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Motivation

Satisfiability solvers are used in amazing ways...
I Hardware verification: Centaur x86 verification
I Combinatorial problems:

I Ramsey numbers and van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]

I Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]

I Erdős Discrepancy Problem [Konev and Lisitsa, 2014]

..., but satisfiability solvers have errors.
I Documented bugs in SAT, SMT, and QBF solvers

[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Implementation errors often imply conceptual errors
I Symmetry breaking, which is crucial to solve combinatorial
problems, cannot be validated with existing methods
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Symmetry Breaking Tool Chain

1. The input formula is transformed into a clause-literal graph;
2. A symmetry detection tool extracts symmetries from the graph;
3. Symmetry-breaking predicates are added to the input formula;
4. The symmetry-free formula is solved using a SAT solver.

input CNF
formula F

1 : transformer

clause-literal
graph G

2 : saucy

symmetries

3 : predicates

symmetry-free
formula F ′

4 : SAT solver

SAT solving
result

A bug in any of these tools may result in incorrect results

Most observed bugs during SAT Competition 2013 were caused by tools 1-3
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From Resolution to Clausal DRAT Proofs

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]
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Main Contribution

We present a method to express the addition of
symmetry-breaking predicates in DRAT, a clausal proof format
supported by top-tier solvers.

Our method allows, for the first time, validation of SAT solver
results obtained via symmetry breaking, thereby validating the
results of symmetry extraction tools as well.
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Symmetry Breaking
in SAT Solvers
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Solution Symmetry

A truth assignment τ is a set of non-complementary literals. τ
satisfies formula F if it contains a literal for each clause in F .

A signed variable permutation π := (x1, . . . , xn)(p1, . . . , pn)
maps literals xi onto pi and x̄i onto p̄i with pi either equal to
xj or x̄j and var(pi) 6= var(pj) if i 6= j with 1 ≤ i , j ≤ n.

Example

I Let τ = {x , ȳ , z} and π = (x , y , z)(y , z̄ , x̄).
I π(τ) = {y , z , x̄}

T (F ): the set of satisfying truth assignments for formula F .

A solution symmetry σ for a given formula F is a signed
variable permutation such that ∀τ.τ ∈ T (F )→ σ(τ) ∈ T (F )
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Solution Symmetries and Non-Monochromatic Rectangles
A solution symmetry σ for a given formula F is a signed
variable permutation such that ∀τ.τ ∈ T (F )→ σ(τ) ∈ T (F )

Color the cells of a 4x4 grid either orange (0) or black (1)
such that all rectangles have non-monochromatic corners.

This problem contains many solutions symmetries, for example
σ1 = (x1, . . . , x16)(x̄1, . . . x̄16), σ2 = (x1, . . . , x16)(x16, . . . , x1)

x13 x14 x15 x16

x9 x10 x11 x12

x5 x6 x7 x8

x1 x2 x3 x4

τ

x13 x14 x15 x16

x9 x10 x11 x12

x5 x6 x7 x8

x1 x2 x3 x4

σ1(τ)

x13 x14 x15 x16

x9 x10 x11 x12

x5 x6 x7 x8

x1 x2 x3 x4

σ2(τ)
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Breaking a Solution Symmetry

A solution symmetry σ for a given formula F is a signed
variable permutation such that ∀τ.τ ∈ T (F )→ σ(τ) ∈ T (F )

Let σ = (x1, . . . , xn)(p1, . . . , pn). A symmetry-breaking
predicate Bσ is the constraint x1, . . . , xn ≤ p1, . . . , pn.

Example (using σ = (x1, x2)(x2, x1))
I Bσ : x1, x2 ≤ x2, x1, which blocks τ = {x1, x̄2}.
I in clausal form: (x̄1 ∨ x2).

Symmetry breaking: if F contains symmetry σ, add Bσ to F .

If satisfiable formula F contains a symmetry σ then F 6|= Bσ.

Central idea: transform F into an equi-satisfiable formula F ′

by replacing literals l with new literals l ′, such that F ′ |= B ′
σ.
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Example Formulas: Unavoidable Subgraphs

A connected undirected graph G is an unavoidable subgraph
of clique K of order n if any red/blue edge-coloring of the
edges of K contains G either in red or in blue.

Ramsey Number R(k): What
is the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 49

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.
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Example formula: an unavoidable path of two edges
Consider the formula below — which expresses the statement
whether path of two edges unavoidable in a clique of order 3:

F :=

C1︷ ︸︸ ︷
(x∨y)∧

C2︷ ︸︸ ︷
(x∨z)∧

C3︷ ︸︸ ︷
(y∨z)∧

C4︷ ︸︸ ︷
(x̄∨ȳ)∧

C5︷ ︸︸ ︷
(x̄∨z̄)∧

C6︷ ︸︸ ︷
(ȳ∨z̄)

A clause-literal graph has a vertex for each clause and literal,
and edges for each literal occurrence connecting the literal and
clause vertex. Also, two complementary literals are connected.

C1 C2 C3

x x̄ y ȳ z z̄

C4 C5 C6

C6 C4 C5

ȳ y z̄ z x̄ x

C3 C1 C2

Symmetry: (x , y , z)(ȳ , z̄ , x̄) is an edge-preserving bijection
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Convert Symmetries into Symmetry-Breaking Predicates

A symmetry σ = (x1, . . . , xn)(p1, . . . , pn) of a CNF formula F
is an edge-preserving bijection of the clause-literal graph of F ,
that maps literals xi onto pi and x̄i onto p̄i with i ∈ {1..n}.

Given a CNF formula F . Let τ be a satisfying truth
assignment for F and σ a symmetry for F , then σ(τ) is also a
satisfying truth assignment for F .

Symmetry σ = (x1, . . . , xn)(p1, . . . , pn) for F can be broken by
adding a symmetry-breaking predicate: x1, . . . , xn ≤ p1, . . . , pn.

(x̄1 ∨ p1) ∧ (x̄1 ∨ x̄2 ∨ p2) ∧ (p1 ∨ x̄2 ∨ p2) ∧
(x̄1 ∨ x̄2 ∨ x̄3 ∨ p3) ∧ (x̄1 ∨ p2 ∨ x̄3 ∨ p3) ∧
(p1 ∨ x̄2 ∨ x̄3 ∨ p3) ∧ (p1 ∨ p2 ∨ x̄3 ∨ p3) ∧ . . .

Why are we allowed to add these clauses?
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Breaking a Single Symmetry
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Clausal Proof System

F

Learn: add a clause
* Preserve satisfiability

Forget: remove a clause
* Preserve unsatisfiablity

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init
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Resolution Asymmetric Tautology (RAT) [IJCAR 2012]

Given a clause C = (l1 ∨ · · · ∨ lk) and a CNF formula F :
I C denotes the conjunction of its negated literals (l̄1) ∧ · · · ∧ (l̄k)

I F `1 ε denotes that unit propagation on F derives a conflict
I C is an asymmetric tautology w.r.t. F if and only if F ∧ C `1 ε

I C is a resolution asymmetric tautology on l ∈ C w.r.t. F iff for all
resolvents C � D with D ∈ F and l̄ ∈ D holds that F ∧ C � D `1 ε

Example
Consider the formula F = (a ∨ c) ∧ (b̄ ∨ c̄) ∧ (b ∨ d):

I The clause (a ∨ d) is an asymmetric tautology w.r.t. F
I The clause (b ∨ c) is an resolution asymmetric tautology w.r.t. F

Theorem: Given a formula F and a clause C having RAT with
respect to F , then F and F ∪ {C} are equi-satisfiable.
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Clausal Proof System using RAT addition and deletion

F

Learn: add a clause
* Clause C has RAT w.r.t. F

Forget: remove a clause
* Clause C has RAT w.r.t. F \{C}

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init
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Expressing a Symmetry Breaking Predicate in DRAT (1)

Introduce auxiliary variables using σ = (x1, . . . , xn)(p1, . . . , pn)

I The swap variable s := x1, . . . , xn > p1, . . . , pn

I The prime variables x ′i :=

{
pi if s set to true
xi otherwise

Example (using σ = (x1, x2)(x2, x1))

I add(s ∨ x̄1 ∨ x2), add(s̄ ∨ x1), add(s̄ ∨ x̄2)

I add(x ′1 ∨ s̄ ∨ x̄2), add(x̄ ′1 ∨ s̄ ∨ x2), add(x ′1 ∨ s ∨ x̄1),
add(x̄ ′1 ∨ s ∨ x1)

Add symmetry-breaking predicate using the prime variables:
I Add the constraint x ′1, . . . , x

′
n ≤ p′1, . . . , p

′
n

Example (using σ = (x1, x2)(x2, x1))

I add(s ∨ x̄ ′1 ∨ x ′2), add(x̄ ′1 ∨ x ′2), delete(s ∨ x̄ ′1 ∨ x ′2)
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Expressing a Symmetry Breaking Predicate in DRAT (2)

Redefine involved clauses
I For each clause C ∈ F that contains at least one literal l
which occurs in the symmetry, add a clause C ′ which is a
copy of C with literals l ′ for each such l .

I Remove the original involved clauses.

Example (using σ = (x1, x2)(x2, x1) and C = (x2 ∨ x̄3))

I add(s ∨ x ′2 ∨ x̄3), add(x ′2 ∨ x̄3), delete(s ∨ x ′2 ∨ x̄3),
delete(x2 ∨ x̄3)

Optionally remove all definitions of the first step
I After this step, the resulting formula is equal to the
original formula extended with the symmetry-breaking
predicate (modulo variable renaming).

I This step reduces validation costs significantly.
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Breaking Multiple Symmetries
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Difficulties due to Multiple Symmetries: Example

Consider the formula F = (x1 ∨ x2)∧ (x1 ∨ x3)∨ (x2 ∨ x3)∨ (x̄1 ∨ x̄2 ∨ x̄3)
and its two symmetries: σ1 = (x1, x2)(x2, x1) and σ2 = (x2, x3)(x3, x2).

Symmetry breaking will add the predicates (x̄1 ∨ x2) and (x̄2 ∨ x3). Hence
the number of predicates is linear in the number of symmetries.

Breaking σ1 using the method shown results in the formula
F ′ = (x ′1 ∨ x ′2) ∧ (x ′1 ∨ x3) ∨ (x ′2 ∨ x3) ∨ (x̄ ′1 ∨ x̄ ′2 ∨ x̄3) ∧ (x̄ ′1 ∨ x ′2)

Breaking σ2 afterwards results in a problem as the predicate (x̄ ′1 ∨ x ′2)
cannot be redefined: σ2 is not a symmetry for F ′.

The method shown could only redefine original clauses. As a
consequence, to break both σ1 and σ2, the method shown needs to be
applied multiple times: σ1, σ2, and again σ1.
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Difficulties due to Multiple Symmetries: General
Consider a formula F with two symmetries
σ1 = (x1, . . . , xn)(p1, . . . , pn) and
σ2 = (y1, . . . , yn)(q1, . . . , qn).

Symmetry breaking will add the predicates
x1, . . . , xn ≤ p1, . . . , pn and y1, . . . , yn ≤ q1, . . . , qn. The
number of predicates is linear in the number of symmetries.

After breaking σ1 with the method shown, resulting in formula
F ′, we cannot simply apply it again, because σ2 is not a
symmetry of F ′.

Hence, the method shown can only redefine original clauses.

To obtain a symmetry-free formula, the method shown has to
be applied multiple times per symmetry. Even with just two
symmetries, one may needs to apply it twice per symmetry.
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Break a Symmetry Chain using Sorting Networks
A symmetry chain is a sequence of k symmetries of length 2n
with the property that xi ,j = pi ,j+n, pi ,j = xi ,j+n, and
xi+1,j = xi ,j+n with 1 ≤ i < k and 1 ≤ j ≤ n.

Example (symmetry chain (x1, x5)(x2, x6)(x3, x7)(x4, x8))

I based on σi = (xi , xi+4, xi+1, xi+5)(xi+1, xi+5, xi , xi+4)

I results in predicates x1, x5 ≤ x2, x6 ≤ x3, x7 ≤ x4, x8

Breaking a symmetry chain comes down at sorting the
assignments, which can be realized using a sorting network.

x4x8 = 00
x3x7 = 11
x2x6 = 01
x1x5 = 10

11 = x ′′4 x
′′
8

10 = x ′′′3 x ′′′7

01 = x ′′′2 x ′′′6

00 = x ′′1 x
′′
5

Size k symmetry chain: apply the procedure O(k log2 k) times.
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Converting Symmetries into a Symmetry Chain

Q: How to break multiple symmetries in general?

A: Convert them into a symmetry chain.

+: Limits the size of the partial proof.

−: Breaks the symmetries only partially.

Example
Consider two symmetries: σ1 = (x1, x4, x2, x5)(x2, x5, x1, x4)
and σ2 = (x2, x4, x3, x6)(x3, x6, x2, x4). Compute reduced
symmetries σ′

1 = (x1, x2)(x2, x1) and σ′
2 = (x2, x3)(x3, x2) that

form a symmetry chain. Using σ′
1 and σ′

2 to define the swap
variable and the symmetry-breaking predicate. Use σ1 and σ2
for the other definitions.
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Tools and Evaluation
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Old Tool Chain

1. The input formula is transformed into a clause-literal graph;
2. A symmetry detection tool extracts symmetries from the graph;
3. Symmetry-breaking predicates are added to the input formula;
4. The symmetry-free formula is solved using a SAT solver.

input CNF
formula F

1 : transformer

clause-literal
graph G

2 : saucy

symmetries

3 : predicates

symmetry-free
formula F ′

4 : SAT solver

SAT solving
result

A bug in any of these tools may result in incorrect results

Most observed bugs during SAT Competition 2013 were caused by tools 1-3



27/33

New Tool Chain

input CNF
formula F

1 : transformer

clause-literal
graph G

2 : saucy

symmetries

3 : sym2drat

partial
DRAT proof

DRAT proof
of formula F ′

4 : SAT solver

5 : merge6 : drat-trim

symmetry-free
formula F ′

DRAT proof
of formula F

verification
result

Only the correctness of the proof checker needs to be trusted
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New Tools

The new tool sym2drat:
I Input: CNF formula and symmetries;
I Output: A symmetry-free formula and a partial proof that
describes the derivation from the input formula to the
symmetry-free formula;

I Uses pairwise sorting to reduce the size of the partial proof.

Merge: simply concatenate using Unix cat

DRAT proof checkers:
I Implemented an extension for drat-trim to validate
partial DRAT proofs. This feature was crucial during
development for debugging purposes;

I Modified our mechanically-verified proof checker to make
it compatible with DRAT proofs.
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Evaluation: Ramsey Number Four

Ramsey Number R(k): What
is the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 49

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

The size of the proof is 20 MB and the time required is 1.8 s

Proof validated with our mechanically-verified checker as well.
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Evaluation: Erdős Discrepancy Conjecture

Erdős Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d , k holds that (xi ∈ {−1,+1}):∣∣∣∣∣

k∑
i=1

xid

∣∣∣∣∣ ≤ 2
The original DRAT proof was 13Gb. Our
new proof using symmetry breaking is 2Gb.
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Evaluation: Two Pigeons per Hole Problems

Biere proposed benchmarks
expressing whether 2n + 1
pigeons can be put in n holes
that contain at most two
pigeons per hole.

For n > 6 they can only be
solved by symmetry breaking
or cardinality resolution.

No SAT solvers can produce a proof for the problems with n > 6.

Our method can produce proofs for problems with n ≤ 12 that
can be generated in minutes and validated within an hour.
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Conclusions
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Conclusions

Conclusions:
I The first approach to validate symmetry-breaking
techniques usage in SAT solvers by expressing the
techniques as DRAT proof steps;

I Increases the trust in results based on symmetry breaking;
I Evaluated our method on hard-combinatorial formulas.

Future work:
I Determine precisely the number of times the
symmetry-breaking procedure needs to be applied;

I Improve the speed of the mechanically-verified checker;
I Implement a parallel proof checker to reduce the gap
between solving and verification costs.

Thanks! Questions?
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