
WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

Improving Eliminate-Irrelevance for ACL2

Matt Kaufmann
(Joint Work with J Moore)

The University of Texas at Austin

October 14, 2016

1/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

OUTLINE

Organization of this talk.

1. Review the ACL2 waterfall and its eliminate-irrelevance
clause-processor.

I Section Waterfall
I Section Eliminate-Irrelevance

2. Present a recent change in its heuristics.
I Section Example
I Section Details

3. Remark on considerations when designing and
implementing that change.

I Section Further Considerations

2/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

THE ACL2 WATERFALL

Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

3/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

CLAUSE PROCESSORS

Every ACL2 goal is represented as a clause: a list that is viewed
as a disjunction of terms (called literals).

Example: A goal and corresponding clause:

(implies (and (p1 x) (p2 x y))
(p3 y))

((not (p1 x)), (not (p2 x y)), (p3 y))

Each waterfall step uses a clause-processor: a function that maps
a clause to a list of clauses (possibly empty). Key property:

If every result clause is a theorem, then the input clause is a theorem.

NOTE: Converse need not hold!

4/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

INTRODUCTION TO ELIMINATE-IRRELEVANCE

Example from the ACL2 regression suite, in:
books/workshops/2006/cowles-gamboa-euclid/Euclid/fld-u-poly/.

(ld "fuproducto.port")
(in-package "FUPOL")
(rebuild "fuproducto.lisp" ’*)
; Succeeds:
(thm ; polinomiop-*
(polinomiop (* p q)))

; Fails:
(thm ; polinomiop-*
(polinomiop (* p q))
:hints
(("Goal"

:do-not ’(eliminate-irrelevance))))

5/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

From successful proof, after (set-gag-mode nil):
Subgoal *1/2’5’
(IMPLIES (AND (MONOMIOP P1)

(POLINOMIOP P2)
(POLINOMIOP V*0))

(POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0))).

We suspect that the term (POLINOMIOP P2) is irrelevant to the truth
of this conjecture and throw it out. We will thus try to prove

Subgoal *1/2’6’
(IMPLIES (AND (MONOMIOP P1) (POLINOMIOP V*0))

(POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0))).

Name the formula above *1.1.

...

We will induct according to a scheme suggested by (POLINOMIOP V*0).

In the failed proof, keeping the literal (POLINOMIOP P2):
We will induct according to a scheme suggested by (POLINOMIOP P2).

6/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

A HEURISTIC

Consider again this goal:
(IMPLIES (AND (MONOMIOP P1)

(POLINOMIOP P2)
(POLINOMIOP V*0))

(POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0)))

ACL2 represents this as a clause (disjunction of literals):
{(NOT (MONOMIOP P1)),
(NOT (POLINOMIOP P2)),
(NOT (POLINOMIOP V*0)),
(POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0))}

The relation of sharing a variable has two components.
{ {(NOT (MONOMIOP P1)),

(NOT (POLINOMIOP V*0)),
(POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0))},
{(NOT (POLINOMIOP P2))}

}

ACL2 drops the component that has a single member.

7/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

CHANGING THE HEURISTIC: AN EXAMPLE
J Moore encountered a problem with this heuristic.
The following simple example exhibits the problem.

(encapsulate (((p) => *) ((my-app * *) => *))
(local (defun p () t))
(local (defun my-app (x y) (append x y)))
(defthm my-app-def

(implies (p)
(equal (my-app x y)

(append x y)))))

(defun rev (x)
(if (consp x)

(my-app (rev (cdr x))
(cons (car x) nil))

nil))

(thm (implies (and (p)
(true-listp x))

(equal (rev (rev x)) x)))

8/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

ACL2 Version 7.2 discards (P): proof then fails!
Subgoal *1/2’5’
(IMPLIES (AND (P) (TRUE-LISTP X2))

(EQUAL (REV (APPEND RV (LIST X1)))
(CONS X1 (REV RV)))).

We suspect that the terms (TRUE-LISTP X2) and (P) are irrelevant to
the truth of this conjecture and throw them out. We will thus try
to prove

Subgoal *1/2’6’
(EQUAL (REV (APPEND RV (LIST X1)))

(CONS X1 (REV RV))).

Name the formula above *1.1.

But now, ACL2 keeps (P), and the proof succeeds.
We suspect that the term (TRUE-LISTP X2) is irrelevant to the truth
of this conjecture and throw it out. We will thus try to prove

Subgoal *1/2’6’
(IMPLIES (P)

(EQUAL (REV (APPEND RV (LIST X1)))
(CONS X1 (REV RV)))).

9/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

THE CHANGE IN A NUTSHELL

Why does ACL2 now keep the hypothesis (P)?
Technically: Why does ACL2 keep the literal (NOT (P))?
Recall the theorem exported from our encapsulate event.

(defthm my-app-def
(implies (p)

(equal (my-app x y)
(append x y))))

I Variables of hypothesis (p): {}.
I Variables of left-hand side (my-app x y): {x,y}.

These are disjoint sets! So the function symbol p is marked as
relevant, since (p) can be useful for rewriting calls that don’t
involve its (empty set of) variables.

10/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

THE NEW HEURISTIC IN MORE DETAIL

Suppose p is a Boolean and we have two terms, as follows.

I Let t1 be (FN V1 ... VK), an application of a function
symbol to distinct variables.

I Let t2 be a term whose free variables are disjoint from
those of t1.

Then FN is relevant with parity p whenever t1 or its negation is a
hypothesis (perhaps among others), in which case:

I p = t if t1 is a hypothesis;
I p = nil if (not t1) is a hypothesis.

11/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

EXAMPLE OF “RELEVANT WITH PARITY”
Recall our earlier example rewrite rule and the problem goal:
(encapsulate (((p) => *) ((my-app * *) => *))
(local (defun p () t))
(local (defun my-app (x y) (append x y)))
(defthm my-app-def

(implies (p)
(equal (my-app x y)

(append x y)))))

(IMPLIES (AND (P) (TRUE-LISTP X2))
(EQUAL (REV (APPEND RV (LIST X1)))

(CONS X1 (REV RV))))

The “hypothesis” (P) is, internally, the literal (NOT (P)).
Parity t corresponds to “negated literal should be kept”, so:
ACL2 !>(assoc-eq ’p

(global-val ’never-irrelevant-fns-alist
(w state)))

(P . T)
ACL2 !>

12/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

RELEVANCE WITH PARITY FOR VARIOUS RULES
Assume that terms t1 = (FN V1 ... VK) (distinct Vi) and t2
have disjoint free variables, where for a rule of the given class:

I Rule-classes :REWRITE and :DEFINITION: t2 is the rule’s
left-hand side.

I Rule-class :LINEAR: t2 is a max-term.
I Rule-class :TYPE-PRESCRIPTION: t2 is a typed-term.
I Rule-class :FORWARD-CHAINING: t2 is the conclusion.

Then FN is relevant with parity p for such rules when:

I p=t : (implies (and . . . t1 . . .) . . .)

I p=nil: (implies (and . . . (not t1) . . .) . . .)

For a call u of FN on distinct variables:

I literal u is never irrelevant (dropped) if p = nil; and
I literal (not u) is never irrelevant (dropped) if p = t.

13/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

ADDITIONAL PARITIES

I A function symbol FN can be irrelevant with parity t in
one rule and with parity nil in another rule. We then
store FN with parity :both.

I We also store FN as irrelevant for suitable occurrences of t1
in conclusions. That might be overkill.

I There is a second criterion for irrelevant components
(besides single-literal components based on calls of
irrelevant literals): all function symbols the component are
among a fixed set of primitives.

I Unchanged, except that NOT has been added to that set
(since the other criterion is stricter).

14/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

TIMING (1)

Does the use of irrelevance with parity slow down ACL2?

I Does using of that information slow down the
eliminate-irrelevance procedure?

I Not concerning — procedure is invoked only just before a
sub-induction; rather rare in practice.

I Is maintaining such information expensive?
I Info is stored in an alist.
I Each suitable rule causes linear lookup in the alist and

possibly its extension — potentially quadratic behavior.
(Should we consider an applicative hash-table (fast alist)?)

Regression suite didn’t show significant time difference, but
let’s look at other evidence against slowdown.

15/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

TIMING (2)

Stress test:
(time$ (include-book "doc/top" :dir :system)).
Showed essentially no change!

;;; old
; 782.20 seconds realtime, 777.17 seconds runtime
; (23,612,574,784 bytes allocated).

;;; new
; 775.99 seconds realtime, 772.39 seconds runtime
; (23,952,558,640 bytes allocated).

ACL2 !>(length (global-val ’never-irrelevant-fns-alist
(w state)))

11869
ACL2 !>

16/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

TIMING (3)
Seems like the new global is a non-issue, since a symbol-alist of
length 11,869 is trivial to traverse. On my Mac:

ACL2 !>:q

Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).
? (defun foo (sym n)

(let ((x (make-list n :initial-element ’(a . b))))
(time$ (assoc-eq sym x))))

FOO
? (foo ’c 1000000)
; (ASSOC-EQ SYM ...) took
; 0.00 seconds realtime, 0.00 seconds runtime
; (0 bytes allocated).
NIL
? (foo ’c 10000000)
; (ASSOC-EQ SYM ...) took
; 0.03 seconds realtime, 0.03 seconds runtime
; (0 bytes allocated).
NIL
?

17/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

MISCELLANEOUS CONSIDERATIONS

Question 1: Make the heuristic attachable?
Answer: Seems like overkill. After all, eliminate-irrelevance only
occurs before a sub-induction, and nobody should rely on
sub-inductions.
Question 2: Extend irrelevance with a sort of transitive closure?
Suppose for example we have these three rewrite rules.

(implies (f1 x) (f2 x))
(implies (f2 x) (f3 x))
(implies (f3 x) (h y z))

Then just as we don’t want to drop a hypothesis (negated literal
for) (f3 x), we don’t want to drop (f1 x) or (f2 x).
Answer: Nah, seems like overkill for such a last-ditch heuristic.

18/19



WATERFALL ELIMINATE-IRRELEVANCE EXAMPLE DETAILS FURTHER CONSIDERATIONS

CONCLUDING REMARKS

I Bottom line: Eliminate-irrelevance is fairly minor.
But this tweak, which arose from J’s work on apply$, was
helpful for that work and could help others.

I Thanks for your attention.
I (If there’s extra time, I could give a sense of the source

code (e.g., eliminate-irrelevance-clause (through
irrelevant-lits and irrelevant-clausep) and
add-rewrite-rule (through add-rewrite-rule2
and extend-never-irrelevant-fns-alist).)

19/19


	Waterfall
	Eliminate-Irrelevance
	Example
	Details
	Further Considerations

