Adding APPLY to ACL2 (Part 2)

Matt Kaufmann
J Strother Moore

Department of Computer Science
University of Texas at Austin

January, 2016
Background

The apply book defines apply$ and related concepts and provides rules for manipulating them.

The rules allow convenient proof of theorems about such mapping functions as sumlist, collect, foldr, etc.
Sample Theorems from Part 1

(equal (sumlist (ap a b) fn)
 (+ (sumlist a fn)
 (sumlist b fn)))

(equal (sumlist a
 '(lambda (x) (binary-* '2 x)))
 (* 2 (sumlist a 'identity)))

(equal (foldr x 'cons y)
 (ap x y))
(implies (and (Applicablep sq)
 (natp n))
 (equal (sumlist (nats n) ’sq)
 (+ (/ (expt n 3) 3)
 (/ (expt n 2) 2)
 (/ n 6))))
Part 2

We focus on the rules made available by the apply book.
User Perspective

The important concepts are:

- **apply** and **ev** (and **ev-list**)
- **tamep-functionp** and **tamep**
- **f-classes** (used to determine tameness)
- **(make-applicable f)**, an event that introduces the (**Applicablep f**) notation.
Manageable Functions

Apply$ can only handle a function if it has these properties:

• in :logic mode
• returns a single value
• does not use state or stobjs
• does not require trust tags or restricted syntax to be called
Primitives

There are 798 manageable functions in the Ground Zero theory.

All are built into `apply$`. Those primitives are recognized by `apply$-primp` and applied by `apply$-prim`.
Classifying Formals

Let f be a user-defined function with formals $(v_1 \ldots v_n)$. v_i has classification:

- **:FN**, if v_i is used exclusively as a function (passed ancestrally to \texttt{apply}$^\$)

- **:EXPR**, if v_i is used exclusively as an expression (passed ancestrally to \texttt{ev}$^\$)

- **nil**, if v_i is never used as a function or expression, i.e., v_i is “vanilla”
F-Classes

\((f\text{-classes } 'f) =\)

- \text{nil, if } f \text{ is not manageable or has an unclassifiable formal}
- \text{t, if all formals are “vanilla”}
- \((c_1 \ldots c_n)\), at least one formal is functional or expressionnal
Tamep-Functionp

\(f \) is a \textit{tame function} iff \(f \) is

- a symbol and \((f\text{-classes } f) = t\) (i.e., \(f \) is manageable and no formal is used as a function or expression)

- \((\text{lambda} (v_1 \ldots v_n) b)\) and \(b \) is a tame term
Tamep

x is tame term iff x is

- a variable or QUOTEd constant
- $((\text{lambda} \ (v_1 \ldots v_n) \ b) \ a_1 \ldots a_n)$ where b and the a_i are tame
- $(f \ a_1 \ldots a_n)$ where $(\text{f-classes } f) = (c_1 \ldots c_n)$ and if c_i is :FN, a_i is a QUOTEd tame fn, if c_i is :EXPR, a_i is a QUOTEd tame term, and else a_i is tame.
Positive and Negative Examples

(binary-+ '1 x)

(sumlist lst 'CAR)

(sumlist lst
 '(lambda (x)
 (binary-+ '1 x)))

(sumlist lst
 '(lambda (x)
 (sumlist x 'CAR)))

(sumlist lst
 '(lambda (x)
 (sumlist x (foo y)))))
Rules about f-classes

(defthm f-classes-primitive
 (implies (apply$-primp f)
 (equal (f-classes f) t)))

(defthm f-classes-apply$
 (equal (f-classes 'APPLY$) '(:FN NIL)))

(defthm f-classes-ev$
 (equal (f-classes 'EV$) '(:EXPR NIL)))
Rules about \texttt{ev}$\$

(defthm ev$\$-def-fact
 (implies (tamep x)
 (equal (ev$\$ x a)
 (cond
 ((variablep x) (cdr (assoc x a)))
 ((fquotep x) (cadr x))
 ((eq (car x) ’IF)
 (if (ev$\$ (cadr x) a)
 (ev$\$ (caddr x) a)
 (ev$\$ (cadddr x) a)))
 (t (apply$\$ (car x)
 (ev$\$-list (cdr x) a)))))))

This is stored as several :rewrite rules.
Rules about \texttt{ev$\$\text{-}list}

\begin{verbatim}
(defthm ev$\$\text{-}list-def
 (equal (ev$\$\text{-}list x a)
 (cond
 ((endp x) nil)
 (t (cons (ev$\$ (car x) a)
 (ev$\$\text{-}list (cdr x) a))))))
\end{verbatim}

Stored as a \texttt{:definition} rule.
Rules about \texttt{apply}

(defthm apply-primitive
 (implies (apply-primp f)
 (equal (apply f args)
 (apply-prim f args))))

(defthm beta-reduction
 (equal (apply (list 'LAMBDA vars body) args)
 (ev body (pairlis vars args))))
Rules about User-Defined f

We’ve explained $\text{apply}\$ for lambda-expressions and primitives. But what about user-defined functions?

If f is a user-defined function,

$$(\text{apply}\$\ f\ \text{args}) = (\text{apply}\$-\text{nonprim}\ f\ \text{args}),$$

where $\text{apply}\$-\text{nonprim}$ is undefined (a defstub).
How Do We Prove Anything?

So how do you prove

\[
\text{(equal (sumlist '(1 2 3) 'sq) 14)}
\]
How Do We Prove Anything?

So how do you prove

$$(\text{implies } \forall \text{ args} : (\text{apply$ 'sq args) = (sq (\text{car args}))\]}
\text{(equal (sumlist '(1 2 3) 'sq) 14))}$$
How Do We Prove Anything?

So how do you prove

\[(\text{implies } \forall \text{ args}: (\text{apply}\$ \ 'sq \ args) = (\text{sq } \text{car } args))\]

\[(\text{equal } (\text{sumlist } '(1 \ 2 \ 3) 'sq) \ 14)\]

Note that this solves the LOCAL problem because now the theorem mentions the function \text{sq}.
How Do We Prove Anything?

So how do you prove

\[(\text{implies } \forall args: (\text{apply$'} \ 'sq \ args) = (\text{sq} \ (\text{car} \ args))]\
\[(\text{equal} \ (\text{sumlist} \ '(1 \ 2 \ 3) \ 'sq) \ 14))\]

But we can’t write \forall so we use \texttt{defun-sk} to introduce a \texttt{Applicablep-SQ} to express that quantified hypothesis.
How Do We Prove Anything?

So how do you prove

\[
\text{(implies (Applicablep-SQ)}
\begin{align*}
\text{(equal (sumlist '(1 2 3) 'sq) } \\
\text{ 14))}
\end{align*}
\]

But we can’t write \(\forall \) so we use defun-sk to introduce a \text{Applicablep-SQ} to express that quantified hypothesis.
How Do We Prove Anything?

So how do you prove

\[(\text{implies} \ (\text{Applicablep} \ SQ) \ \\
\quad \ (\text{equal} \ (\text{sumlist} \ '(1 \ 2 \ 3) \ 'sq) \ \\
\quad \ 14))\]

But we can’t write \forall so we use defun-sk to introduce a \text{Applicablep-sq} to express that quantified hypothesis.

\[(\text{Applicablep} \ SQ)\] is just an abbreviation for \[(\text{Applicablep-SQ})\].
Rules about User-Defined f

You must use (make-applicable f) to tell apply$ about f.

If f is not manageable, (make-applicable f) causes an error.

Otherwise, it executes a defun-sk to introduce Applicablep-f.
Then \texttt{make-applicable} proves rules about \texttt{Applicablep-}f.

The forms of the \texttt{defun-sk} and the rules depend on whether \(f \) is tame.
(make-applicablep ap)

(defthm apply$-AP
 (implies (force (Applicablep-AP))
 (and (equal (f-classes 'AP) t)
 (equal (apply$ 'AP args)
 (ap (car args)
 (cadr args))))))
(make-applicablep sumlist)

(defun apply$-SUMLIST
 (and
 (implies (force (Applicablep-SUMLIST))
 (equal (f-classes 'SUMLIST) '(NIL :FN)))
 (implies (and (force (Applicablep-SUMLIST))
 (tamep-functionp (cadr args)))
 (equal (apply$ 'SUMLIST args)
 (sumlist (car args)
 (cadr args)))))))
(defun-sk Applicablep-SUMLIST ()
 (forall (args)
 (and (equal (f-classes-nonprim 'SUMLIST) '(NIL :FN))
 (implies (tamep-functionp (cadr args))
 (equal (apply$-nonprim 'SUMLIST args)
 (sumlist (car args)
 (cadr args))))))))
... From Which We Can Prove

(defthm apply$-SUMLIST
 (and
 (implies (force (Applicablep-SUMLIST))
 (equal (f-classes 'SUMLIST) '(NIL :FN)))
 (implies (and (force (Applicablep-SUMLIST))
 (tamep-functionp (cadr args)))
 (equal (apply$ 'SUMLIST args)
 (sumlist (car args)
 (cadr args)))))
Because \textit{f-classes-nonprim} and \textit{apply$\$-nonprim} are undefined, it is impossible to evaluate, prove, or disprove (\textit{Applicablep-SUMLIST}).

\begin{verbatim}
(defun-sk Applicablep-SUMLIST ()
 (forall (args)
 (and (equal (f-classes-nonprim 'SUMLIST)
 '(NIL :FN))
 (implies (tamep-functionp (cadr args))
 (equal (apply$-nonprim 'SUMLIST args)
 (sumlist (car args)
 (cadr args))))))
\end{verbatim}
Vacuity

Can we be sure that there is *some way* to define \texttt{f-classes-nonprim} and \texttt{apply$-$nonprim} so that

\[
\forall \ args:\ \\
(f\text{-classes}\text{-nonprim} \ 'SUMLIST) = '(NIL :FN) \\
\land \\
((\text{tamep\text{-functionp}} \ (\text{cadr} \ args)) \rightarrow \\
(\text{apply}$-$\text{nonprim} \ 'SUMLIST \ args) \ = \\
(\text{sumlist} \ (\text{car} \ args) \ (\text{cadr} \ args)))
\]
More Precisely

Given any collection of non-erroneous make-applicable events can we define f-classes-nonprim and apply$\$-nonprim so that all the Applicablep-f hypotheses are true?

This is the subject of Part 3.