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Introduction
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Graphics Processing Units (GPUs)

I GPUs have traditionally been
designed to accelerate graphics
applications

I 3D games
I Video processing

I General-purpose computing on GPUs (GPGPU) is becoming
increasingly widespread

I Regular applications:
I Weather forecasting
I Brute-force password cracking

I Irregular applications:
I Graph traversal

I Numerous papers are published each year that aim to
accelerate traditional algorithms using GPUs
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Graphics Processing Units (GPUs)

GPUs have found their way into many types of computer systems:

I Desktops and Laptops

I Game consoles
I Mobile devices:

I iPhone 5S
I Samsung Galaxy S

I Cars:
I Audi self-driving car

I Video processing
I Safety-critical (!)

I Tesla Motors Model S
I Infotainment system

I Supercomputers
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GPUs in Supercomputers

I Green500 list of most
energy-efficient supercomputers

I All top ten places are occupied by
systems using GPUs

Rank GFLOPS/W Name Site
1 4.5 Tsubame Tokyo
2 3.6 Wilkes Cambridge
3 3.5 HA-PACS Tsukuba
4 3.2 Piz Daint Lugano
5 3.1 Romeo Champagne-Ardenne

I For comparison:
I Tianhe-2 (Guangzhou, 1st in Top500): 1.9 GFLOPS/W
I Stampede (Austin, 7th in Top500): 1.1 GFLOPS/W
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GPU Research

I The number of publications/year on GPU programming has
continuously grown over the last years (Source: Google
Scholar):
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GPU architectures
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GPU Architectures
Nvidia’s Maxwell (2014)
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Programming Model
CUDA

I CUDA is Nvidia’s framework for general-purpose computing
on GPUs

I Threads are hierarchically organized:

Kernel

Block

Warp

T0
. . . T31

Warp

T32
. . . T63

Block

Warp

T64
. . . T95

Warp

T96
. . .T127

I Different memory spaces: global, shared, local, constant,
texture, parameter
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Vector Addition
CPU implementation

I Summing two vectors of size N in C:

void add(int *a, int *b, int *c) {

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

}

I Runtime: O(N)
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Vector Addition
CUDA C implementation

I Summing two vectors of size N in CUDA C:

__global__ void add(int *a, int *b, int *c) {

int tid = blockIdx.x;

if (tid < N)

c[tid] = a[tid] + b[tid];

}

I If number of processing elements is greater or equal to N

I Runtime: O(1)
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CPUs vs. GPUs

I Key differences between CPUs and GPUs:

CPUs GPUs
Cores Few Many

Core complexity High Low

Caches Large Small

Memory bandwidth Low High

Context switches Slow Fast

Explicit concurrency hierarchy No Yes

Different memory spaces No Yes
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Weak Memory 101
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Interleaved Execution

I A simple model of concurrency is Lamport’s sequential
consistency (SC), i. e. interleaved execution

1 // I n i t
2 data = f l a g = 0

1 // Producer
2 data = 0x7f
3 flag = 1

1 // Consumer
2 while (flag == 0) {}
3 assert(data != 0)
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Interleaved Execution

I A simple model of concurrency is Lamport’s sequential
consistency (SC), i. e. interleaved execution

1 // I n i t
2 data = f l a g = 0

1 // Producer
2 data = 0x7f
3 flag = 1

1 // Consumer
2 while (flag == 0) {}
3 assert(data != 0)

I Example interleaving:

1 data = 0x7f
1 flag == 0 ?

2 flag = 1
1 flag == 0 ?
2 assert(data != 0)

I Assertion is satisfied on all interleavings.
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Interleaved Execution

I A simple model of concurrency is Lamport’s sequential
consistency (SC), i. e. interleaved execution

1 // I n i t
2 data = f l a g = 0

1 // Producer
2 data = 0x7f
3 flag = 1

1 // Consumer
2 while (flag == 0) {}
3 assert(data != 0)

I Multi- and manycore processors exhibit weak memory
consistency:

I Out-of-order execution
I Speculative execution
I Caching

I Assertion can fail on those systems!

I Synchronization algorithms (Dekker, Peterson, . . . ) we’ve
been taught in school do not work on multicore systems
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Weak Memory Consistency
Caching

Core 0

Execution

Cache

Core 1

Execution

CacheMemory

data : 0

flag : 0

// Init
flag = data = 0

// Producer
data = 0x7f
flag = 1

// Consumer
while (flag == 0) {}
assert(data != 0)

Cache coherency protocol commits flag before data to main memory.
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Weak Memory Consistency
Caching
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17/31

Memory Barriers

I CPUs/GPUs provide memory barrier instructions to enforce
ordering constraints on memory accesses.

I Expensive: 100s of clock cycles

I Different types of barriers

I Fix for the example (on Nvidia GPUs; assuming the producer
and consumer are in different blocks):

1 // Producer
2 data = 0 x 7 f
3 asm (”membar.gl”)
4 f l a g = 1

1 // Consumer
2 whi le ( f l a g == 0) {}
3 asm (”membar.gl”)
4 a s s e r t ( data != 0)
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Axiomatic Memory Models

I Executions are not represented as interleavings, but as
execution graphs:

1 data = 0x7f
1 flag == 0 ?

2 flag = 1
1 flag == 0 ?
2 assert(data != 0)

data = 0x7f

flag = 1

read flag: 1

read data: 0

po po

rf
fr

I An execution graph is acyclic if and only if it corresponds to
an interleaving

I Axiomatic memory models: Give a set of formal rules defining
which executions are possible on a certain architecture

I Full details:
I Herding Cats. Alglave et al. TOPLAS ’14
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Testing GPU Memory Models
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Weak Memory Models

Which behaviors can be observed when threads concurrently access
shared memory?

I As we’ve seen, we cannot expect sequential consistency
(interleaved execution) on GPUs

I But what exactly can we expect?
I Consult the manual: prose, ambiguous, little detail, sometimes

plain wrong
I We want a formal memory model!

I Formal memory model based on:
I Vendor documentation
I Testing
I Discussion with industry contacts
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Test Framework

I We extended the diy and litmus tools to generate and run
GPU litmus tests

I diy to generate tests
I Short assembly code snippets called litmus tests
I Test generation based on an axiomatic modeling framework

I litmus to run tests
I Runs tests produced by diy many times
I Adds additional code to create noise (“incantations”) to make

weak behaviors appear

diy litmus tests litmus

CUDA code

OpenCL code
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Test Generation
diy

I Executions are represented as directed graphs

I Non-SC executions have cycles

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Which non-SC executions are possible on a certain chip?

I Key idea of diy:
I Enumerate non-SC executions (i. e. cyclic execution graphs)
I From each such graph, generate a test such that one of its

executions is the execution from which it was generated
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Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1
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Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

r1 = x
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Test Generation
Example

I Execution graph:
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Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

r1 = x r2 = y
y = 1 x = 1

r1 == 1
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Test Generation
Example

I Execution graph:

R x 1

W y 1

R y 1

W x 1

po po

rf
rf

I Generated litmus test:

P0 P1

r1 = x r2 = y
y = 1 x = 1

r1 == 1 ∧ r2 == 1
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Running Tests
litmus

I Now that we can generate tests, we want to run them on the
hardware!

I To make the weak behaviors appear, we need “incantations”:
I Put variables on different cache lines
I Noise maker threads that write random memory locations
I Random launch parameters
I Trigger bank conflicts
I . . .
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Running Tests
Bank Conflicts

I Memory is divided into banks
I Banks are interleaved, not contiguous
I Accesses to the same bank are serialized

I No bank conflict:

0x0 0

0x1 1

0x2 2

0x3 3

0x4 0

0x5 1

0x6 2

0x7 3

Thread 0

Thread 1

Thread 2

Thread 3

Address Bank
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Running Tests
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I Memory is divided into banks
I Banks are interleaved, not contiguous
I Accesses to the same bank are serialized
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0x0 0

0x1 1

0x2 2

0x3 3
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0x5 1

0x6 2
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Thread 0

Thread 1

Thread 2

Thread 3
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Running Tests
Bank Conflicts

I Accesses to the same bank are serialized

I Accesses can be delayed due to a bank conflict

P0 P1

x = 1 r3 = y
y = 1 r4 = x

r3 == 1 ∧ r4 == 0

I If x = 1 has a bank conflict, it may be delayed leading to y =
1 being executed first

I The order in which accesses to the same bank are serialized is
unspecified
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Test Results
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Read-Read-Coherence

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0:

P0 P1

x = 1 r1 = x
r2 = x

r1 == 1 ∧ r2 == 0
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Read-Read-Coherence

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0:

P0 P1

x = 1 r1 = x
r2 = x

r1 == 1 ∧ r2 == 0

I Running this test 100,000 times with litmus on the GeForce
GTX 660 yields the following histogram:

Test CoRR Al lowed
Histogram (4 s t a t e s )
59875 : >1: r 0 =0; 1 : r 2 =0;
828 ∗>1: r 0 =1; 1 : r 2 =0;
2422 : >1: r 0 =0; 1 : r 2 =1;
36875 : >1: r 0 =1; 1 : r 2 =1;
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Read-Read-Coherence

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0:

P0 P1

x = 1 r1 = x
r2 = x

r1 == 1 ∧ r2 == 0

I Behavior is considered a bug:
I Does not guarantee what is typically required by programming

language standards (OpenCL, C++11)
I OpenCL and C++11 require that there is a total order on all

writes to a memory location (coherence order)
I No thread shall read values that contradict this order

I Bug occured in all Nvidia chips of the Fermi and Kepler
generations we tested

I Fixed in the new Maxwell architecture
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Read-Read-Coherence

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0:

P0 P1

x = 1 r1 = x
r2 = x

r1 == 1 ∧ r2 == 0

I GPUs are fairly deterministic (compared to CPUs)

I By fixing the random test parameters, we can make the bug
deterministically show up (on Fermi and Kepler GPUs):

Test CoRR Al lowed
Histogram (1 s t a t e )
100000 ∗>1: r 0 =1; 1 : r 2 =0;
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Compare-and-swap
Mutex idiom

I Consider the following test, with P0 and P1 in different
blocks, and initially x = 0 and mutex = 1:

P0 P1

x = 1 b = cas(&mutex, 0, 1)
membar.gl r = x
mutex = 0

b == true ∧ r == 0

I P0: Write data to x , then unlock the mutex

I P1: Attempt to lock the mutex; read x if successful
I Can P1 read a stale value from x when the CAS succeeds?

I Yes! (on Fermi and Kepler)
I CAS does not imply a memory fence on Nvidia GPUs
I Several papers assume this and are thus wrong (among them

the textbook CUDA by Example)
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Summary

I diy to generate GPU litmus tests

I litmus to run GPU litmus tests

I Testing the hardware is a necessary first step towards building
a formal memory model:

I Documentation is insufficient:
I ambiguous
I little detail
I sometimes wrong

I Side effect: We find bugs in the hardware

I Test results serve as a basis for communication with industry
contacts
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Thank you!


