Proving Unbounded Theorems with the Help of GL

Cuong Chau
Matt Kaufmann
Agenda

• A technique for proving unbounded theorems with the help of GL.

• Benefit of using that technique in certifying the 32-bit physical memory model.
Agenda

• A technique for proving unbounded theorems with the help of GL.

• Benefit of using that technique in certifying the 32-bit physical memory model.
Approach

• GL is a symbolic simulation framework for proving bounded ACL2 theorems. It cannot prove theorems that contain unbounded variables.
Approach

• **GL** is a symbolic simulation framework for proving *bounded* ACL2 theorems. It cannot prove theorems that contain *unbounded* variables.

• Proving *unbounded* theorems might not trivial if they are complicated. However, if they can be transformed into *bounded* theorems, then we can use **GL** to solve the problem.
Approach

• GL is a symbolic simulation framework for proving bounded ACL2 theorems. It cannot prove theorems that contain unbounded variables.

• Proving unbounded theorems might not trivial if they are complicated. However, if they can be transformed into bounded theorems, then we can use GL to solve the problem.

• Present a trick that proves unbounded theorems with the help of GL.
Simple Example

- (implies (integerp x)
 (equal (mod x 8)
 (logand x 7))))

Although x is unbounded, only its 3 low bits affect the computation in the above theorem. So, we can transform it to the bounded lemma:

- (implies (integerp x)
 (equal (mod x[3:0] 8)
 (logand x[3:0] 7))))

where x[j:i] represents the bit string from index i to j of x (0 <= i <= j).
Simple Example

• (implies (integerp x)
 (equal (mod x 8)
 (logand x 7))))

Although \(x\) is unbounded, only its 3 low bits affect the computation in the above theorem. So, we can transform it to the bounded lemma:

• (implies (integerp x)
 (equal (mod x[3:0] 8)
 (logand x[3:0] 7))))

Then, the unbounded theorem will follow by applying two following rewrite rules:

• (equal (mod x[3:0] 8) (mod x 8))
• (equal (logand x[3:0] 7) (logand x 7))
Main Theorem

(defthm main
 (implies (and (natp i02)
 (<= i02 2))
 (equal (logior (mod (ash mem-val (* -8 i02))
 2^8)
 (* *2^8*
 (mod (ash mem-val (+ -8 (* -8 i02)))
 2^8))))
 (mod (ash mem-val (* -8 i02))
 2^16))))
Main Theorem

(defthm main
 (implies (and (natp i02)
 (<= i02 2))
 (equal (logior E0 (* *2^8*
 (mod (ash mem-val (+ -8 (* -8 i02)))
 2^8))))
 (mod (ash mem-val (* -8 i02)
 2^16))))
Main Theorem

(defthm main
 (implies (and (natp i02)
 (= i02 2))
 (equal (logior E0
 (* *2^8* E1))
 (mod (ash mem-val (* -8 i02))
 (*2^16*))))
Main Theorem

(defthm main
 (implies (and (natp i02)
 (<= i02 2))
 (equal (logior E0
 (* *2^8* E1)))
 E2)))
Analyze E0

- $E_0 = (\mod (\text{ash mem-val} (* -8 \ i02)) 2^8)$

 $= \text{mem-val}[(+ 7 (* 8 i02)) : (* 8 i02)]$

- $(\text{and } (\leq 0 \ i02) \Rightarrow (\leq 0 (* 8 \ i02))$

 $(\leq \ i02 \ 2)) \Rightarrow (\leq (* 8 \ i02) \ 16)$

 $(\leq \ 7 (+ 7 (* 8 \ i02)))$

 $(\leq (+ 7 (* 8 \ i02) \ 23))$
Analyze E0

- $E_0 = (\text{mod} \ (\text{ash} \ \text{mem-val} (* -8 \ i02)) \ *2^8*)$

 $= \text{mem-val}[(+ 7 (* 8 i02)) : (* 8 i02)]$

- $(\text{and} \ (\leq 0 \ i02) \ => \ (\text{and} \ (\leq 0 (* 8 i02)) \ (\leq i02 2)) \ (\leq (* 8 i02) 16) \ (\leq 7 (+ 7 (* 8 i02))) \ (\leq (+ 7 (* 8 i02) 23)))$

\Rightarrow Only $\text{mem-val}[23 : 0]$ of mem-val affects E_0.
• $E_1 = (\text{mod} \ (\text{ash} \ \text{mem-val} \ (+ \ -8 \ (* \ -8 \ i02))))$
 \[\times 2^8\]

 \[= \text{mem-val}[(+ 15 (* 8 i02)) : (+ 8 (* 8 i02))]]\]
Analyze E1

- \(E1 = (\text{mod} \ (\text{ash} \ \text{mem-val} \ (+ \ (-8 \ (* \ -8 \ i02)))) \ *2^8) \)
 \(= \text{mem-val}[(+ 15 (* 8 i02)) : (+ 8 (* 8 i02))] \)

- \((\text{and} \ (<= 0 \ i02)) \Rightarrow (\text{and} \ (<= 8 \ (+ \ 8 (* 8 i02)))) \)
 \((<= i02 \ 2)) \Rightarrow (<= (+ 8 (* 8 i02)) 24) \)
 \((<= 15 (+ 15 (* 8 i02))) \)
 \((<= (+ 15 (* 8 i02)) 31))) \)

\(\Rightarrow\) Only \(\text{mem-val}[31 : 8]\) of \(\text{mem-val}\) affects \(E1\).
Analyze E2

• $E_2 = \left(\text{mod} \left(\text{ash \ mem-val} \ (* -8 \ i02) \right) \star 2^{16}\right)$

 $= \text{mem-val}[(+ 15 (* 8 \ i02)) : (* 8 \ i02)]$
Analyze E2

• E2 = (mod (ash mem-val (* -8 i02))
 2^16)
 = mem-val[(+ 15 (* 8 i02)) : (* 8 i02)]

• (and (<= 0 i02) => (and (<= 0 (* 8 i02))
 (<= i02 2)) => (and (<= (* 8 i02) 16)
 (<= 15 (+ 15 (* 8 i02)))
 (<= (+ 15 (* 8 i02)) 31))

Claim

• Only \text{mem-val}[23 : 0] of \text{mem-val} affects E0.
• Only \text{mem-val}[31 : 8] of \text{mem-val} affects E1.
• Only \text{mem-val}[31 : 0] of \text{mem-val} affects E2.

⇒ Only \text{mem-val}[31 : 0] of \text{mem-val} affects E0, E1, and E2.
Claim

• Only `mem-val[23 : 0]` of `mem-val` affects E0.

⇒ Only `mem-val[31 : 0]` of `mem-val` affects E0, E1, and E2.

• `mem-val[31 : 0]`
 = (mod `mem-val *2^32*)
 = (logand `mem-val *2^32-1*)
 = ...

Claim

• Only \texttt{mem-val}[23 : 0] of \texttt{mem-val} affects \texttt{E0}.
• Only \texttt{mem-val}[31 : 8] of \texttt{mem-val} affects \texttt{E1}.
• Only \texttt{mem-val}[31 : 0] of \texttt{mem-val} affects \texttt{E2}.

⇒ Only \texttt{mem-val}[31 : 0] of \texttt{mem-val} affects \texttt{E0, E1, and E2}.

⇒ The \textit{main} theorem can be transformed into the \textit{bounded} lemma by replacing \texttt{mem-val} by \texttt{mem-val}[31 : 0] in the \textit{main} theorem.
Bounded Main-2 Lemma

(defthm main-2
 (let ((mem-val (mod mem-val \(2^{32}\))))
 (implies (and (natp i02)
 (< i02 3))
 (equal (logior (mod (ash mem-val (* -8 i02)) \(2^8\))
 (* \(2^8\))
 (* \(2^8\)
 (mod (ash mem-val (+ -8 (* -8 i02)) \(2^8\))))
 (mod (ash mem-val (* -8 i02)) \(2^{16}\)))))
Bounded Main-1 Lemma

(def-gl-thm main-1
 :hyp (and (natp i02)
 (< i02 3)
 (n32p mem-val))
 :concl (equal (logior (mod (ash mem-val (* -8 i02))
 2^8)
 (* *2^8*
 (mod (ash mem-val (+ -8 (* -8 i02)))
 2^8)))
 (mod (ash mem-val (* -8 i02))
 2^16)))
 :g-bindings
 `((mem-val (:g-number ,(gl-int 0 2 33)))
 (i02 (:g-number ,(gl-int 1 2 3)))))
Bounded Main-2 Lemma

(defthm main-2
 (let ((mem-val (mod mem-val \(2\^32\))))
 (implies (and (natp i02)
 (< i02 3))
 (equal (logior (mod (ash mem-val \(-8\ i02\))
 \(2^8\))
 (* \(2^8\)
 (mod (ash mem-val (+ \(-8\ (* \(-8\ i02\)))
 \(2^8\))))
 (mod (ash mem-val \(-8\ i02\))
 \(2^16\)))))
)
)
Rewrite Rules

• $(\text{mod}\ (\text{ash}\ (\text{mod}\ \text{mem-val}\ *2^{32}*\ (*\ -8\ i02))\ *2^{8}*))$

 = $(\text{mod}\ (\text{ash}\ \text{mem-val}\ (*\ -8\ i02))\ *2^{8}*)$

 = E0
Rewrite Rules

• \((\text{mod} (\text{ash} (\text{mod} \text{mem-val} *2^{32}) (* -8 i02)) *2^{8})\)

 \(= (\text{mod} (\text{ash} \text{mem-val} (* -8 i02)) *2^{8})\)

 \(= E0\)

• \((\text{mod} (\text{ash} (\text{mod} \text{mem-val} *2^{32}) (+ -8 (* -8 i02))) *2^{8})\)

 \(= E1\)
Rewrite Rules

• \((\text{mod} \ (\text{ash} \ (\text{mod} \ \text{mem-val} \ *2^{32}) \ (* -8 \ \text{i02})) \ *2^{8*})\)

 \(= \ (\text{mod} \ (\text{ash} \ \text{mem-val} \ (* -8 \ \text{i02})) \ *2^{8*})\)

 \(= \ E0\)

• \((\text{mod} \ (\text{ash} \ (\text{mod} \ \text{mem-val} \ *2^{32}) \ (+ -8 (* -8 \ \text{i02}))) \ *2^{8*})\)

 \(= \ E1\)

• \((\text{mod} \ (\text{ash} \ (\text{mod} \ \text{mem-val} \ *2^{32}) \ (* -8 \ \text{i02})) \ *2^{16*})\)

 \(= \ E2\)
Main Theorem

(defthm main
 (let ((mem-val (mod mem-val \(2^{32}\))))
 (implies (and (natp i02)
 (< i02 3))
 (equal (logior (mod (ash mem-val \(-8 i02\)) \(2^8\))
 \(2^8\))
 \(2^8\))
 \(2^16\))
 :hints (\("Goal" :use (main-2))))
Agenda

• A technique for proving unbounded theorems with the help of GL.

• Benefit of using that technique in certifying the 32-bit physical memory model.
Benefit

• The main theorem will help to prove 16-bit read-over-write theorems in the 32-bit physical memory model without requiring the (x86p x86) hypothesis.

(defthm \texttt{rm-low-16 over wm-low-16 at diff-addrs & non-overlap}|
 (implies (and (or (< (1+ addr1) addr2)
 (< (1+ addr2) addr1))
 (n16p val)
 (x86p x86))
 ...
 (equal (\texttt{rm-low-16 addr2 (wm-low-16 addr1 val x86)})
 (\texttt{rm-low-16 addr2 x86})))))
16-Bit Read-Over-Write

(defthm |rm-low-16 over wm-low-16 at diff-addrs & non-overlap|
 (implies (and (or (< (1+ addr1) addr2)
 (< (1+ addr2) addr1))
 (n16p val)
 (x86p-x86)
 ...)
 (equal (rm-low-16 addr2 (wm-low-16 addr1 val x86))
 (rm-low-16 addr2 x86))))

• (rm-low-<i> addr2 x86) performs reading an <i>-bit value from
 addr2 in x86 memory field.
• (wm-low-<j> addr1 val x86) performs writing a <j>-bit value val into
 x86 memory field at addr1.
(deffthm rm-low-16-as-rm-low-08
 (implies (and (natp addr)
 (< (+ 1 addr) (* mem-size-in-bytes)))
 (equal (rm-low-16 addr x86)
 (let* ((byte0 (rm-low-08 addr x86))
 (byte1 (rm-low-08 (+ 1 addr) x86)))
 (logior (ash byte1 8) byte0))))
Key Checkpoint

(implies (and (natp addr)
 (< addr 4503599627370495)
 (<= (mod addr 4) 2)
 (integerp (memi (ash addr -2) x86))
 (equal (mod (ash (memi (ash addr -2) x86)
 (* -8 (mod addr 4)))
 65536)
 (logior (mod (ash (memi (ash addr -2) x86)
 (* -8 (mod addr 4)))
 256)
 (* 256
 (mod (ash (memi (ash addr -2) x86)
 (+ -8 (* -8 (mod addr 4)))
 256))))))
Problem

• The key checkpoint is the main theorem we discussed earlier, where \(i02\) is replaced with \((\text{mod } \text{addr } 4)\), and \text{mem-val} is replaced with \((\text{memi } (\text{ash } \text{addr} -2) \times 86)\).

• Although \((\text{memi } (\text{ash } \text{addr} -2) \times 86)\) returns a 32-bit value, proving \((\text{n32p } (\text{memi } (\text{ash } \text{addr} -2) \times 86))\) requires \((\times 86 \times x86)\) hypothesis by the following lemma:

\[
(\text{defthm memi-is-n32p} \\
(\text{implies } (\text{and } (\times 86 \times x86)) \\
(\text{natp } i) \\
(< i \times \text{mem-size-in-dwords}*)) \\
(\text{n32p } (\text{memi } i \times x86))))
\]
Problem with (x86p x86)

• The present of (x86p x86) hypothesis in read-over-write and write-over-write theorems causes significant slowdown when proving lemmas containing read-over-long-nested-writes as well as write-over-long-nested-writes into memory.

=> The main theorem is a solution for avoiding (x86p x86) hypothesis in read-over-write theorems.
Problem with (x86p x86)

- The present of (x86p x86) hypothesis in read-over-write and write-over-write theorems causes significant slowdown when proving lemmas containing read-over-long-nested-writes as well as write-over-long-nested-writes into memory.

=> The main theorem is a solution for avoiding (x86p x86) hypothesis in read-over-write theorems.

- How about write-over-write theorems?
Supporting Lemma

(defthm wm-low-16-as-wm-low-08-lemma-1
 (implies (and (n02p i02) (< i02 3) (n16p val) (n32p mem-val))
 (equal (logior (* (mod (ash val -8) 256)
 (expt 2 (+ 8 (* 8 i02))))
 (logand (lognot (* 255 (expt 2 (+ 8 (* 8 i02)))))
 (* (mod val 256) (expt 256 i02)))
 (logand (lognot (* 255 (expt 256 i02)))
 (lognot (* 255 (expt 2 (+ 8 (* 8 i02)))))
 mem-val))
 (logior (* val (expt 256 i02))
 (logand (lognot (* 65535 (expt 256 i02)))
 mem-val))))
Problem

• We cannot transform \texttt{wm-low-16-as-wm-low-08-lemma-1} into a bounded lemma because the following condition is not satisfied:
 – Only fixed finite bits of unbounded variables affect the computation.
Supporting Lemma

(deffthm wm-low-16-as-wm-low-08-lemma-1
 (implies (and (n02p i02) (< i02 3) (n16p val) (n32p mem-val))
 (equal (logior (* (mod (ash val -8) 256)
 (expt 2 (+ 8 (* 8 i02))))
 (logand (lognot (* 255 (expt 2 (+ 8 (* 8 i02))))))
 (* (mod val 256) (expt 256 i02)))
 (logand (lognot (* 255 (expt 256 i02)))
 (lognot (* 255 (expt 2 (+ 8 (* 8 i02)))) mem-val))
 (logior (* val (expt 256 i02))
 (logand (lognot (* 65535 (expt 256 i02)))
 mem-val))))
Strategy

(deftm wm-low-16-as-wm-low-08-lemma-1
 (implies (and (n02p i02) (< i02 3) (n16p val) (n32p mem-val))
 (equal (logior (* (mod (ash val -8) 256)
 (expt 2 (+ 8 (* 8 i02))))
 (logand (lognot (* 255 (expt 2 (+ 8 (* 8 i02))))
 (* (mod val 256) (expt 256 i02)))
 (logand (lognot (* 255 (expt 256 i02)))
 (lognot (* 255 (expt 2 (+ 8 (* 8 i02))))
 mem-val))
 (logior (* val (expt 256 i02))
 (logand (lognot (* 65535 (expt 256 i02)))
 mem-val)))))
Strategy

(defthm wm-low-16-as-wm-low-08-lemma-1
 (implies (and (n02p i02) (< i02 3) (n16p val) (n32p mem-val))
 (equal (logior (* (mod (ash val -8) 256)
 (expt 2 (+ 8 (* 8 i02))))
 (logand (lognot (* 255 (expt 2 (+ 8 (* 8 i02))))
 (* (mod val 256) (expt 256 i02))))
 (logand (lognot (* 255 (expt 256 i02)))
 (lognot (* 255 (expt 2 (+ 8 (* 8 i02)))) mem-val))
 (logior (* val (expt 256 i02))
 (logand (lognot (* 65535 (expt 256 i02))) mem-val)))))
Timing Results

The experiments below were performed on “eld” using /projects/acl2/svn-recent/ccl-saved_acl2hp

<table>
<thead>
<tr>
<th>Certification time</th>
<th>8-bit</th>
<th>32-bit</th>
<th>32-bit (x86p x86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemma loop-effects</td>
<td>29.90s</td>
<td>32.83s</td>
<td>498.17s</td>
</tr>
<tr>
<td>Lemma prime-effects</td>
<td>20.80s</td>
<td>22.84s</td>
<td>475.02s</td>
</tr>
<tr>
<td>Whole model</td>
<td>32:32.29s</td>
<td>34:35.85s</td>
<td>43:42.12s</td>
</tr>
</tbody>
</table>

Lemma loop-effects and prime-effects contain 8-bit read-over-80-nested-writes.
Questions!