
Testing GPU Memory Models

Daniel Poetzl

Joint work with

Jade Alglave (UCL), Mark Batty (Cambridge), Alastair Donaldson
(Imperial), Ganesh Gopalakrishnan (Utah), Tyler Sorensen (Utah),

John Wickerson (Imperial)

2/31

Outline

1. Introduction

2. GPU Architectures

3. Weak Memory 101

4. Testing GPU Memory Models

5. Results

3/31

Introduction

4/31

Graphics Processing Units (GPUs)

I GPUs have traditionally been
designed to accelerate graphics
applications

I 3D games
I Video processing

I General-purpose computing on GPUs (GPGPU) is becoming
increasingly widespread

I Regular applications:
I Weather forecasting
I Brute-force password cracking

I Irregular applications:
I Graph traversal

I Numerous papers are published each year that aim to
accelerate traditional algorithms using GPUs

5/31

Graphics Processing Units (GPUs)

GPUs have found their way into many types of computer systems:

I Desktops and Laptops

I Game consoles
I Mobile devices:

I iPhone 5S
I Samsung Galaxy S

I Cars:
I Audi self-driving car

I Video processing
I Safety-critical (!)

I Tesla Motors Model S
I Infotainment system

I Supercomputers

6/31

GPUs in Supercomputers

I Green500 list of most
energy-efficient supercomputers

I All top ten places are occupied by
systems using GPUs

Rank GFLOPS/W Name Site
1 4.5 Tsubame Tokyo
2 3.6 Wilkes Cambridge
3 3.5 HA-PACS Tsukuba
4 3.2 Piz Daint Lugano
5 3.1 Romeo Champagne-Ardenne

I For comparison:
I Tianhe-2 (Guangzhou, 1st in Top500): 1.9 GFLOPS/W
I Stampede (Austin, 7th in Top500): 1.1 GFLOPS/W

7/31

GPU Research

I The number of publications/year on GPU programming has
continuously grown over the last years (Source: Google
Scholar):

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

0.5

1

1.5

2

2.5

·104
N

u
m

b
er

of
P

u
b

lic
at

io
n

s

8/31

GPU architectures

9/31

GPU Architectures
Nvidia’s Maxwell (2014)

PE1 PE2 . . . PEn

Warp Scheduler

Processing Block

PE1 PE2 . . . PEn

Warp Scheduler

Processing Block

L1 Cache

PE1 PE2 . . . PEn

Warp Scheduler

Processing Block

PE1 PE2 . . . PEn

Warp Scheduler

Processing Block

L1 Cache

Shared Memory

Streaming Multiprocessor (SM)

L2 Cache

DRAM

x 5

10/31

Programming Model
CUDA

I CUDA is Nvidia’s framework for general-purpose computing
on GPUs

I Threads are hierarchically organized:

Kernel

Block

Warp

T0
. . . T31

Warp

T32
. . . T63

Block

Warp

T64
. . . T95

Warp

T96
. . .T127

I Different memory spaces: global, shared, local, constant,
texture, parameter

11/31

Vector Addition
CPU implementation

I Summing two vectors of size N in C:

void add(int *a, int *b, int *c) {

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

}

I Runtime: O(N)

12/31

Vector Addition
CUDA C implementation

I Summing two vectors of size N in CUDA C:

__global__ void add(int *a, int *b, int *c) {

int tid = blockIdx.x;

if (tid < N)

c[tid] = a[tid] + b[tid];

}

I If number of processing elements is greater or equal to N

I Runtime: O(1)

13/31

CPUs vs. GPUs

I Key differences between CPUs and GPUs:

CPUs GPUs
Cores Few Many

Core complexity High Low

Caches Large Small

Memory bandwidth Low High

Context switches Slow Fast

Explicit concurrency hierarchy No Yes

Different memory spaces No Yes

14/31

Weak Memory 101

15/31

Interleaved Execution

I A simple model of concurrency is Lamport’s sequential
consistency (SC), i. e. interleaved execution

1 // I n i t
2 data = f l a g = 0

1 // Producer
2 data = 0x7f
3 flag = 1

1 // Consumer
2 while (flag == 0) {}
3 assert(data != 0)

15/31

Interleaved Execution

I A simple model of concurrency is Lamport’s sequential
consistency (SC), i. e. interleaved execution

1 // I n i t
2 data = f l a g = 0

1 // Producer
2 data = 0x7f
3 flag = 1

1 // Consumer
2 while (flag == 0) {}
3 assert(data != 0)

I Example interleaving:

1 data = 0x7f
1 flag == 0 ?

2 flag = 1
1 flag == 0 ?
2 assert(data != 0)

I Assertion is satisfied on all interleavings.

15/31

Interleaved Execution

I A simple model of concurrency is Lamport’s sequential
consistency (SC), i. e. interleaved execution

1 // I n i t
2 data = f l a g = 0

1 // Producer
2 data = 0x7f
3 flag = 1

1 // Consumer
2 while (flag == 0) {}
3 assert(data != 0)

I Multi- and manycore processors exhibit weak memory
consistency:

I Out-of-order execution
I Speculative execution
I Caching

I Assertion can fail on those systems!

I Synchronization algorithms (Dekker, Peterson, . . .) we’ve
been taught in school do not work on multicore systems

16/31

Weak Memory Consistency
Caching

Core 0

Execution

Cache

Core 1

Execution

CacheMemory

data : 0

flag : 0

// Init
flag = data = 0

// Producer
data = 0x7f
flag = 1

// Consumer
while (flag == 0) {}
assert(data != 0)

Cache coherency protocol commits flag before data to main memory.

16/31

Weak Memory Consistency
Caching

Core 0

Execution

Cache

data : 0x7f

Core 1

Execution

CacheMemory

data : 0

flag : 0

// Init
flag = data = 0

// Producer
data = 0x7f
flag = 1

// Consumer
while (flag == 0) {}
assert(data != 0)

Cache coherency protocol commits flag before data to main memory.

16/31

Weak Memory Consistency
Caching

Core 0

Execution

Cache

data : 0x7f

flag : 1

Core 1

Execution

CacheMemory

data : 0

flag : 0

// Init
flag = data = 0

// Producer
data = 0x7f
flag = 1

// Consumer
while (flag == 0) {}
assert(data != 0)

Cache coherency protocol commits flag before data to main memory.

16/31

Weak Memory Consistency
Caching

Core 0

Execution

Cache

data : 0x7f

flag : 1

Core 1

Execution

CacheMemory

data : 0

flag : 1

// Init
flag = data = 0

// Producer
data = 0x7f
flag = 1

// Consumer
while (flag == 0) {}
assert(data != 0)

Cache coherency protocol commits flag before data to main memory.

16/31

Weak Memory Consistency
Caching

Core 0

Execution

Cache

data : 0x7f

flag : 1

Core 1

Execution

Cache

flag : 1

Memory

data : 0

flag : 1

// Init
flag = data = 0

// Producer
data = 0x7f
flag = 1

// Consumer
while (flag == 0) {}
assert(data != 0)

Cache coherency protocol commits flag before data to main memory.

16/31

Weak Memory Consistency
Caching

Core 0

Execution

Cache

data : 0x7f

flag : 1

Core 1

Execution

Cache

data : 0

flag : 1

Memory

data : 0

flag : 1

// Init
flag = data = 0

// Producer
data = 0x7f
flag = 1

// Consumer
while (flag == 0) {}
assert(data != 0) �

Cache coherency protocol commits flag before data to main memory.

17/31

Memory Barriers

I CPUs/GPUs provide memory barrier instructions to enforce
ordering constraints on memory accesses.

I Expensive: 100s of clock cycles

I Different types of barriers

I Fix for the example (on Nvidia GPUs; assuming the producer
and consumer are in different blocks):

1 // Producer
2 data = 0 x 7 f
3 asm (”membar.gl”)
4 f l a g = 1

1 // Consumer
2 whi le (f l a g == 0) {}
3 asm (”membar.gl”)
4 a s s e r t (data != 0)

18/31

Axiomatic Memory Models

I Executions are not represented as interleavings, but as
execution graphs:

1 data = 0x7f
1 flag == 0 ?

2 flag = 1
1 flag == 0 ?
2 assert(data != 0)

data = 0x7f

flag = 1

read flag: 1

read data: 0

po po

rf
fr

I An execution graph is acyclic if and only if it corresponds to
an interleaving

I Axiomatic memory models: Give a set of formal rules defining
which executions are possible on a certain architecture

I Full details:
I Herding Cats. Alglave et al. TOPLAS ’14

19/31

Testing GPU Memory Models

20/31

Weak Memory Models

Which behaviors can be observed when threads concurrently access
shared memory?

I As we’ve seen, we cannot expect sequential consistency
(interleaved execution) on GPUs

I But what exactly can we expect?
I Consult the manual: prose, ambiguous, little detail, sometimes

plain wrong
I We want a formal memory model!

I Formal memory model based on:
I Vendor documentation
I Testing
I Discussion with industry contacts

20/31

Weak Memory Models

Which behaviors can be observed when threads concurrently access
shared memory?

I As we’ve seen, we cannot expect sequential consistency
(interleaved execution) on GPUs

I But what exactly can we expect?
I Consult the manual: prose, ambiguous, little detail, sometimes

plain wrong
I We want a formal memory model!

I Formal memory model based on:
I Vendor documentation
I Testing
I Discussion with industry contacts

21/31

Test Framework

I We extended the diy and litmus tools to generate and run
GPU litmus tests

I diy to generate tests
I Short assembly code snippets called litmus tests
I Test generation based on an axiomatic modeling framework

I litmus to run tests
I Runs tests produced by diy many times
I Adds additional code to create noise (“incantations”) to make

weak behaviors appear

diy litmus tests litmus

CUDA code

OpenCL code

22/31

Test Generation
diy

I Executions are represented as directed graphs

I Non-SC executions have cycles

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Which non-SC executions are possible on a certain chip?

I Key idea of diy:
I Enumerate non-SC executions (i. e. cyclic execution graphs)
I From each such graph, generate a test such that one of its

executions is the execution from which it was generated

22/31

Test Generation
diy

I Executions are represented as directed graphs

I Non-SC executions have cycles

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Which non-SC executions are possible on a certain chip?

I Key idea of diy:
I Enumerate non-SC executions (i. e. cyclic execution graphs)
I From each such graph, generate a test such that one of its

executions is the execution from which it was generated

23/31

Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

23/31

Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

r1 = x

23/31

Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

r1 = x
y = 1

23/31

Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

r1 = x r2 = y
y = 1

23/31

Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

r1 = x r2 = y
y = 1 x = 1

23/31

Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

r1 = x r2 = y
y = 1 x = 1

r1 == 1

23/31

Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

r1 = x r2 = y
y = 1 x = 1

r1 == 1 ∧ r2 == 1

24/31

Running Tests
litmus

I Now that we can generate tests, we want to run them on the
hardware!

I To make the weak behaviors appear, we need “incantations”:
I Put variables on different cache lines
I Noise maker threads that write random memory locations
I Random launch parameters
I Trigger bank conflicts
I . . .

25/31

Running Tests
Bank Conflicts

I Memory is divided into banks
I Banks are interleaved, not contiguous
I Accesses to the same bank are serialized

I No bank conflict:

0x0 0

0x1 1

0x2 2

0x3 3

0x4 0

0x5 1

0x6 2

0x7 3

Thread 0

Thread 1

Thread 2

Thread 3

Address Bank

25/31

Running Tests
Bank Conflicts

I Memory is divided into banks
I Banks are interleaved, not contiguous
I Accesses to the same bank are serialized

I Bank conflict:

0x0 0

0x1 1

0x2 2

0x3 3

0x4 0

0x5 1

0x6 2

0x7 3

Thread 0

Thread 1

Thread 2

Thread 3

Address Bank

26/31

Running Tests
Bank Conflicts

I Accesses to the same bank are serialized

I Accesses can be delayed due to a bank conflict

P0 P1

x = 1 r3 = y
y = 1 r4 = x

r3 == 1 ∧ r4 == 0

I If x = 1 has a bank conflict, it may be delayed leading to y =
1 being executed first

I The order in which accesses to the same bank are serialized is
unspecified

27/31

Test Results

28/31

Read-Read-Coherence

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0:

P0 P1

x = 1 r1 = x
r2 = x

r1 == 1 ∧ r2 == 0

28/31

Read-Read-Coherence

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0:

P0 P1

x = 1 r1 = x
r2 = x

r1 == 1 ∧ r2 == 0

I Running this test 100,000 times with litmus on the GeForce
GTX 660 yields the following histogram:

Test CoRR Al lowed
Histogram (4 s t a t e s)
59875 : >1: r 0 =0; 1 : r 2 =0;
828 ∗>1: r 0 =1; 1 : r 2 =0;
2422 : >1: r 0 =0; 1 : r 2 =1;
36875 : >1: r 0 =1; 1 : r 2 =1;

28/31

Read-Read-Coherence

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0:

P0 P1

x = 1 r1 = x
r2 = x

r1 == 1 ∧ r2 == 0

I Behavior is considered a bug:
I Does not guarantee what is typically required by programming

language standards (OpenCL, C++11)
I OpenCL and C++11 require that there is a total order on all

writes to a memory location (coherence order)
I No thread shall read values that contradict this order

I Bug occured in all Nvidia chips of the Fermi and Kepler
generations we tested

I Fixed in the new Maxwell architecture

28/31

Read-Read-Coherence

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0:

P0 P1

x = 1 r1 = x
r2 = x

r1 == 1 ∧ r2 == 0

I GPUs are fairly deterministic (compared to CPUs)

I By fixing the random test parameters, we can make the bug
deterministically show up (on Fermi and Kepler GPUs):

Test CoRR Al lowed
Histogram (1 s t a t e)
100000 ∗>1: r 0 =1; 1 : r 2 =0;

29/31

Compare-and-swap
Mutex idiom

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0 and mutex = 1:

P0 P1

x = 1 b = cas(&mutex, 0, 1)
membar.gl r = x
mutex = 0

b == true ∧ r == 0

I P0: Write data to x , then unlock the mutex

I P1: Attempt to lock the mutex; read x if successful
I Can P1 read a stale value from x when the CAS succeeds?

I Yes! (on Fermi and Kepler)
I CAS does not imply a memory fence on Nvidia GPUs
I Several papers assume this and are thus wrong (among them

the textbook CUDA by Example)

29/31

Compare-and-swap
Mutex idiom

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0 and mutex = 1:

P0 P1

x = 1 b = cas(&mutex, 0, 1)
membar.gl r = x
mutex = 0

b == true ∧ r == 0

I P0: Write data to x , then unlock the mutex

I P1: Attempt to lock the mutex; read x if successful
I Can P1 read a stale value from x when the CAS succeeds?

I Yes! (on Fermi and Kepler)
I CAS does not imply a memory fence on Nvidia GPUs
I Several papers assume this and are thus wrong (among them

the textbook CUDA by Example)

30/31

Summary

I diy to generate GPU litmus tests

I litmus to run GPU litmus tests

I Testing the hardware is a necessary first step towards building
a formal memory model:

I Documentation is insufficient:
I ambiguous
I little detail
I sometimes wrong

I Side effect: We find bugs in the hardware

I Test results serve as a basis for communication with industry
contacts

31/31

Thank you!

