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Formal Definitions

Reliability = P(no failure occurs before certain time)

R(t) = Pr(X > t)

= 1− Pr(X ≤ t)

= 1− FX (t)

Availability is typically derived from reliability and maintainability
measures

A(t) =
MTBF

MTBF + MTTR

where MTBF = MTTF + MTTR

MTBF = Mean time between failures (Reliability Metric)
MTTF = Mean time to failure (Reliability Metric)
MTTR = Mean time to repair (Maintainability Metric)
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Dependability Modeling Techniques

Dependability 
Modeling Techniques

Fault Tree
 (FT)

Reliability Block Diagrams 
(RBD)

Markov Chain 
(MC)
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Example: Power Supply System

Main

User

Transformer

Generator

UPS

User requires continuous supply of power for his Lab PC

The UPS can support the load during a switch from the main supply to
the generator

Wants to determine the reliability of power supply system
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Example: Power Supply System

Step 1

Construct an RBD Model

Main

User

Transformer

Generator

UPS

Power Supply RBD

Transformer
(T)

Main
(M)

Generator
(G)

UPS
(U)

pow sys rbd = (M ∩ T) ∪ G ∪ U
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Example: Power Supply System

Step 2

Identify the RBD type

Step 3

Assigning failure distribution to each system components, i.e., e−λt

Step 3

Use the corresponding mathematical expression to evaluate the overall
reliability based on the sub-components reliability

P((M ∩ T) ∪ G ∪ U) = 1− (1− P(M) ∗ P(T)) ∗ (1− P(G)) ∗ (1− P(U))
= 1− (1− eMt ∗ e−Tt) ∗ (1− e−Gt) ∗ (1− e−Ut)
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Reliability Block Diagrams

Model the failure relationship of system components as a diagram of
sub-blocks and connectors (RBD)

Judge the failure characteristics of the overall system based on the
failure rates of sub-blocks

1 N

M

I O

The overall system failure happens if all the paths for successful
execution fail

Add more parallelism to meet the dependability goals
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Types of RBD

RBDs Mathematical Expressions

1 N OI O Rseries(t) = Pr(
N⋂
i=1

Ei (t)) =
N∏
i=1

Ri (t)

1

M

I O Rparallel(t) = Pr(
M⋃
i=1

Ei ) = 1−
M∏
i=1

(1− Ri (t))

1 N

M

OI Rparallel−series(t)= Pr(
M⋃
i=1

N⋂
j=1

Eij(t))= 1−
M∏
i=1

(1−
N∏
j=1

(Rij(t)))

1 N

M

I O Rseries−parallel(t)= Pr(
N⋂
i=1

M⋃
j=1

Eij(t))=
N∏
i=1

(1−
M∏
j=1

(1− Rij(t)))
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Dependability Analysis Techniques

Dependability Analysis 
Techniques

Paper-
and-Pencil 

Simulation
Formal 

Methods

Model 
Checking

Theorem 
Proving
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Comparison

Feature Paper-and-
pencil Proof

Simulation
Tools

Model Checking Higher-
order-Logic
Theorem
Proving

Models Paper (Ran-
dom Vari-
ables)

Computer Pro-
gram (Pseudo
Random Num-
bers)

State Transition
Graph (Markov
Chains)

Logical
Function

Analysis Analytically
(probability
distributions,
Expressions
for RBDs
and FTs and
MCs)

Numerical
Methods

State Explo-
ration

Formal Rea-
soning

Expressiveness X (?) X X

Accuracy X (?) X X

Automation X X
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Higher-order-Logic Theorem Proving

System Properties

Logical Model 
in HOL

Proof Assistant 
(HOL4, Isabelle/HOL)

Proof Goal

Mechanized Proofs of System Properties
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HOL4 Theorem Prover

Developed at University of Cambridge

Language: Standard ML

Logic: Higher-order Logic

5 axioms and 8 interference rules
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Formalization of RBDs

Defined new datatype in HOL to model RBDs

Datatype for RBD

Hol datatype‘ rbd = series of rbd list| parallel of rbd list|

atomic of ’a event ‘

Definition

(∀ p. rbd struct p (series []) = p space p) ∧
(∀ xs x p. rbd struct p (series (x::xs)) =

rbd struct p x ∩ rbd struct p (series xs)) ∧
(∀ p. rbd struct p (parallel []) = {}) ∧
(∀ xs x p. rbd struct p (parallel (x::xs)) =

rbd struct p x ∪ rbd struct p (parallel xs)) ∧
(∀ p a. rbd struct p (atomic a) = a)
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Series RBD

All components should be functional for the system to be functional

1 N OI O

Rseries(t) = Pr(
⋂N

i=1 Ei (t)) =
∏N

i=1 Ri (t)

HOL Formalization

` ∀ p L. prob space p ∧
(∀x’. MEM x’ L ⇒ x’ ∈ events p) ∧ ¬ NULL L ∧
mutual indep p L ⇒
(prob p (rbd struct p (series (rbd list L))) =

list prod (list prob p L))
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Parallel RBD

At least one components should be functional

1

M

I O Rparallel(t) = Pr(
⋃M

i=1 Ei ) = 1−
∏M

i=1(1− Ri (t))

HOL Formalization

` ∀ p L. prob space p ∧
(∀x’. MEM x’ L ⇒ x’ ∈ events p) ∧ ¬ NULL L ∧
mutual indep p L ⇒
(prob p (rbd struct p (parallel (rbd list L))) =

1 - list prod (one minus list (list prob p L)))
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Series-Parallel RBD

1 N

M

I O

Rseries−parallel(t)= Pr(
N⋂
i=1

M⋃
j=1

Eij(t))

=
N∏
i=1

(1−
M∏
j=1

(1− Rij(t)))

HOL Formalization

` ∀ p L. prob space p ∧
(∀z. MEM z L ⇒ ¬NULL z) ∧
(∀x’. MEM x’ (FLAT L) ⇒ x’ ∈ events p) ∧
mutual indep p (FLAT L) ⇒
(prob p (rbd struct p

((series of (λa. parallel (rbd list a))) L)) =

(list prod of

(λa. 1 - list prod (one minus list (list prob p a)))) L)
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1 N
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Nested Series-Parallel RBD

1 N

M

1 N

M
OI

R(t)= Pr(
N⋂
i=1

M⋃
j=1

(
N⋂

k=1

M⋃
l=1

Aijkl (t)))

=
N∏
i=1

(1−
M∏
j=1

(1− (
N∏

k=1

(1−
M∏
l=1

(1− Rijkl (t))))))

HOL Formalization

` ∀ p L. prob space p ∧ (∀ z. MEM z (FLAT (FLAT L)) ⇒
¬NULL z) ∧
(∀ x’. MEM x’ (FLAT (FLAT (FLAT L))) ⇒ x’ ∈ events p) ∧
mutual indep p (FLAT (FLAT (FLAT L))) ⇒
(prob p (rbd struct p ((series of parallel of series of

(λa. parallel (rbd list a))) L)) =

(list prod of (λa. 1 - list prod (one minus list a)) of

(λa. list prod a) of

(λa. 1 - list prod (one minus list (list prob p a)))) L)
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Application: Virtual Data Center
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Cloud Server

Hypervisor

CPU Memory NIC Disk

System Hardware

Applications

Operating System

Applications 

Operating System

Virtual Machine 1 Virtual Machine N

HW VMM

VM1

VMn

RServer = (exp−(λVMM+λHW )t)[1−
n∏

i=1

(1− exp−λVMi
t)]

HOL Formalization

` ∀ X VM X VMM X HW C VM C VMM C HW p t.

¬NULL X VM ∧ 0 ≤ t ∧ prob space p ∧
in events p (rel event list p ([[X VMM];[X HW];X VM]) t) ∧
mutual indep p (rel event list p ([[X VMM];[X HW];X VM]) t) ∧
LENGTH C VM = LENGTH X VM ∧
exp dist list p [[X VMM];[X HW];X VM] [[C VMM];[C HW];C VM] ⇒
(prob p (rbd virt cloud server p X VMM X HW X VM t =

exp (-(C VMM + C HW) * t) *

(1 - list prod (one minus list (exp func list C VM t)))
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VDC RBD

C1

Server1m

Server11

C2

Server2m

Server21

Cn

Servernm

Servern1
Network 
Module

Network 
Module

Network 
Module

Cluster1 Cluster2 Clustern

RVDCnm =
∏n

i=1[1−
∏m

j=1(1− RServerij ) ∗ exp−λCi
t ]
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Reliability of Virtual Data Center
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Dependability Computation

Amazon Data Centers # of Server Racks # of Servers

US East (Virginia) 5,030 321,920

US West (Oregon) 41 2,624

US West (N. California) 630 40,320

EU West (Ireland) 814 52,096

SA East (Sao Paulo) 25 1600

Translate HOL exponential expression to ML

Slower

HOL4/ACL2 Link

Fast Lisp
Highly automatic features for reasoning
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History

1991 - Proof Manager Tool by Fink et. al

Translates HOL input to first order assertions for Boyer-Moor prover

1999 - ACL2PII by Mark Staples

Linking HOL to ACL2 at ML level
No reasoning capabilities

2005 - HOL4/ACL2 link

Formal model of ACL2s (sexp Theory) intended universe in HOL
Deductive Reasoning
Ability to port functions either way

HOL4 -> ACL2
ACL2 -> HOL4
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Flow Between HOL and ACL2

Higher-order Logic

SEXP Theory

Translation to ACL2 
Syntax

Ready for Computation 
or Further Reasoning

Proof in HOL4
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Porting HOL Exponential Function

HOL Definition
` ∀ n a.

exp ratr a n =

if n = 0 then 1

else if 0 < n then

a * exp ratr a (n - 1)

else rat minv a * exp ratr a (n + 1)

SEXP Definition
` acl2 expt a n =

if zip n = nil then

ite (equal (fix a) (int 0)) (int 0)

(if less (int 0) n = nil then

mult (reciprocal a) (acl2 expt a (add n (int 1)))

else mult a (acl2 expt a (add n (unary minus (int 1)))))

else int 1
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Proving Equivalence

Theorem
` ∀b a. a 6= 0 ⇒
(rat (exp ratr a b) = acl2 expt (rat a) (int b))
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Translating to ACL2 Syntax

Automatic translator available in the existing Link

fun pr sexp t = pr mlsexp(term to mlsexp t)

pr sexp ‘‘ mult ((acl2 expt (cpx 10 27 0 1) (int (-&2))))

(add (add (acl2 expt (cpx 10 27 0 1) (int (-&3)))

(acl2 expt (cpx 10 27 0 1) (int (-&7))))

(acl2 expt (cpx 10 27 0 1) (int (-&5))))‘‘ ;

(ACL2::BINARY-* (ACL2::EXPT 10/27 -2/1)

(ACL2::BINARY-+ (ACL2::BINARY-+ (ACL2::EXPT 10/27 -3/1)

(ACL2::EXPT 10/27 -7/1))

(ACL2::EXPT 10/27 -5/1)))

ACL2 Output

8815121875287/1000000000
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Maclaurin Series

f (x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 · · ·

Represents a function as sum of terms

Better approximation depends upon of number of terms in a series

Negative exponential produces alternating series

e−x =
∑n

m=0(−1)m
x (m+1)

(m + 1)!
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Error Bound Property

|S(0, n)− S(0,m)| <= a(m+1)+1

where S(m, n) =
∑n

m(−1)mam

Series must be convergent

Each term should be positive

Proof Approach: Split into two cases

|S(0, 2n)− S(0,m)| <= a(m+1)+1

|S(0, 2n + 1)− S(0,m)| <= a(m+1)+1
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ACL2 Proof Approach

Use constraint function

(encapsulate

(((n-term *) => *)) ; (n-term n) is the |nth term| in our series

(local (defun n-term (n)

(/ (+ 1 n))))

(defthm positive-rationalp-n-term

(implies (natp n)

(and (rationalp (n-term n))

(< 0 (n-term n))))

:rule-classes :type-prescription)

(defthm n-term-decreases

(implies (and (natp n)

(<= 0 n))

(< (n-term (+ n 1))

(n-term n)))

:rule-classes :linear))
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Even and Odd Terms

|S(0, 2n)− S(0,m)| <= a(m+1)+1

(defthm abs-n-term-sum-even-le-n-term

(implies (and (natp m)

(natp n))

(<= (abs(- (n-term-sum 0 (+ m 1 (* 2 n)))

(n-term-sum 0 m)))

(n-term (+ (+ m 1) 1))))

|S(0, 2n)− S(0,m)| <= a(m+1)+1

(defthm abs-n-term-sum-odd-le-n-term

(implies (and (natp m)

(natp n))

(<= (abs(- (n-term-sum 0 (+ m 1 (* 2 n) 1))

(n-term-sum 0 m)))

(n-term (+ (+ m 1) 1))))
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Alternating Series Error Bound Property

|S(0, n)− S(0,m)| <= a(m+1)+1

(defthm abs-n-term-sum-le-n-term

(implies (and (natp m)

(natp n))

(<= (abs(- (n-term-sum 0 (+ m 1 n))
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Error Bound Property

|exp(0, n)− exp(0,m)| ≤ x (m+1)+1

((m + 1) + 1)!

Using Functional instantiation

ACL2 Formalization
(defthm abs-expt-error-bound

(implies (and (rationalp x)

(< 0 x)

(natp k)

(natp n)

(< x (+ k 1)))

(<= (abs (- (expt-minus-maclaurin x 0 (+ k 1 n))

(expt-minus-maclaurin x 0 k)))

(expt-div-fact x (+ (+ k 1) 1))))
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Thanks!
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