port declarations for the submodule"
 vl-portdecllist-p)
 (palist "precomputed for fast lookups"
 (equal palist (vl-portdecl-alist portdecls))))
 :returns
 (annotated-args "annotated version of @('args'), semantically equivalent
 but typically has @(':dir') and @(':portname') information."
 vl-plainarglist-p :hyp :fguard)
 :parents (argresolve)
 :short "Annotates a plain argument list with port names and directions."
 :long "<p>This is a \"best-effort\" process ...”

 (b* (((when (atom args))
 nil)
 (name (vl-port->name (car ports)))
 (expr (vl-port->expr (car ports)))
 ...)

(define vl-annotate-plainargs
 ((args "plainargs that typically have no @(':dir') or @(':portname')
 information; we want to annotate them."
 vl-plainarglist-p)
 (ports "corresponding ports for the submodule"
 (and (vl-portlist-p ports)
 (same-lengthp args ports)))
 (portdecls "port declarations for the submodule"
 vl-portdecllist-p)
 (palist "precomputed for fast lookups"
 (equal palist (vl-portdecl-alist portdecls))))
 :returns
 (annotated-args "annotated version of @('args'), semantically equivalent
 but typically has @(':dir') and @(':portname') information."
 vl-plainarglist-p :hyp :fguard)
 :parents (argresolve)
 :short "Annotates a plain argument list with port names and directions."
 :long "<p>This is a \"best-effort\" process ...”

 (b* (((when (atom args))
 nil)
 (name (vl-port->name (car ports)))
 (expr (vl-port->expr (car ports)))
 ...)

(defaggregate vl-loadconfig
 :parents (loader)
 :short "Options for how to load Verilog modules."

 ((start-files string-listp
 "A list of file names (not module names) that you want to
 load; @(see vl-load) begins by trying to read, preprocess,
 lex, and parse the contents of these files.")

 (start-modnames string-listp
 "Instead of (or in addition to) explicitly providing the
 @('start-files'), you can also provide a list of module
 names that you want to load. @(see vl-load) will look for
 these modules in the search path, unless they happen to get
 loaded while processing the @('start-files').")

 (search-path string-listp
 "A list of directories to search (in order) for modules in
 @('start-modnames') that were in the @('start-files'), and
 for <see topic='@(url vl-modulelist-missing)'>missing
 modules</see>. This is similar to \"library directories\"
 in tools like Verilog-XL and NCVerilog.")
 ...)

(defaggregate vl-loadconfig
 :parents (loader)
 :short "Options for how to load Verilog modules."

 ((start-files string-listp
 "A list of file names (not module names) that you want to
 load; @(see vl-load) begins by trying to read, preprocess,
 lex, and parse the contents of these files.")

 (start-modnames string-listp
 "Instead of (or in addition to) explicitly providing the
 @('start-files'), you can also provide a list of module
 names that you want to load. @(see vl-load) will look for
 these modules in the search path, unless they happen to get
 loaded while processing the @('start-files').")

 (search-path string-listp
 "A list of directories to search (in order) for modules in
 @('start-modnames') that were in the @('start-files'), and
 for <see topic='@(url vl-modulelist-missing)'>missing
 modules</see>. This is similar to \"library directories\"
 in tools like Verilog-XL and NCVerilog.")
 ...)

Macros like these aren't hard.

The full docs are
just a table with
a list of topics.

Documentation as Data

How to get a fancy manual
with your stuff in it

(so you can show your friends)

How to get a fancy manual
with your stuff in it

(by the way, it's embeddable)

(include-book “your-books”)
(xdoc::save “./my-manual”)

XDOC
at

 Centaur

 Demo

search

intellisense

remixes

[edit source] [add a note]

Part 2

Impractical Stuff

The future of ACL2 documentation

???

???

We really ought
to unify this.

???

1. We should really
integrate the book
and system docs.

2. We should really
improve our topic
hierarchy.

David Rager, acl2-books Issue 63

-- The topics on the left
side are descriptive but
kind of a hodge-podge.
For example, perhaps

"osets" could be under a topic named
"sets", and it doesn't seem to me that
"esim" is an intuitive name unless one
knows the history...

-- We could use an "introduction to the
books" topic that could be the default page
and have a link to it sit above "full index" in
the top left frame...

(defmacro xdoc::fix-the-hierarchy ()
 `(progn
 (xdoc::change-parents ihs (arithmetic))

 (xdoc::change-parents b* (macro-libraries))
 (xdoc::change-parents data-definitions (macro-libraries))
 (xdoc::change-parents data-structures (macro-libraries))

 (xdoc::change-parents io (interfacing-tools))
 (xdoc::change-parents hacker (interfacing-tools))

 (xdoc::change-parents witness-cp (proof-automation))
 (xdoc::change-parents esim (hardware-verification))

 (xdoc::change-parents testing (debugging))

;; So I got started on that, and decided to move around a whole
;; bunch of ACL2 doc topics. Much of this would probably make
;; more sense to do in ACL2 itself.

 (xdoc::change-parents copyright (about-acl2))
 (xdoc::change-parents version (about-acl2))
 (xdoc::change-parents release-notes (about-acl2))
 (xdoc::change-parents bibliography (about-acl2))
 (xdoc::change-parents acknowledgments (about-acl2))
 (xdoc::change-parents acl2-help (about-acl2))
 ...)

 Demo

Events

Switches-Parameters-
and-Modes

acl2-built-ins

A solution:

Multiple Parents

3. We should really
link to external
resources.

interesting-applications

???

We should convert
ACL2's doc into xdoc
and make it editable
by the community.

Thanks!

XDOC :DOC
Built into ACL2 no yes
Docs in Latex no yes
Docs in Texinfo no yes
Docs in Terminal yes yes
Docs in Browser yes+ yes
Standard markup yes no
DRY code insertion yes no
Do what you want yes no
Packages work yes no?
Custom manuals yes no?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

