Improving Eliminate-Irrelevance for ACL2

Matt Kaufmann
(Joint Work with J Moore)

The University of Texas at Austin

October 14, 2016
OUTLINE

Organization of this talk.
OUTLINE

Organization of this talk.

1. Review the ACL2 waterfall and its eliminate-irrelevance clause-processor.
 ▶ Section Waterfall
 ▶ Section Eliminate-Irrelevance
OUTLINE

Organization of this talk.

1. Review the ACL2 waterfall and its eliminate-irrelevance clause-processor.
 - Section Waterfall
 - Section Eliminate-Irrelevance

2. Present a recent change in its heuristics.
 - Section Example
 - Section Details
Organization of this talk.

1. Review the ACL2 waterfall and its eliminate-irrelevance clause-processor.
 - Section Waterfall
 - Section Eliminate-Irrelevance

2. Present a recent change in its heuristics.
 - Section Example
 - Section Details

3. Remark on considerations when designing and implementing that change.
 - Section Further Considerations
The ACL2 Waterfall

- Destructor Elimination
- Equality
- Generalization
- Elimination of Irrelevance
- Induction
- Simplification

User formula \rightarrow pool

\text{THE ACL2 WATERFALL}
Clause Processors

Every ACL2 goal is represented as a clause: a list that is viewed as a disjunction of terms (called literals).
Clause Processors

Every ACL2 goal is represented as a *clause*: a list that is viewed as a disjunction of terms (called *literals*).

Example: A *goal* and corresponding *clause*:

\[
\text{Example:}\quad \text{A }\mathbf{goal} \text{ and corresponding } \mathbf{clause}: \\
(\text{implies } (\text{and } (p1 \ x) \ (p2 \ x \ y)) \\
(p3 \ y)) \\
((\text{not } (p1 \ x)), \ (\text{not } (p2 \ x \ y)), \ (p3 \ y))
\]
Clause Processors

Every ACL2 goal is represented as a clause: a list that is viewed as a disjunction of terms (called literals).

Example: A goal and corresponding clause:

\[(\text{implies } (\text{and } (p_1 x) (p_2 x y)) (p_3 y))\]
\[(((\text{not } (p_1 x)), (\text{not } (p_2 x y)), (p_3 y))\]

Each waterfall step uses a clause-processor: a function that maps a clause to a list of clauses (possibly empty). Key property:
Clause Processors

Every ACL2 goal is represented as a *clause*: a list that is viewed as a disjunction of terms (called *literals*).

Example: A goal and corresponding clause:

\[
\text{(implies (and (p1 x) (p2 x y)) (p3 y))}
\]
\[
\text{((not (p1 x)), (not (p2 x y)), (p3 y))}
\]

Each waterfall step uses a *clause-processor*: a function that maps a clause to a list of clauses (possibly empty). Key property:

If every result clause is a theorem, then the input clause is a theorem.
Clause Processors

Every ACL2 goal is represented as a *clause*: a list that is viewed as a disjunction of terms (called *literals*).

Example: A *goal* and corresponding *clause*:

\[
(\text{implies} \ (\text{and} \ (p1 \ x) \ (p2 \ x \ y)) \\
(p3 \ y)) \\
((\text{not} \ (p1 \ x)), \ (\text{not} \ (p2 \ x \ y)), \ (p3 \ y))
\]

Each waterfall step uses a *clause-processor*: a function that maps a clause to a list of clauses (possibly empty). Key property:

If every result clause is a theorem, then the input clause is a theorem.

NOTE: Converse need not hold!
INTRODUCTION TO ELIMINATE-IRRELEVANCE

Example from the ACL2 regression suite, in:
books/workshops/2006/cowles-gamboa-euclid/Euclid/fld-u-poly/.

(ld "fuproducto.port")
(in-package "FUPOLE")
(rebuild "fuproducto.lisp" '*)

; Succeeds:
(thm ; polinomio-*
 (polinomio (* p q)))

; Fails:
(thm ; polinomio-*
 (polinomio (* p q))
 :hints
 (("Goal"
 :do-not '(eliminate-irrelevance))))
From successful proof, after `(set-gag-mode nil)`:

Subgoal *1/2’5’
(IMPLIES (AND (MONOMIOP P1)
 (POLINOMIOP P2)
 (POLINOMIOP V*0))
 (POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0))).

We suspect that the term (POLINOMIOP P2) is irrelevant to the truth of this conjecture and throw it out. We will thus try to prove

Subgoal *1/2’6’
(IMPLIES (AND (MONOMIOP P1) (POLINOMIOP V*0))
 (POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0))).

Name the formula above *1.1.

...

We will induct according to a scheme suggested by (POLINOMIOP V*0).
From successful proof, after `(set-gag-mode nil)`:

Subgoal *1/2’5’

(IMPLIES (AND (MONOMIOP P1)
 (POLINOMIOP P2)
 (POLINOMIOP V*0))
 (POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0))).

We suspect that the term (POLINOMIOP P2) is irrelevant to the truth of this conjecture and throw it out. We will thus try to prove

Subgoal *1/2’6’

(IMPLIES (AND (MONOMIOP P1) (POLINOMIOP V*0))
 (POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0))).

Name the formula above *1.1.

...

We will induct according to a scheme suggested by (POLINOMIOP V*0).

In the failed proof, keeping the literal (POLINOMIOP P2):

We will induct according to a scheme suggested by (POLINOMIOP P2).
A **HEURISTIC**

Consider again this goal:

(IMPLIES (AND (MONOMIOP P1)

(POLINOMIOP P2)

(POLINOMIOP V*0))

(POLINOMIOP (APPEND (*-MONOMIO P1 Q) V*0)))
A HEURISTIC

Consider again this goal:

\[
(\text{IMPLIES} \ (\text{AND} \ (\text{MONOMIOP} \ P1) \\
(\text{POLINOMIOP} \ P2) \\
(\text{POLINOMIOP} \ V*0)) \\
(\text{POLINOMIOP} \ (\text{APPEND} \ (*-\text{MONOMIO} \ P1 \ Q) \ V*0)))
\]

ACL2 represents this as a clause (disjunction of literals):

\[
\{ \ (\text{NOT} \ (\text{MONOMIOP} \ P1)) , \\
(\text{NOT} \ (\text{POLINOMIOP} \ P2)) , \\
(\text{NOT} \ (\text{POLINOMIOP} \ V*0)) , \\
(\text{POLINOMIOP} \ (\text{APPEND} \ (*-\text{MONOMIO} \ P1 \ Q) \ V*0)) \}
\]
A HEURISTIC

Consider again this goal:

\[
\text{(IMPLIES} \ (\text{AND} \ \text{(MONOMIOP} \ P1) \\
\quad \text{(POLINOMIOP} \ P2) \\
\quad \text{(POLINOMIOP} \ V*0)) \\
\text{(POLINOMIOP} \ \text{(APPEND} \ (*-\text{MONOMIO} \ P1 \ Q) \ V*0)))
\]

ACL2 represents this as a clause (disjunction of literals):

\[
\{(\text{NOT} \ \text{(MONOMIOP} \ P1)), \ \\
(\text{NOT} \ \text{(POLINOMIOP} \ P2)), \\
(\text{NOT} \ \text{(POLINOMIOP} \ V*0)), \\
(\text{POLINOMIOP} \ \text{(APPEND} \ (*-\text{MONOMIO} \ P1 \ Q) \ V*0))\}
\]

The relation of *sharing a variable* has two components.

\[
\{ \{(\text{NOT} \ \text{(MONOMIOP} \ P1)), \ \\
(\text{NOT} \ \text{(POLINOMIOP} \ V*0)), \\
(\text{POLINOMIOP} \ \text{(APPEND} \ (*-\text{MONOMIO} \ P1 \ Q) \ V*0))\}, \ \\
\{(\text{NOT} \ \text{(POLINOMIOP} \ P2))\}
\}
A HEURISTIC

Consider again this goal:

\[(\text{IMPLIES} \ (\text{AND} \ (\text{MONOMIOP} \ P1) \\
\quad \ (\text{POLINOMIOP} \ P2) \\
\quad \ (\text{POLINOMIOP} \ V*0)) \\
\quad \ (\text{POLINOMIOP} \ (\text{APPEND} \ (*-\text{MONOMIO} \ P1 \ Q) \ V*0)))\]

ACL2 represents this as a clause (disjunction of literals):

\[
\{(\text{NOT} \ (\text{MONOMIOP} \ P1)), \\
(\text{NOT} \ (\text{POLINOMIOP} \ P2)), \\
(\text{NOT} \ (\text{POLINOMIOP} \ V*0)), \\
(\text{POLINOMIOP} \ (\text{APPEND} \ (*-\text{MONOMIO} \ P1 \ Q) \ V*0))\}
\]

The relation of \textit{sharing a variable} has two components.

\[
\{\ (\text{NOT} \ (\text{MONOMIOP} \ P1)), \\
(\text{NOT} \ (\text{POLINOMIOP} \ V*0)), \\
(\text{POLINOMIOP} \ (\text{APPEND} \ (*-\text{MONOMIO} \ P1 \ Q) \ V*0))\}, \\
\{(\text{NOT} \ (\text{POLINOMIOP} \ P2))\}
\]

ACL2 drops the component that has a single member.
CHANGING THE HEURISTIC: AN EXAMPLE

J Moore encountered a problem with this heuristic. The following simple example exhibits the problem.

```
(defun rev (x)
  (if (consp x)
      (my-app (rev (cdr x)) (cons (car x) nil))
      nil))

(thm (implies (and (p) (true-listp x))
               (equal (rev (rev x)) x)))
```
CHANGING THE HEURISTIC: AN EXAMPLE

J Moore encountered a problem with this heuristic. The following simple example exhibits the problem.

(encapsulate (((p) => *) ((my-app * *) => *))
 (local (defun p () t))
 (local (defun my-app (x y) (append x y)))
 (defthm my-app-def
 (implies (p)
 (implies (and (true-listp x)
 (equal (my-app x y)
 (append x y)))))))
CHANGING THE HEURISTIC: AN EXAMPLE

J Moore encountered a problem with this heuristic. The following simple example exhibits the problem.

(encapsulate (((p) => *) ((my-app * *) => *))
 (local (defun p () t))
 (local (defun my-app (x y) (append x y)))
 (defthm my-app-def
 (implies (p)
 (equal (my-app x y)
 (append x y)))))

(defun rev (x)
 (if (consp x)
 (my-app (rev (cdr x))
 (cons (car x) nil))
 nil))
CHANGING THE HEURISTIC: AN EXAMPLE

J Moore encountered a problem with this heuristic. The following simple example exhibits the problem.

(encapsulate (p) (my-app x y))
 (local (defun p () t))
 (local (defun my-app (x y) (append x y)))
 (defthm my-app-def
 (implies (p)
 (equal (my-app x y)
 (append x y))))

(defun rev (x)
 (if (consp x)
 (my-app (rev (cdr x))
 (cons (car x) nil))
 nil))

(thm (implies (and (p)
 (true-listp x))
 (equal (rev (rev x)) x)))
ACL2 Version 7.2 discards (P): proof then fails!

Subgoal *1/2'5' (IMPLIES (AND (P) (TRUE-LISTP X2)) (EQUAL (REV (APPEND RV (LIST X1))) (CONS X1 (REV RV))).

We suspect that the terms (TRUE-LISTP X2) and (P) are irrelevant to the truth of this conjecture and throw them out. We will thus try to prove Subgoal *1/2'6' (EQUAL (REV (APPEND RV (LIST X1))) (CONS X1 (REV RV))). Name the formula above *1.1.

But now, ACL2 keeps (P), and the proof succeeds. We suspect that the term (TRUE-LISTP X2) is irrelevant to the truth of this conjecture and throw it out. We will thus try to prove Subgoal *1/2'6' (IMPLIES (P) (EQUAL (REV (APPEND RV (LIST X1))) (CONS X1 (REV RV)))).
ACL2 Version 7.2 discards \((P)\): proof then fails!

Subgoal *1/2’5’

\[
\text{(IMPLIES (AND (P) (TRUE-LISTP X2))}
\]
\[
\text{\hspace{1em} (EQUAL (REV (APPEND RV (LIST X1))))}
\]
\[
\text{\hspace{1em} (CONS X1 (REV RV))).}
\]

We suspect that the terms \((TRUE-LISTP X2)\) and \((P)\) are irrelevant to the truth of this conjecture and throw them out. We will thus try to prove

Subgoal *1/2’6’

\[
\text{(EQUAL (REV (APPEND RV (LIST X1)))}
\]
\[
\text{\hspace{1em} (CONS X1 (REV RV))).}
\]

Name the formula above *1.1.
ACL2 Version 7.2 discards \((P)\): proof then fails!

Subgoal *1/2'5’
(IMPLIES (AND (P) (TRUE-LISTP X2))
 (EQUAL (REV (APPEND RV (LIST X1)))
 (CONS X1 (REV RV))))).

We suspect that the terms \((TRUE-LISTP X2)\) and \((P)\) are irrelevant to the truth of this conjecture and throw them out. We will thus try to prove

Subgoal *1/2'6’
(EQUAL (REV (APPEND RV (LIST X1)))
 (CONS X1 (REV RV))).

Name the formula above *1.1.

But now, ACL2 keeps \((P)\), and the proof succeeds.
ACL2 Version 7.2 discards \((P)\): proof then fails!

Subgoal \(*1/2'5'\)
\[(\text{IMPLIES} \ (\text{AND} \ (P) \ (\text{TRUE-LISTP} \ X2)) \n\quad \text{(EQUAL} \ (\text{REV} \ (\text{APPEND} \ RV \ (\text{LIST} \ X1)))
\quad \quad \text{(CONS} \ X1 \ (\text{REV} \ RV))))).\]

We suspect that the terms \((\text{TRUE-LISTP} \ X2)\) and \((P)\) are irrelevant to the truth of this conjecture and throw them out. We will thus try to prove

Subgoal \(*1/2'6'\)
\[(\text{EQUAL} \ (\text{REV} \ (\text{APPEND} \ RV \ (\text{LIST} \ X1)))
\quad \text{(CONS} \ X1 \ (\text{REV} \ RV)))).\]

Name the formula above \(*1.1.\)

But now, ACL2 keeps \((P)\), and the proof succeeds.

We suspect that the term \((\text{TRUE-LISTP} \ X2)\) is irrelevant to the truth of this conjecture and throw it out. We will thus try to prove

Subgoal \(*1/2'6'\)
\[(\text{IMPLIES} \ (P) \n\quad \text{(EQUAL} \ (\text{REV} \ (\text{APPEND} \ RV \ (\text{LIST} \ X1)))
\quad \quad \text{(CONS} \ X1 \ (\text{REV} \ RV))))).\]
The Change in a Nutshell

Why does ACL2 now keep the hypothesis \((P)\)?
The Change in a Nutshell

Why does ACL2 now keep the hypothesis \((P)\)?
Technically: Why does ACL2 keep the literal \((\text{NOT} \ (P))\)?
The Change in a Nutshell

Why does ACL2 now keep the hypothesis \((P)\)?
Technically: Why does ACL2 keep the literal \((\text{NOT } (P))\)?
Recall the theorem exported from our encapsulate event.

```lisp
(defthm my-app-def
  (implies (p)
    (equal (my-app x y)
      (append x y))))
```
THE CHANGE IN A NUTSHELL

Why does ACL2 now keep the hypothesis \((P)\)?
Technically: Why does ACL2 keep the literal \((\text{NOT } (P))\)?
Recall the theorem exported from our encapsulate event.

(defthm my-app-def
 (implies (p)
 (equal (my-app x y)
 (append x y))))

- Variables of hypothesis \((p)\): \{\}.
- Variables of left-hand side \((\text{my-app } x \ y)\): \{x, y\}.
THE CHANGE IN A NUTSHELL

Why does ACL2 now keep the hypothesis \((P)\)?

Technically: Why does ACL2 keep the literal \((\text{NOT } (P))\)?

Recall the theorem exported from our encapsulate event.

```lisp
(defthm my-app-def
  (implies (p)
    (equal (my-app x y)
      (append x y))))
```

- Variables of hypothesis \((p)\): \{\}.
- Variables of left-hand side \((\text{my-app } x ~ y)\): \{x, y\}.

These are disjoint sets! So the function symbol \(p\) is marked as *relevant*, since \((p)\) can be useful for rewriting calls that don’t involve its (empty set of) variables.
Suppose p is a Boolean and we have two terms, as follows.

- Let t_1 be $(FN \ V_1 \ldots V_K)$, an application of a function symbol to distinct variables.
- Let t_2 be a term whose free variables are disjoint from those of t_1.
The New Heuristic in More Detail

Suppose p is a Boolean and we have two terms, as follows.

- Let t_1 be $(\text{FN } V_1 \ldots V_K)$, an application of a function symbol to distinct variables.
- Let t_2 be a term whose free variables are disjoint from those of t_1.

Then FN is relevant with parity p whenever t_1 or its negation is a hypothesis (perhaps among others), in which case:

- $p = \top$ if t_1 is a hypothesis;
- $p = \text{nil}$ if $(\text{not } t_1)$ is a hypothesis.
Example of “Relevant with Parity”

Recall our earlier example rewrite rule and the problem goal:

```
(encapsulate (((p) => *) ((my-app * *) => *))
  (local (defun p () t))
  (local (defun my-app (x y) (append x y)))
  (defthm my-app-def
    (implies (p)
      (implies (p)
        (equal (my-app x y)
          (append x y))))))
```

The “hypothesis” (P) is, internally, the literal \(\neg (P) \).

Parity \(t \) corresponds to “negated literal should be kept”, so:

ACL2 !>(assoc-eq 'p
 (global-val 'never-irrelevant-fns-alist
 (w state)))

ACL2 !>
EXAMPLE OF “RELEVANT WITH PARITY”

Recall our earlier example rewrite rule and the problem goal:

```
(encapsulate (((p) => *) ((my-app * *) => *))
  (local (defun p () t))
  (local (defun my-app (x y) (append x y)))
  (defthm my-app-def
    (implies (p)
      (equal (my-app x y)
        (append x y)))))

(IMPLIES (AND (P) (TRUE-LISTP X2))
  (EQUAL (REV (APPEND RV (LIST X1)))
    (CONS X1 (REV RV))))
```
Example of "Relevant with Parity"

Recall our earlier example rewrite rule and the problem goal:

(encapsulate (((p) => *) ((my-app * *) => *)))
 (local (defun p () t))
 (local (defun my-app (x y) (append x y)))
 (defthm my-app-def
 (implies (p)
 (equal (my-app x y)
 (append x y)))))

(IMPLIES (AND (P) (TRUE-LISTP X2))
 (EQUAL (REV (APPEND RV (LIST X1)))
 (CONS X1 (REV RV))))

The "hypothesis" \(P \) is, internally, the literal \(\text{NOT} \ (P) \). Parity \(t \) corresponds to "negated literal should be kept", so:
Example of “Relevant with Parity”

Recall our earlier example rewrite rule and the problem goal:

```
(encapsulate (((p) => *) ((my-app * *) => *))
  (local (defun p () t))
  (local (defun my-app (x y) (append x y)))
  (defthm my-app-def
   (implies (p)
     (equal (my-app x y)
       (append x y)))))

(IMPLIES (AND (P) (TRUE-LISTP X2))
  (EQUAL (REV (APPEND RV (LIST X1)))
    (CONS X1 (REV RV))))
```

The “hypothesis” (P) is, internally, the literal (NOT (P)). Parity t corresponds to “negated literal should be kept”, so:

ACL2 !>(assoc-eq 'p
 (global-val 'never-irrelevant-fns-alist
 (w state)))

(P . T)
ACL2 !>
RELEVANCE WITH PARITY FOR VARIOUS RULES

Assume that terms $t_1 = (\text{FN } V_1 \ldots V_K)$ (distinct V_i) and t_2 have disjoint free variables, where for a rule of the given class:
Relevance with Parity for Various Rules

Assume that terms $t_1 = (\text{FN } V_1 \ldots V_K)$ (distinct V_i) and t_2 have disjoint free variables, where for a rule of the given class:

- **Rule-classes**: \texttt{REWRITE} and \texttt{DEFINITION}: t_2 is the rule’s left-hand side.
- **Rule-class**: \texttt{LINEAR}: t_2 is a max-term.
- **Rule-class**: \texttt{TYPE-PRESCRIPTION}: t_2 is a typed-term.
- **Rule-class**: \texttt{FORWARD-CHAINING}: t_2 is the conclusion.
Relevance with Parity for Various Rules

Assume that terms \(t_1 = (\text{FN} \ V_1 \ldots \ V_K) \) (distinct \(V_i \)) and \(t_2 \) have disjoint free variables, where for a rule of the given class:

- **Rule-classes**: REWRITE and DEFINITION: \(t_2 \) is the rule’s left-hand side.
- **Rule-class**: LINEAR: \(t_2 \) is a max-term.
- **Rule-class**: TYPE-PRESCRIPTION: \(t_2 \) is a typed-term.
- **Rule-class**: FORWARD-CHAINING: \(t_2 \) is the conclusion.

Then \(\text{FN} \) is relevant with parity \(p \) for such rules when:

- \(p=t \) : \((\text{implies} \ (\text{and} \ldots \ t_1 \ldots) \ldots)\)
- \(p=\text{nil} \) : \((\text{implies} \ (\text{and} \ldots \ (\text{not} \ t_1) \ldots) \ldots)\)
Relevance with Parity for Various Rules

Assume that terms \(t_1 = (\text{FN} \ V_1 \ldots \ V_K) \) (distinct \(V_i \)) and \(t_2 \) have disjoint free variables, where for a rule of the given class:

- **Rule-classes**: \text{REWRITE and DEFINITION}: \(t_2 \) is the rule’s left-hand side.
- **Rule-class**: \text{LINEAR}: \(t_2 \) is a max-term.
- **Rule-class**: \text{TYPE-PRESCRIPTION}: \(t_2 \) is a typed-term.
- **Rule-class**: \text{FORWARD-CHAINING}: \(t_2 \) is the conclusion.

Then \text{FN} is relevant with parity \(p \) for such rules when:

- \(p=\text{t} \): (implies (and \ldots \ t_1 \ldots) \ldots)
- \(p=\text{nil} \): (implies (and \ldots \ (\text{not} \ t_1) \ldots) \ldots)

For a call \(u \) of \text{FN} on distinct variables:

- literal \(u \) is never irrelevant (dropped) if \(p = \text{nil} \); and
- literal \((\text{not} \ u) \) is never irrelevant (dropped) if \(p = \text{t} \).
Additional Parities
ADDITIONAL PARITIES

- A function symbol FN can be irrelevant with parity t in one rule and with parity nil in another rule. We then store FN with parity both.
A function symbol FN can be irrelevant with parity \top in one rule and with parity nil in another rule. We then store FN with parity $:\text{both}$.

We also store FN as irrelevant for suitable occurrences of t_1 in conclusions. That might be overkill.
Additional Parities

- A function symbol FN can be irrelevant with parity \top in one rule and with parity nil in another rule. We then store FN with parity both.
- We also store FN as irrelevant for suitable occurrences of t_1 in conclusions. That might be overkill.
- There is a second criterion for irrelevant components (besides single-literal components based on calls of irrelevant literals): all function symbols the component are among a fixed set of primitives.
A function symbol FN can be irrelevant with parity \top in one rule and with parity nil in another rule. We then store FN with parity both.

We also store FN as irrelevant for suitable occurrences of t_1 in conclusions. That might be overkill.

There is a second criterion for irrelevant components (besides single-literal components based on calls of irrelevant literals): all function symbols the component are among a fixed set of primitives.

Unchanged, except that NOT has been added to that set (since the other criterion is stricter).
Timing (1)

Does the use of *irrelevance with parity* slow down ACL2?
TIMING (1)

Does the use of *irrelevance with parity* slow down ACL2?

- Does *using* of that information slow down the *eliminate-irrelevance* procedure?
 - Not concerning — procedure is invoked only just before a sub-induction; rather rare in practice.
TIMING (1)

Does the use of *irrelevance with parity* slow down ACL2?

- Does *using* of that information slow down the *eliminate-irrelevance* procedure?
 - Not concerning — procedure is invoked only just before a sub-induction; rather rare in practice.

- Is *maintaining* such information expensive?
 - Info is stored in an alist.
 - Each suitable rule causes linear lookup in the alist and possibly its extension — potentially quadratic behavior. (Should we consider an applicative hash-table (*fast alist*)?)
TIMING (1)

Does the use of *irrelevance with parity* slow down ACL2?

- Does *using* of that information slow down the *eliminate-irrelevance* procedure?
 - Not concerning — procedure is invoked only just before a sub-induction; rather rare in practice.

- Is *maintaining* such information expensive?
 - Info is stored in an alist.
 - Each suitable rule causes linear lookup in the alist and possibly its extension — potentially quadratic behavior.
 (Should we consider an applicative hash-table (*fast alist*)?)

Regression suite didn’t show significant time difference, but let’s look at other evidence against slowdown.
TIMING (2)

Stress test:

```lisp
(time$ (include-book "doc/top" :dir :system)).
```

Showed essentially no change!

```lisp
;;; old
; 782.20 seconds realtime, 777.17 seconds runtime
; (23,612,574,784 bytes allocated).

;;; new
; 775.99 seconds realtime, 772.39 seconds runtime
; (23,952,558,640 bytes allocated).
```

ACL2 !>(length (global-val 'never-irrelevant-fns-alist (w state)))

11869

ACL2 !>
TIMING (3)

Seems like the new global is a non-issue, since a symbol-alist of length 11,869 is trivial to traverse. On my Mac:

ACL2 !>:q

Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).

? (defun foo (sym n)
 (let ((x (make-list n :initial-element '(a . b))))
 (time$ (assoc-eq sym x))))
FOO
? (foo 'c 1000000)
; (ASSOC-EQ SYM ...) took
; 0.00 seconds realtime, 0.00 seconds runtime
; (0 bytes allocated).
NIL
? (foo 'c 10000000)
; (ASSOC-EQ SYM ...) took
; 0.03 seconds realtime, 0.03 seconds runtime
; (0 bytes allocated).
NIL
?
Question 1: Make the heuristic attachable?
Miscellaneous Considerations

Question 1: Make the heuristic attachable?
Answer: Seems like overkill. After all, *eliminate-irrelevance* only occurs before a sub-induction, and nobody should rely on sub-inductions.
Miscellaneous Considerations

Question 1: Make the heuristic attachable?

Answer: Seems like overkill. After all, `eliminate-irrelevance` only occurs before a sub-induction, and nobody should rely on sub-inductions.

Question 2: Extend irrelevance with a sort of transitive closure?
Question 1: Make the heuristic attachable?
Answer: Seems like overkill. After all, `eliminate-irrelevance` only occurs before a sub-induction, and nobody should rely on sub-inductions.

Question 2: Extend irrelevance with a sort of transitive closure?
Suppose for example we have these three rewrite rules.

\[
\begin{align*}
& (\text{implies} \ (f1 \ x) \ (f2 \ x)) \\
& (\text{implies} \ (f2 \ x) \ (f3 \ x)) \\
& (\text{implies} \ (f3 \ x) \ (h \ y \ z))
\end{align*}
\]

Then just as we don’t want to drop a hypothesis (negated literal for) \((f3 \ x)\), we don’t want to drop \((f1 \ x)\) or \((f2 \ x)\).
Question 1: Make the heuristic attachable?
Answer: Seems like overkill. After all, eliminate-irrelevance only occurs before a sub-induction, and nobody should rely on sub-inductions.

Question 2: Extend irrelevance with a sort of transitive closure? Suppose for example we have these three rewrite rules.

\[
\begin{align*}
&\text{(implies (f1 x) (f2 x))} \\
&\text{(implies (f2 x) (f3 x))} \\
&\text{(implies (f3 x) (h y z))}
\end{align*}
\]

Then just as we don’t want to drop a hypothesis (negated literal for) \((f3 \ x)\), we don’t want to drop \((f1 \ x)\) or \((f2 \ x)\).
Answer: Nah, seems like overkill for such a last-ditch heuristic.
CONCLUDING REMARKS

- **Bottom line:** Eliminate-irrelevance is fairly minor. But this tweak, which arose from J’s work on apply$, was helpful for that work and could help others.

- **Thanks for your attention.**

- (If there’s extra time, I could give a sense of the source code (e.g., eliminate-irrelevance-clause (through irrelevant-lits and irrelevant-clausep) and add-rewrite-rule (through add-rewrite-rule2 and extend-never-irrelevant-fns-alist).)