Adding APPLY to ACL2
(Part 3)

Matt Kaufmann
J Strother Moore

Department of Computer Science
University of Texas at Austin

January, 2016
Rules about User-Defined f

We’ve explained \texttt{apply$} for lambda-expressions and primitives. But what about user-defined functions?

If f is a user-defined function,

\[
(\texttt{apply$} \ f \ \texttt{args}) = (\texttt{apply$-nonprim} \ f \ \texttt{args}),
\]

where \texttt{apply$-nonprim} is undefined (a \texttt{defstub}).
How Do We Prove Anything?

So how do you prove

(equal (sumlist '(1 2 3) 'sq) 14)
How Do We Prove Anything?

So how do you prove

\[(\text{implies } \forall \ args: (\text{apply}\$ \ 'sq \ args) = (\text{sq} \ (\text{car} \ args))]\\(\text{equal} \ (\text{sumlist} \ '(1 \ 2 \ 3) \ 'sq)\\14))\]
How Do We Prove Anything?

So how do you prove

$$(\text{implies } [\forall \text{ args} : (\text{apply$ 'sq args) = (sq (\text{car args}))}]$$

$$(\text{equal (sumlist '(1 2 3) 'sq) 14}))$$

Note that this solves the LOCAL problem because now the theorem mentions the function sq.
How Do We Prove Anything?

So how do you prove

\[(\text{implies } [\forall \text{ args}: (\text{apply$ 'sq args) = (sq (\text{car args}))}] \]

\[(\text{equal (sumlist '(1 2 3) 'sq) 14))\]

But we can’t write \forall so we use defun-sk to introduce a Applicablep-SQ to express that quantified hypothesis.
How Do We Prove Anything?

So how do you prove

\[
(\text{implies} \ (\text{Applicablep-SQ}) \\
\quad (\text{equal} \ (\text{sumlist} \ '(1 \ 2 \ 3) \ 'sq) \\
\quad \quad 14))
\]

But we can’t write \(\forall \) so we use defun-sk to introduce a \text{Applicablep-SQ} to express that quantified hypothesis.
How Do We Prove Anything?

So how do you prove

\[(\text{implies} \ (\text{Applicablep} \ SQ) \ \ (\text{equal} \ (\text{sumlist} \ '(1 \ 2 \ 3) \ 'sq) \ 14))\]

But we can’t write \(\forall\) so we use \text{defun-sk} to introduce a \text{Applicablep-sq} to express that quantified hypothesis.

\((\text{Applicablep} \ SQ)\) is just an abbreviation for \((\text{Applicablep-SQ})\).
Background

The (Applicablep–\(f\)) hypotheses cannot be proved because they concern undefined functions, e.g., \(f\)-classes-nonprim and apply$-nonprim.

Can we produce a model of these undefined functions that makes the hypotheses provable?
For a Mapping Function

\[(\text{make-applicable} \ \text{SUMLIST})\]

\[\Rightarrow\]

\[(\text{defun-sk} \ \text{Applicablep-SUMLIST} ()
\text{(forall} \ (x)
\text{(and} \ (\text{equal} \ (f\text{-classes\-nonprim} \ \text{'SUMLIST}) \ '(\text{NIL} :\text{FN}))
\text{(implies} \ (\text{tamep\-functionp} \ (\text{cadr} \ x))
\text{(equal} \ (\text{apply$\text{-nonprim} \ \text{'SUMLIST} \ x)
\text{(sumlist} \ (\text{car} \ x) \ (\text{cadr} \ x)))))))))\]

\[(\text{Applicablep-SUMLIST})\]

\[\leftrightarrow \ [\ (f\text{-classes} \ \text{'SUMLIST})= \ '(\text{NIL} :\text{FN})
\land \ (\forall \ x:
\text{(tamep\-functionp} \ (\text{cadr} \ x))
\rightarrow \ (\text{apply$} \ \text{'SUMLIST} \ x)
\rightarrow \ (\text{SUMLIST} \ (\text{car} \ x)(\text{cadr} \ x)))]\]
Immediate Goal

For a given chronology (sequence of user events) define the stubs of the apply book,

- \texttt{f-classes-nonprim}
- \texttt{apply$\text{-nonprim}}

in a way that makes all the \texttt{Applicablep-}f hypotheses of the chronology provably true.
Eventual Goal

Prove (by hand) that we can always model any admissible chronology.

This requires that we precisely describe how to do it.

Remember: We don’t actually have to implement this process. We just have to be sure we could and that it would produce a certifiable file!
In this talk we’ll focus on a few representative functions.

ap
rev ; Ordinary
flatten ; (independent of apply$)
sq
fact
gcd
collect
sumlist
sumlist-with-params
filter
all
collect-on
collect-tips
apply$2
russell
foldr
collect-from-to
collect*
collect2
collect-rev

; Tame Instances
; (uses mapping functions
; but with (QUOTEd)
; tame args)
Examples

(defun rev (x) ; Ordinary
 (if (consp x)
 (ap (rev (cdr x)) (cons (car x) nil)) nil)
)

(defun collect (lst fn) ; Mapping fn
 (cond ((endp lst) nil)
 (t (cons (apply fn (list (car lst)))
 (collect (cdr lst) fn))))
)

(defun collect-rev (lst) ; Tame Instance
 (collect lst 'REV))
More Precise Immediate Goal

Given certified book "chronology":

(in-package "ACL2")
(include-book "apply")
...
(defun rev ...)
...
(defun collect ...)
...
(defun collect-rev ...)
...
(defthm ...)
...
create and certify books:

- "apply!"
- "chronology!"
- "applicablep!"

where:
"chronology!":

(in-package "ACL2")
(include-book "apply")
...
(defun rev ...)
...
(defun collect ...)
...
(defun collect-rev ...)
...
(defthm ...)
...
"chronology!":

(in-package "ACL2")
(include-book "apply!")

...(defun rev ...)

...(defun collect ...)

...(defun collect-rev ...)

...(defthm ...)

...
"applicablep!":

(in-package "ACL2")
(include-book "chronology!")
(defun applicable-rev-true
 (Applicablep-REV))
...

(defun applicable-collect-true
 (Applicablep-COLLECT))
...

(defun applicable-collect-rev-true
 (Applicablep-COLLECT-REV))
A Thought Experiment

Suppose f_1, \ldots, f_n are the user’s functions. How would we define apply?
A Thought Experiment

Suppose f_1, \ldots, f_n are the user’s functions.

How would we define apply ... and ev and ev-list (since they’re mutually recursive)?

But we’ll focus just on apply.

Since some f_i call apply, we must define apply before f_1, \ldots, f_n.

A Thought Experiment

(defun apply$ (fn args)
 (cond
 ((consp fn)
 (ev$ (caddr fn) (pairlis$ (cadr fn) args)))
 ((apply$-primp fn) (apply$-prim fn args))
 ((eq fn 'f1) (f1 (car args) ... (cad...dr args)))
 ...)
 ((eq fn 'fn) (fn (car args) ... (cad...dr args)))
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply$ (car args) (cadr args))
 nil))
 (t nil)))
A Thought Experiment

(defun apply$ (fn args)
 (cond
 ((consp fn)
 (ev$ (caddr fn) (pairlis$ (cadr fn) args)))
 ((apply$-primp fn) (apply$-prim fn args))
 ((eq fn 'f1) (f1 (car args) ... (cad...dr args)))
 ...
 ((eq fn 'fn) (fn (car args) ... (cad...dr args)))
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply$ (car args) (cadr args))
 nil))
 (t nil)))
A Thought Experiment

(defun apply\$ (fn args)
 (cond
 ((eq fn 'f_1) (f_1 (car args)) ... (cad...dr args)))
 ...
 ((eq fn 'f_n) (f_n (car args)) ... (cad...dr args)))
 ((eq fn 'APPLY\$)
 (if (tamep-functionp (car args))
 (apply\$ (car args) (cadr args))
 nil))
 (t nil)))
A Thought Experiment
(defun apply$ (fn args)
 (cond
 ...
 ((eq fn 'COLLECT) (collect (car args) (cadr args)))
 ...
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply$ (car args) (cadr args))
 (t nil)))
 (t nil)))
A Thought Experiment

(defun apply$ (fn args)
 (cond ...
 ((eq fn 'COLLECT)
 (collect (car args) (cadr args)))
 ...
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply$ (car args) (cadr args))
 nil))
 (t nil))))
A Thought Experiment

(defun apply$ (fn args)
 (cond ...
 ((eq fn 'COLLECT)
 (collect (car args) (cadr args))) ; Undefined!
 ...
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply$ (car args) (cadr args))
 (nil))
 (t nil)))
)
A Thought Experiment

(defun apply$ (fn args)
 (cond ...
 ((eq fn 'COLLECT)
 (collect (car args) (cadr args)))
 ...
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply$ (car args) (cadr args))
 nil))
 (t nil))
)

(defun collect (lst fn)
 (cond ((endp lst) nil)
 (t (cons (apply$ fn (list (car lst)))
 (collect (cdr lst) fn))))
)
A Thought Experiment

(mutual-recursion
 (defun apply$...)
(defun ev$...)
(defun ev$-list ...)
(defun collect ...) ; all user mapping fns
(defun sumlist ...)

...)
(defun foldr ...)
(defun russell ...)

...)

Lesson 1: We must find a measure that justifies this clique!
A Thought Experiment

But if apply! contains:

(mutual-recursion
 (defun apply$...) ...)
...
(defun collect ...) ...)

we can’t certify chronology! where chronology contains:

(defun collect (lst fn) ; Error: Name in use!
 (cond ((endp lst) nil)
 (t (cons (apply$ fn (list (car lst)))
 (collect (cdr lst) fn))))
A Thought Experiment

Lesson 2: apply! should use different names and prove equivalence.

If the user introduces f_i then we’ll introduce $f_i!$.

We call $f_i!$ the doppleganger of f_i.

```
(defun collect (lst fn)
  (cond ((endp lst) nil)
        ((t (cons (apply$ fn (list (car lst)))
                  (collect (cdr lst) fn))))
```
A Thought Experiment

Lesson 2: apply! should use different names and prove equivalence.

If the user introduces f_i then we’ll introduce $f_i!$.

We call $f_i!$ the *doppleganger* of f_i.

```
(defun collect! (lst fn)
  (cond ((endp lst) nil)
    (t (cons (apply! fn (list (car lst)))
      (collect! (cdr lst) fn))))
```
A Thought Experiment

(defun apply! (fn args)
 (cond ...
 ((eq fn 'REV) (rev! (car args)))
 ((eq fn 'COLLECT) (collect! (car args) (cadr args)))
 ...
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply! (car args) (cadr args))
 nil)
 (t nil)))

(defun collect! (lst fn)
 (cond ((endp lst) nil)
 (t (cons (apply! fn (list (car lst)))
 (collect! (cdr lst) fn))))
A Thought Experiment

(defun apply! (fn args)
 (cond ...
 ((eq fn 'REV) (rev! (car args)))
 ((eq fn 'COLLECT)
 (collect! (car args) (cadr args)))
 ...
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply! (car args) (cadr args))
 nil))
 (t nil)))
A Thought Experiment

(defun apply! (fn args)
 (cond ...
 ((eq fn 'REV) (rev! (car args)))
 ((eq fn 'COLLECT)
 (if (tamep-functionp (cadr args))
 (collect! (car args) (cadr args))
 nil))
 ...)
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply! (car args) (cadr args))
 nil))
 (t nil)))

Lesson 3: Check tameness!
A Thought Experiment

(defun apply! (fn args)
 (cond ...
 ((eq fn 'REV) (rev! (car args)))
 ((eq fn 'COLLECT)
 (if (tamep-functionp (cadr args))
 (collect! (car args) (cadr args))
 nil))
 ...
 ((eq fn 'APPLY$)
 (if (tamep-functionp (car args))
 (apply! (car args) (cadr args))
 nil))
 (t nil)))

What about collect-rev?
A Thought Experiment

(defun$ rev (x) ; Ordinary
 (if (consp x)
 (ap (rev (cdr x)) (cons (car x) nil))
 nil))

(defun$ collect (lst fn) ; Mapping fn
 (cond ((endp lst) nil)
 (t (cons (apply$ fn (list (car lst)))
 (collect (cdr lst) fn)))))

(defun$ collect-rev (lst) ; Tame Instance
 (collect lst 'REV))
A Thought Experiment

(defun rev! (x) ; Ordinary
 (if (consp x)
 (ap! (rev! (cdr x)) (cons (car x) nil)) nil))

(defun collect! (lst fn) ; Mapping fn
 (cond ((endp lst) nil)
 (t (cons (apply! fn (list (car lst)))
 (collect! (cdr lst) fn)))))

(defun collect-rev! (lst) ; Tame Instance
 (cond ((endp lst) nil)
 (t (cons (rev! (car lst))
 (collect-rev! (cdr lst))))))
A Thought Experiment

(defun rev! (x) ; Ordinary
 (if (consp x)
 (ap! (rev! (cdr x)) (cons (car x) nil))
 nil))

(defun collect! (lst fn) ; Mapping fn
 (cond ((endp lst) nil)
 (t (cons (apply! fn (list (car lst)))
 (collect! (cdr lst) fn)))))

(defun collect-rev! (lst) ; Ordinary
 (cond ((endp lst) nil)
 (t (cons (rev! (car lst))
 (collect-rev! (cdr lst))))))
A Thought Experiment

Lesson 4: The dopplegangers of tame instances are ordinary and should be treated as such in apply!
The Construction

1. Include the book apply-prim.lisp to define apply$-primp and apply$-prim.

2. Define f-classes-nonprim to return the f-classes of all non-primitive functions f_i as computed by chronology.lisp.
(defun f-classes-nonprim (fn)
 (case fn
 ...
 (REV t)
 ...
 (COLLECT '(NIL :FN))
 ...
 (RUSSELL '(FN :NIL))
 ...))

3. Define f-classes and the tamep clique as in apply.lisp.
4. Partition the user’s functions into three groups:

• ordinary functions – those independent of `apply$`, `ev$`, and `ev$-list`.
• mapping functions – those having at least one :FN or :EXPR argument
• tame instances – functions defined by calling mapping functions on quoted tame functions and expressions
5. Define dopplegangers for all ordinary functions and for all tame instances.

6. Define the dopplegangers of \texttt{apply\$}, \texttt{ev\$}, \texttt{ev\$-list} and all mapping functions in a mutually recursive clique.

7. Define \texttt{apply\$-nonprim} to be the part of \texttt{apply!} that handles the user’s functions (looking for ’f_i’ and calling f_i!).
(defun apply$-nonprim (fn args)
 (case fn
 ...
 (REV (rev! (car args)))
 ...
 (COLLECT
 (if (tamep-functionp (cadr args))
 (collect! (car args) (cadr args)) nil))
 ...
 (COLLECT-REV
 (collect-rev! (car args) (cadr args)))
 ...)))
8. Copy down the rest of apply.lisp.

9. Copy down all of the user’s functions (ordinary, mapping, and tame instances) exactly as they are defined in chronology.lisp.

10. Prove that the dopplegangers of apply$, ev$, ev$-list and all the mapping functions are equal to their correspondents.
(defthm doppleganger-equiv-for-mapping-fns
 (and (equal (apply! fn args)
 (apply$ fn args))
 (equal (ev! x a)
 (ev$ x a))
 ...
 (equal (collect! lst fn)
 (collect lst fn))
 ...
 (equal (russell! fn lst)
 (russell fn lst))
 ...))
11. Prove that the dopplegangers of the ordinary functions and tame instances are equal to their correspondents.

(defthm ap!-is-ap
 (equal (ap! x y) (ap x y)))

(defthm rev!-is-rev
 (equal (rev! x) (rev x)))

...

(defthm collect-rev!-is-collect-rev
 (equal (collect-rev! lst) (collect-rev lst)))
The Challenge

How do you invent a measure to explain a mutually recursive clique containing:

• apply!
• ev!
• collect!
• foldr!
• ...

51
My Current Answer

A lexicographic combination of:

1. `apply$`, `ev$`, and `ev$-list` have measure 0; all user mapping fns have measure

 `(if (tamep-functionp fn) 0 1)`
2. combined sizes of fn and the :FN and/or :EXPR arguments

3. the mapping function’s “native” measure

4. maximal distance to apply$
Examples

\[(\text{apply$2} \ fn \ x \ y)\] \quad \{1, *, *, *, *\} \\
\Downarrow \\
\[(\text{apply$} \ fn \ (\text{list} \ x \ y))\] \quad \{0, *, *, *, *\}

\[(\text{apply$} \ '\text{collect} \ \text{args})\] \quad \{0, 1+|(\text{cadr} \ \text{args})|, *, *, *\} \\
\Downarrow \\
\[(\text{collect} \ (\text{car} \ \text{args}) \n\quad (\text{cadr} \ \text{args}))\] \quad \{0, |(\text{cadr} \ \text{args})|, *, *, *\}
(collect lst fn) \[\langle 0, \text{|fn|}, \text{|lst|}, * \rangle\]
\[\downarrow\]
(collect (cdr lst) fn) \[\langle 0, \text{|fn|}, \text{|(cdr lst)|}, * \rangle\]

(collect-tips x fn) \[\langle 0, \text{|fn|}, \text{|x|}, 1 \rangle\]
\[\downarrow\]
(apply$ fn (list x)) \[\langle 0, \text{|fn|}, 0, 0 \rangle\]
Successes

This lexicographic measure justifies

- collect
- collect2
- collect*
- collect-on
- collect-tips
- collect-from-to
- sumlist
- sumlist-with-params
- filter
- all
- foldr
- foldl

- apply$2
- apply$2x
- apply$2xx
- russell
- recur-by-collect
- prow
- prow*
If we find a mapping function that make-applicable accepts but for which the above construction fails, we must either

• restrict make-applicable so that it rejects the mapping function, or

• find a more elaborate construction!
If we find a mapping function that make-applicable accepts but for which the above construction fails, we must either

- restrict make-applicable so that it rejects the mapping function, or

- find a more elaborate construction!

An alternative: Prohibit user defined mapping functions. Just supply the ones we can justify now and call it done.
Other Issues

Make-applicable incorrectly accepts foo as a tame instance!

(defun foo (x) (apply$ 'foo (list (cons x x))))

Make-applicable should check that the measure is a bounded ordinal.

Make-applicable should check that the mapping function is not mutually recursive.
Prove that the construction works for all functions admitted by make-applicable!