Mechanically-Verified Validation of Satisfiability Solvers

Nathan Wetzler

The University of Texas at Austin

Dissertation Proposal
October 18, 2013
Outline

• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion
Satisfiability solvers are used in amazing ways...

- Hardware verification: Centaur x86 verification

- Combinatorial problems:
 - van der Waerden numbers
 [Dransfield, Marek, and Truszczynski, 2004]
 - Gardens of Eden in Conway’s Game of Life
 [Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]

- Unsatisfiability is often more important
Satisfiability solvers are used in amazing ways...

- Hardware verification: Centaur x86 verification

- Combinatorial problems:
 - van der Waerden numbers
 [Dransfield, Marek, and Truszczynski, 2004]
 - Gardens of Eden in Conway’s Game of Life
 [Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]

- Unsatisfiability is often more important

..., but satisfiability solvers have errors.

- Documented bugs in SAT, SMT, and QBF solvers
 [Brummayer and Biere, 2009; Brummayer et al., 2010]

- Competition winners have contradictory results
 (HWMCC winners from 2011 and 2012)

- Implementation errors often imply conceptual errors
Verify SAT solvers

- Requires verification of all crucial search techniques
- Delicate balance between efficiency and ease of verification
- Verification proofs are specific to each solver
- New developments in solving require additional proof effort
Verify SAT solvers
- Requires verification of all crucial search techniques
- Delicate balance between efficiency and ease of verification
- Verification proofs are specific to each solver
- New developments in solving require additional proof effort
Verify SAT solvers
- Requires verification of all crucial search techniques
- Delicate balance between efficiency and ease of verification
- Verification proofs are specific to each solver
- New developments in solving require additional proof effort

Validate SAT solver output
- Emit “proof” of unsatisfiability from SAT solver
- A single proof checker can validate results from many state-of-the-art solvers
- Proof checker uses limited number of techniques and can be mechanically verified
For my dissertation, I will develop a fast mechanically-verified satisfiability proof checker using ACL2.
For my dissertation, I will develop a fast mechanically-verified satisfiability proof checker using ACL2.

This project has three tasks:
1. Design a suitable proof format,
2. Implement an efficient proof checker for the format, and
3. Demonstrate a proof of correctness for the proof checker.
Proof Properties

Easy to Emit
Proof Properties

- Easy to Emit
- Compact
Proof Properties

- Easy to Emit
- Compact
- Checked Efficiently
Proof Properties

- Easy to Emit
- Compact
- Checked Efficiently
- Verified Checker
Proof Properties

- Easy to Emit
- Compact
- Checked Efficiently
- Verified Checker
- Expressive
Proof Properties

Easy to Emit

Compact

Checked Efficiently

Verified Checker

Expressive

Resolution Proofs

- [Zhang and Malik, 2003]
- [Van Gelder, 2008]
- [Biere, 2008]

with Verified Checker

- [Weber, 2006, and Amjad, 2009] (Isabelle/HOL)
- [Darbari et al., 2010] (Coq)
- [Armand et al., 2011] (Coq)

Clausal (RUP) Proofs

- [Goldberg and Novikov, 2003]
- [Van Gelder, 2008]
Proof Properties

- **Easy to Emit**
- **Compact**
- **Checked Efficiently**
- **Verified Checker**
- **Expressive**

Resolution Proofs
- [Zhang and Malik, 2003]
- [Van Gelder, 2008]
- [Biere, 2008]

with Verified Checker
- [Weber, 2006, and Amjad, 2009] (Isabelle/HOL)
- [Darbari et al., 2010] (Coq)
- [Armand et al., 2011] (Coq)

Clausal (RUP) Proofs
- [Goldberg and Novikov, 2003]
- [Van Gelder, 2008]

DRUP (DRUP-Trim)
- [Heule, Hunt, Jr., and Wetzler, STVR 201X]
- [Heule, Hunt, Jr., and Wetzler, FMCAD 2013]

RAT Proofs
- [Heule, Hunt, Jr., and Wetzler, CADE 2013]

with Verified Checker
- [Wetzler, Heule, and Hunt, Jr., ITP 2013] (ACL2)
Proof Properties

- **Easy to Emit**

- **Compact**

- **Checked Efficiently**

- **Verified Checker**

- **Expressive**

Resolution Proofs
- \([\text{Zhang and Malik, 2003}] \)
- \([\text{Van Gelder, 2008}] \)
- \([\text{Biere, 2008}] \)

- **with Verified Checker**
 - \([\text{Weber, 2006, and Amjad, 2009}] \) (Isabelle/HOL)
 - \([\text{Darbari et al., 2010}] \) (Coq)
 - \([\text{Armand et al., 2011}] \) (Coq)

Clausal (RUP) Proofs
- \([\text{Goldberg and Novikov, 2003}] \)
- \([\text{Van Gelder, 2008}] \)

DRUP (DRUP-Trim)
- \([\text{Heule, Hunt, Jr., and Wetzler, STVR 201X}] \)
- \([\text{Heule, Hunt, Jr., and Wetzler, FMCAD 2013}] \)

RAT Proofs
- \([\text{Heule, Hunt, Jr., and Wetzler, CADE 2013}] \)

- **with Verified Checker**
 - \([\text{Wetzler, Heule, and Hunt, Jr., ITP 2013}] \) (ACL2)

Proposed Work
Outline

- Motivation and Proposal
- Satisfiability and Proofs
 - Task 1: Designing a Proof Format
 - Task 2: Developing an Efficient Checker
 - Task 3: Proving Correctness
- Timeline and Conclusion
Is there an assignment of values to variables such that a given Boolean formula evaluates to TRUE?

\[(x_1 \lor x_2 \lor \neg x_3) \land \\
(\neg x_1 \lor \neg x_2 \lor x_3) \land \\
(x_2 \lor x_3 \lor \neg x_4) \land \\
(\neg x_2 \lor \neg x_3 \lor x_4) \land \\
(x_1 \lor x_3 \lor x_4) \land \\
(\neg x_1 \lor \neg x_3 \lor x_4) \land \\
(x_1 \lor \neg x_2 \lor \neg x_4) \land \\
(\neg x_1 \lor x_2 \lor x_4) \]
Satisfiability

Is there an assignment of values to variables such that a given Boolean formula evaluates to TRUE?

Checking a solution is easy.

Determining unsatisfiability is more difficult.

\[(x_1 \lor x_2 \lor \neg x_3) \land \]
\[(\neg x_1 \lor \neg x_2 \lor x_3) \land \]
\[(x_2 \lor x_3 \lor \neg x_4) \land \]
\[(\neg x_2 \lor \neg x_3 \lor x_4) \land \]
\[(x_1 \lor x_3 \lor x_4) \land \]
\[(\neg x_1 \lor \neg x_3 \lor \neg x_4) \land \]
\[(x_1 \lor \neg x_2 \lor \neg x_4) \land \]
\[(\neg x_1 \lor x_2 \lor x_4) \land \]
\[(\neg x_1 \lor x_2 \lor x_4) \land \]
Is there an assignment of values to variables such that a given Boolean formula evaluates to TRUE?

Checking a solution is easy.

Determining unsatisfiability is more difficult.

Formulas are in conjunctive-normal form (CNF).
Is there an assignment of values to variables such that a given Boolean formula evaluates to TRUE?

Checking a solution is easy.

Determining unsatisfiability is more difficult.

Formulas are in conjunctive-normal form (CNF).
A clause C is **redundant** with respect to a formula F if C conjoined with F is satisfiability equivalent, \(SAT \), to F.
A clause C is **redundant** with respect to a formula F if C conjoined with F is satisfiability equivalent, \equiv^{SAT}, to F.

A **proof trace** is a sequence of clauses that are redundant with respect to a evolving formula.

Formula

Proof
A clause \(C \) is **redundant** with respect to a formula \(F \) if
\(C \) conjoined with \(F \) is satisfiability equivalent, \(\text{SAT} \equiv \), to \(F \).

A **proof trace** is a sequence of clauses that are redundant with respect to a evolving formula.
A clause C is **redundant** with respect to a formula F if C conjoined with F is satisfiability equivalent, SAT, to F.

A **proof trace** is a sequence of clauses that are redundant with respect to a evolving formula.

![Proof Trace Diagram]
A clause C is **redundant** with respect to a formula F if C conjoined with F is satisfiability equivalent, \models_{SAT}, to F.

A **proof trace** is a sequence of clauses that are redundant with respect to a evolving formula.
A clause \(C \) is **redundant** with respect to a formula \(F \) if \(C \) conjoined with \(F \) is satisfiability equivalent, \(\text{SAT} \), to \(F \).

A **proof trace** is a sequence of clauses that are redundant with respect to a evolving formula.

A **refutation** is a proof trace that contains the (unsatisfiable) empty clause, \(\emptyset \).
A clause C is **redundant** with respect to a formula F if C conjoined with F is satisfiability equivalent, \models_{SAT}, to F.

A **proof trace** is a sequence of clauses that are redundant with respect to a evolving formula.

A **refutation** is a proof trace that contains the (unsatisfiable) empty clause, \emptyset.
• Motivation and Proposal
• Satisfiability and Proofs
• **Task 1:** Designing a Proof Format
• **Task 2:** Developing an Efficient Checker
• **Task 3:** Proving Correctness
• Timeline and Conclusion
Task 1: Designing a Proof Format

Existing proof formats are insufficient.
- Resolution proofs are large and hard to emit
- Clausal (RUP) proofs are inefficient, but are compact and easy to emit
Task 1: Designing a Proof Format

Existing proof formats are insufficient.

- Resolution proofs are large and hard to emit
- Clausal (RUP) proofs are inefficient, but are compact and easy to emit

Use clausal proofs as a foundation with two extensions:

- Add deletion information
- Extend equivalence from logical to satisfiability
Extension 1: Deletion Information

Proofs can be extended with clause deletion information.
- Solvers remove clauses during search
- Remove unnecessary clauses during validation
- Emit learning and deletion information
- New format called DRUP (Deletion RUP)
Proofs can be extended with clause deletion information.

- Solvers remove clauses during search
- Remove unnecessary clauses during validation
- Emit learning and deletion information
- New format called DRUP (Deletion RUP)

<table>
<thead>
<tr>
<th>CNF</th>
<th>RUP</th>
<th>DRUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 -3 0</td>
<td>-1 2 0</td>
<td>-1 2 0</td>
</tr>
<tr>
<td>-1 -2 3 0</td>
<td>-1 0</td>
<td>-1 0</td>
</tr>
<tr>
<td>2 3 -4 0</td>
<td>2 0</td>
<td>-1 0</td>
</tr>
<tr>
<td>-2 -3 4 0</td>
<td>Ø 0</td>
<td>Å 0</td>
</tr>
<tr>
<td>1 3 4 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 -3 -4 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 -2 -4 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 2 4 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extension 2: Expressiveness

(D)RUP
- Resolution
- CDCL Learning
- Boolean Constraint Propagation
- Subsumption

RAT
- Blocked Clause Addition
- Bounded Variable Addition
- Extended Resolution
- Extended Learning

Preserve Logical Equivalence

Only Preserve Satisfiability Equivalence
The DRUP and RAT proof formats can be combined.

- How will the two formats interact?
- With what frequency are RAT clauses produced?
- Will the addition of RAT clauses lead to more deletions?

<table>
<thead>
<tr>
<th>CNF</th>
<th>DRUP</th>
<th>DRAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 -3 0</td>
<td>-1 2 0</td>
<td>-1 0</td>
</tr>
<tr>
<td>-1 -2 3 0</td>
<td>d -1 2 4 0</td>
<td>d -1 2 4 0</td>
</tr>
<tr>
<td>2 3 -4 0</td>
<td>-1 0</td>
<td>d -1 -2 3 0</td>
</tr>
<tr>
<td>-2 -3 4 0</td>
<td>d -1 -2 3 0</td>
<td>d -1 -3 -4 0</td>
</tr>
<tr>
<td>1 3 4 0</td>
<td>d -1 -3 -4 0</td>
<td>2 0</td>
</tr>
<tr>
<td>-1 -3 -4 0</td>
<td>d -1 2 0</td>
<td>d 1 2 -3 0</td>
</tr>
<tr>
<td>1 -2 -4 0</td>
<td>2 0</td>
<td>d 2 3 -4 0</td>
</tr>
<tr>
<td>-1 2 4 0</td>
<td>d 1 2 -3 0</td>
<td>0</td>
</tr>
</tbody>
</table>
Outline

• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion
Task 2: Developing an Efficient Checker

Efficiency is necessary on industrial-scale problems.
- Validate proofs in a time similar to solving
- Performance without full range of solver techniques
Task 2: Developing an Efficient Checker

Efficiency is necessary on industrial-scale problems.

- Validate proofs in a time similar to solving
- Performance without full range of solver techniques

Several techniques to gain performance.

- Proofs can be trimmed before validated
- Efficient Boolean constraint propagation
- Constant-time, indexed memory access and update

Proof Trimming

Proofs often contain clauses that are unnecessary. Our DRUP-trim tool trims (and checks) proofs.
Proofs often contain clauses that are unnecessary. Our DRUP-trim tool trims (and checks) proofs.

Proof Trimming

Adds optimal deletion information.
DRUP-trim is able to closely match solving time.

![Graph showing time for DRUP-trim and solving](image)
DRUP-trim is able to closely match solving time.

Used to check unsatisfiability results from SAT Competition 2013.
Clausal proof checkers spend around 95% of their time performing Boolean Constraint Propagation.

- Core technique in solvers
- Often implemented using a watched-literal data structure

Watched-Literal Invariant:

All clauses are satisfied or contain at least two unassigned literals.

This is just one of many implementation techniques that must be verified.
Efficiency of ACL2 Code

Typical ACL2 list-only data structures are not efficient.
- Access and update are linear time operations

Instead, one can:
- Mimic array-like structures using STOBJs
- Disassemble key functions to compare compiled code to a highly optimized version

We have implemented a basic RUP proof checker in ACL2 that achieves roughly 60% of a similar proof checker written in C.
• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion
Interactive theorem provers assist with verification.

- ACL2 combines a programming language, first-order logic, and theorem prover
- Proof checker is modeled in ACL2
- Specification for termination and soundness (but not completeness) are formalized
- Efficient execution by way of Common LISP compilers
Interactive theorem provers assist with verification.

- ACL2 combines a programming language, first-order logic, and theorem prover
- Proof checker is modeled in ACL2
- Specification for termination and soundness (but not completeness) are formalized
- Efficient execution by way of Common LISP compilers

Incremental approach to proof process:

- Prove correctness of proof checkers for different formats
- Refine code to resemble C-equivalent
Verified SAT solvers and proof checkers using ACL2.

- Verified RUP proof checker
- Verified IORUP (deletion information) proof checker
- Verified RAT proof checker
Verified SAT solvers and proof checkers using ACL2.
- Verified RUP proof checker
- Verified IORUP (deletion information) proof checker
- Verified RAT proof checker

(defthm main-theorem
 (implies (and (formulap f) ; Given formula AND
 (refutationp r f)) ; refutation
 (not (exists-solution f))) ; Then formula is unsatisfiable
Verified Proof Checkers

Verified SAT solvers and proof checkers using ACL2.

- Verified RUP proof checker
- Verified IORUP (deletion information) proof checker
- Verified RAT proof checker

(defthm main-theorem
 (implies (and (formulap f)
 (refutationp r f)) ; Given formula AND
 (not (exists-solution f)))) ; refutation
 (not (exists-solution f)))) ; Then formula is unsatisfiable

Litany of transformations and refinements eventually resulting in code that corresponds to our C code.
Outline

• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion
Timeline

October 2013

- Fast RAT Checker in ACL2
- Verified “Flat” RAT Checker in ACL2

Connect Fast and “Flat” RAT Checkers

Design and Testing of DRAT Format

May 2014

- Fast DRAT Checker in ACL2
- Verified “Flat” DRAT Checker

Connect Fast and “Flat” DRAT Checkers

Legend:
- Proof Format
- Efficient Proof Checker
- Proving Correctness
This project has three components:

- Design a suitable proof format,
- Implement an efficient proof checker for the format, and
- Demonstrate a proof of correctness for the proof checker.

Our goal is to increase confidence in all satisfiability solvers by efficiently checking proofs with a mechanically-verified proof checker.
Recent Work

Bridging the Gap Between Easy Generation and Efficient Verification of Unsatisfiability Proofs

Marijn J.H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler

Accepted: Software Testing, Verification, and Reliability (STVR 201X)

Verifying Refutations with Extended Resolution

Marijn J.H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler

Published: Conference on Automated Deduction (CADE 2013)

Mechanical Verification of SAT Refutations with Extended Resolution

Nathan Wetzler, Marijn J.H. Heule, and Warren A. Hunt, Jr.

Published: Interactive Theorem Proving (ITP 2013)

Trimming while Checking Clausal Proofs

Marijn J.H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler

Published: Formal Methods in Computer-Aided Design (FMCAD 2013)

Thank you for your attention! Questions?
• Two formulas F1 and F2 are **logically equivalent** if they have the same set of satisfying assignments.

\[F_1 \equiv F_2 \]
Redundancy

• Two formulas F_1 and F_2 are **logically equivalent** if they have the same set of satisfying assignments.

\[
F_1 \equiv F_2
\]

• Two formulas F_1 and F_2 are **satisfiability equivalent** if they are both satisfiable or both unsatisfiable.

\[
F_1 \equiv^{\text{SAT}} F_2
\]
Redundancy

• Two formulas F_1 and F_2 are **logically equivalent** if they have the same set of satisfying assignments.

 \[F_1 \equiv F_2 \]

• Two formulas F_1 and F_2 are **satisfiability equivalent** if they are both satisfiable or both unsatisfiable.

 \[F_1^{\text{SAT}} \equiv F_2 \]

• A clause C is **redundant** with respect to a formula F if C conjoined with F is satisfiability equivalent to F.

 \[(\text{and } F \ C)^{\text{SAT}} \equiv F \]
Resolution Proof

\[
\begin{array}{ccc}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
\end{array}
\]
Resolution Proof

1 2 -3
-1 -2 3
2 3 -4
-2 -3 4
1 3 4
-1 -3 -4
2 3 -4
1 -2 -4
-1 2 4

-1 2
1 2
9

3 6 8
4 6 2
3 5 1
4 5 7

Ø

1
2
3
4
5
6
7
8

9
10
11
Ø
Resolution Proof

1 2 -3
-1 -2 3
2 3 -4
-2 -3 4
1 3 4
-1 -3 -4
1 -2 -4
-1 2 4

-1 2

3 6 8
4 6 2
9

4 6 2
9

1 3 4
-1 -3 -4
1 -2 4
-1 2 4

-1

2

3 5 1
10

4 5 7
10 11

Ø
Resolution Proof

1 2 -3
-1 -2 3
2 3 -4
-2 -3 4
1 3 4
-1 -3 -4
1 -2 -4
-1 2 4

-1 2
3 6 8

1 2 3 4 5 6 7 8

9

10

11

∅
Resolution Proof

\[
\begin{array}{ccc}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 \\
\end{array}
\]
Resolution Proof

1 2 -3
-1 -2 3
2 3 -4
-2 -3 4
1 3 4
-1 -3 -4
1 -2 -4
-1 2 4

-1 2 3 6 8
4 6 2 9
3 5 1 10
4 5 7 10 11

∅
Resolution Proof

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>-2</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>8</td>
<td>-1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ø</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ø</td>
</tr>
</tbody>
</table>
RUP Proof

1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1 2
-1
 2
∅
RUP Proof

\[
\begin{array}{ccc}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
1 & 2 & \\
-1 & \\
2 \\
\end{array}
\]
RUP Proof

\[
\begin{array}{ccc}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
-1 & 2 \\
-1 \\
2 \\
\emptyset
\end{array}
\]
DRUP Proof

\[
\begin{array}{cccc}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
\end{array}
\]

\[
\begin{array}{cccc}
-1 & 2 \\
d & -1 & 2 & 4 \\
-1 \\
d & -1 & -2 & 3 \\
d & -1 & -3 & -4 \\
d & -1 & 2 \\
2 \\
d & 1 & 2 & -3 \\
d & 2 & 3 & -4 \\
\emptyset \\
\end{array}
\]
DRUP Proof

1 2 -3
-1 -2 3
2 3 -4
-2 -3 4
1 3 4
-1 -3 -4
1 3 4
-1 2 -4
-1 2 4

-1 2

∅

∅
1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1 2
d -1 2 4
-1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4
Ø
Ø

DRUP Proof
DRUP Proof
DRUP Proof

\[
\begin{array}{ccc}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
\end{array}
\]
DRUP Proof

Proof Structure

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>-2</td>
<td>-3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-1</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

DRUP Rules

- **DRUP Rule 1:** If \(-2 \cdot 3 + 4\) then \((4 \cdot 2) + 2 = 10\)
- **DRUP Rule 2:** If \(-3 \cdot -4 + 2\) then \((2 \cdot 2) + 2 = 0\)
- **DRUP Rule 3:** If \((-1) \cdot 2 + 4\) then \((4 \cdot 2) + 2 = 10\)
- **DRUP Rule 4:** If \(-2 \cdot -4 + 1\) then \((1 \cdot 2) + 2 = 4\)

DRUP Proof Diagram

- **DRUP Step 1:** \(-2 \cdot 3 + 4\) then \((4 \cdot 2) + 2 = 10\)
- **DRUP Step 2:** \(-3 \cdot -4 + 2\) then \((2 \cdot 2) + 2 = 0\)
- **DRUP Step 3:** \((-1) \cdot 2 + 4\) then \((4 \cdot 2) + 2 = 10\)
- **DRUP Step 4:** \(-2 \cdot -4 + 1\) then \((1 \cdot 2) + 2 = 4\)
DRUP Proof

1 2 -3
-1 -2 3
2 3 -4
-2 -3 4
1 3 4
-1 -3 -4
1 -2 -4
-1 2 4

d -1 2 4
d -1 -2 3
d -1 -3 -4
d -1 2
2

∅

∅
DRUP Proof

\[
\begin{array}{cccc}
& 1 & 2 & -3 \\
& -1 & -2 & 3 \\
& 2 & 3 & -4 \\
& -2 & -3 & 4 \\
& 1 & 3 & 4 \\
& -1 & -3 & -4 \\
& 1 & -2 & -4 \\
& -1 & 2 & 4 \\
\end{array}
\]

\[
\begin{array}{cccc}
& \text{d} & -1 & 2 & 4 \\
& \text{d} & -1 & -2 & 3 \\
& \text{d} & -1 & -3 & -4 \\
& \text{d} & 1 & 2 & -3 \\
& \text{d} & 2 & 3 & -4 \\
\end{array}
\]

\[
\emptyset
\]
RAT Proof
RAT Proof

\[
\begin{matrix}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
\hline
-1 \\
2 \\
\emptyset
\end{matrix}
\]
RAT Proof

\[
\begin{array}{ccc}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
\end{array}
\]
RAT Proof

\[
\begin{bmatrix}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
-1 & 2 & -3 \\
2 & 3 & 4 \\
-2 & -4 \\
\end{bmatrix}
\]
RAT Proof

\[
\begin{bmatrix}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
-1 & 2 & -3 \\
2 & -3 & 4 \\
-2 & -4 & -2 & -4
\end{bmatrix}
\]
RAT Proof

1 2 -3
-1 -2 3
2 3 -4
-2 -3 4
1 3 4
-1 -3 -4
1 -2 -4
-1 2 4
-1
2
Ø

Mechanically-Verified Validation of Satisfiability Solvers
Nathan Wetzler
RAT Proof

\[
\begin{array}{ccc}
1 & 2 & -3 \\
-1 & -2 & 3 \\
2 & 3 & -4 \\
-2 & -3 & 4 \\
1 & 3 & 4 \\
-1 & -3 & -4 \\
1 & -2 & -4 \\
-1 & 2 & 4 \\
\end{array}
\]
Efficient code can be difficult to verify.

- STOBJs provide array-like memory, but require complex invariants
- Abstract STOBJs simplify these invariants by maintaining an equivalence
- Currently developing a “cons-less” model that does not use STOBJs, but organizes data structures in a similar way.
- Refinements
- Litany of transformations eventually resulting in array-like code
Proof Properties

- Easy to Emit
- Compact
- Checked Efficiently
- Verified Checker
- Expressive

- Resolution Proofs
 - with Verified Checker

- Clausal (RUP) Proofs

- DRUP (DRUP-Trim)

- RAT Proofs
 - with Verified Checker

- Proposed Work