Specware in ACL2

Ben Selfridge

Kestrel Institute

selfridge@kestrel.edu

September 27, 2013
Kestrel Institute

- Non-profit computer science research center in Palo Alto, CA
- “Our mission is to advance the art and practice of synthesizing provably correct code from high-level specifications, to increase assurance, security, safety, productivity, and performance.”
Some of Kestrel’s projects\(^1\):
- APAC - static analysis of Android apps
- CRASH - synthesis of concurrent garbage collectors
- HACMS - high assurance TCP/IP protocol stack
- Specware - Kestrel’s flagship tool for general purpose synthesis

\(^1\)http://www.kestrel.edu/home/projects/
Specware

- Software developed by Kestrel, used for many of their synthesis efforts
- Consists of:
 - A high-level functional programming/specification language
 - A logic
 - A transformation system for deriving programs from specifications
Basic methodology: Start with a **high-level spec** for a program, then gradually **refine** it through transformations and morphisms.

Each of these transformations emits certain **proof obligations**.

Result: executable code that is correct by construction.
Current Specware implementation:
- Translate code to executable Common LISP for execution
- Translate code & theorems into Isabelle for verification

We can unify this approach: use a single system (ACL2) for both execution and verification
Challenges

Specware:

- Higher order
- Supports general quantifiers
- Strongly-typed (Hindley-Milner, subtypes, dependent types)
Challenges

ACL2:
- Has no native data structures other than cons pairs
- First order
- Limited support for quantifiers
- Is untyped
Challenges

ACL2:

- Has no native data structures other than cons pairs
- First order
- Limited support for quantifiers
- Is untyped

But, sometimes minimalism is a blessing.
Addressing the challenges

My basic approach: Use ACL2 macros to mimic high-level features that Specware supports natively.

Make ACL2 “look like” Specware.
Addressing the challenges

Mapping from Specware language features to ACL2 constructs:

- Types become predicates
- Coproducts become calls to new `defcoproduct` macro
- Pattern matching: “case” statements become new `case-of` macro (thanks Sol)
- Ops become calls to new `defun-typed` macro
- Theorems become calls to new `defthm-typed` macro

(Bonus: other ACL2 users can use these macros to do typed functional programming.)
Coprodoucts

- Otherwise known as “union type” or “sum type” (think data declarations in Haskell)
- Not natively supported in ACL2
- Building on existing macros in the ACL2 books repository\(^2\), we provide the `defcoproduct` macro
 - The Specware to ACL2 translator converts Specware coproduct definitions to `defcoproduct`
 - The macro introduces a number of theorems that will be used automatically by the prover
 - A simple definition of integer lists produces around 50 function definitions and theorems.

\(^2\)Sol Swords’ and William Cook’s `defsum`
type IList =
 | INil
 | ICons Int * IList

becomes

(defcoproduct IList
 (INil)
 (ICons Int IList))
Coproducts

Things you get:

1. Type recognizers: IList-p, ICons-p, INil-p
2. Constructors/destructors: ICons, ICons-arg-1, etc.
3. Elimination rules, à la (cons (car x) (cdr x)) = x
4. Lots of other miscellaneous rules
 - (NOT (EQUAL (ICONS ARG-1 ARG-2) ARG-2))
 - (IMPLIES (NOT (EQUAL ARG-1 (ICONS-ARG-1 X))) (NOT (EQUAL (ICONS ARG-1 ARG-2) X)))
 - (IMPLIES (INIL-P X) (EQUAL X (INIL))))
Specware’s word for “functions”

We provide the `defun-typed` macro

Expands to a regular `defun` with guards on the input types

Also includes a theorem restricting the output type of the function
op IAppend (x:IList, y:IList) : IList =
case x of
 | INil -> y
 | ICons (hd,tl) -> ICons (hd, (IAppend (tl,y)))

becomes

(defun-typed IAppend
 ((x IList) (y IList))
 IList
 (case-of x
 ((INil) y)
 ((ICons hd tl) (ICons hd (IAppend (tl,y)))))
The defun-typed for IAppend expands to:

(PROGN
 (DEFUN IAPPEND (A B)
 (DECLARE (XARGS :GUARD (AND (ILIST-P A) (ILIST-P B))
 :VERIFY-GUARDS NIL))
 ...
 (CASE-OF A ((INIL) B)
 ((ICONS X XS) (ICONS X (IAPPEND XS B))))
 ...
)
 (DEFTHM IAPPEND-TYPE
 (IMPLIES (AND (ILIST-P A) (ILIST-P B))
 (ILIST-P (IAPPEND A B)))
 :RULE-CLASSES (:TYPE-PRESCRIPTION :REWRITE)
 (VERIFY-GUARDS IAPPEND))
Theorems

- Theorems in Specware have to conform to the type rules
- We provide the `defthm-typed` macro to enforce this
- Expands to a `defthm` whose body is guard-verified
Theorem IAppend_associative is

fa (x:IList, y:IList, z:IList)
 IAppend (IAppend (x,y), z) =
 IAppend (x, IAppend (y,z))

becomes

(defthm-typed IAppend_associative
 ((x IList)
 (y IList)
 (z IList))
 (equal (IAppend (IAppend x y) z)
 (IAppend x (IAppend y z))))
The defthm-typed for IAppend_associative expands to:

(PROGN
 (DEFUN-TYPED IAPPEND_ASSOCIATIVE-BODY
 ((X ILIST) (Y ILIST) (Z ILIST))
 BOOL
 (EQUAL (IAPPEND (IAPPEND X Y) Z)
 (IAPPEND X (IAPPEND Y Z))))
(DEFTHM IAPPEND_ASSOCIATIVE
 (IMPLIES (AND (ILIST-P X)
 (ILIST-P Y)
 (ILIST-P Z))
 (EQUAL (IAPPEND (IAPPEND X Y) Z)
 (IAPPEND X (IAPPEND Y Z))))))
Polymorphism

Polymorphic lists in Specware:

\[
\text{Seq } a = \\
\quad | \text{SeqNil} \\
\quad | \text{SeqCons } a \ast (\text{Seq } a)
\]
Polymorphism

- Polymorphic types are somewhat of a higher-order notion
- So, how do we handle them in ACL2, a first-order system?
- **Answer:** we can mimic the notion of an “arbitrary type” with constrained predicates
Polymorphism

Introduce a function symbol, \texttt{A-P}, without a definition, which will represent our arbitrary type:

\begin{verbatim}
(ENCAPSULATE
 (((A-P *) => *)
 (LOCAL (DEFUN A-P (X) (DECLARE (IGNORE X)) T))
 (DEFFTHM A-TYPE (BOOLEANP (A-P X))
 :RULE-CLASSES :TYPE-PRESCRIPTION))

If we prove a theorem about \texttt{A-P}, we have proven it for all types, since \texttt{A-P} is an arbitrary predicate.
\end{verbatim}
Polymorphism

We can supply a coproduct definition with type variables, like so:

```
(defcoproduct Seq
  :type-vars (a)
  (SeqCons a (:inst Seq a))
  (SeqNil))
```

This call creates a macro, `Seq-instantiate`, which instantiates `Seq` for a specific type.
Now, we can define a function over the Seq a type:

```lisp
(defun-typed SeqAppend
 :type-vars (a)
  ((x (:inst Seq a)) (y (:inst Seq a)))
 (:inst Seq a)
 (case-of x
  (((:inst SeqNil a)) y)
  (((:inst SeqCons a) hd tl)
   (((:inst SeqCons a) hd ((:inst SeqAppend a) tl y))))))
```

This creates a macro, SeqAppend-instantiate, instantiating SeqAppend for a specific type.
Finally, we can define a theorem over the Seq[a] type:

```
(defthm-typed SeqAppend_Associative
  :type-vars (a)
  ((x (:inst Seq a))
   (y (:inst Seq a))
   (z (:inst Seq a)))
  (equal ((:inst SeqAppend a)
    ((:inst SeqAppend a) x y)
    z)
    ((:inst SeqAppend a)
      x
      ((:inst SeqAppend a) y z)))))
```
To instantiate SeqAppend_Associative for any specific type, we have to prove it for that type!

But if we prove it for the arbitrary type A→P, we should be able to use that in the proof.

We use functional instantiation to do just that, and the proof goes through automatically.
When proofs don’t go through automatically, we need to give hints to the prover.

We use the `proof` ACL2 pragma in MetaSlang to accomplish this.

Like the case for Isabelle, the hints are written in the target language (ACL2) using ACL2’s `:hints` construct.
theorem ILength_of_IAppend is
 fa (a:IList,b:IList)
 ILength(IAppend(a,b)) = (ILength(a) + ILength(b))

proof ACL2 ILength_of_IAppend
 :enable (IAppend ILength)
end-proof

becomes...
For simple theorems, :enable hints are usually all that’s needed.
Worked Examples

- DeMorgan’s Laws
- Binary Trees
- Insertion sort (using ILists)
- Polymorphic Lists (Seq) - incomplete, but works so far
Advantages of ACL2 over Common Lisp/Isabelle

- Unified approach to execution/verification
- ACL2’s minimalism makes it more flexible
 - Fewer type-related “paradigm clashes” since ACL2 doesn’t really have types
 - Example: types are predicates, so subtypes are just stronger predicates!
- High degree of proof automation
- Very efficient execution
- Extensive collection of useful libraries
- Extremely mature prover with lots of useful features & community support
Future Work

Completing the big picture...

- Higher-order functions
 - This can be faked with macros
 - Similar approach as polymorphic types
 - Currying?

- Morphisms/transformations
 - This may be relatively straightforward
 - We just haven’t tried it