

Formal Dependability Analysis using Theorem Proving

Waqar Ahmed

ACL2 Seminar

University of Texas at Austin, Tx, USA

January 20, 2017

Outline

- Introduction
- 2 Dependability Modeling Techniques
- 3 HOL Formalization
- 4 HOL/ACL2 Link
- 6 Error Bound Property
- 6 Conclusions

Dependability

Dependability

Dependability

Formal Definitions

• Reliability = $\mathbb{P}(\text{no failure occurs before certain time})$

$$R(t) = Pr(X > t)$$

$$= 1 - Pr(X \le t)$$

$$= 1 - F_X(t)$$

Formal Definitions

• Reliability = $\mathbb{P}(\text{no failure occurs before certain time})$

$$R(t) = Pr(X > t)$$

$$= 1 - Pr(X \le t)$$

$$= 1 - F_X(t)$$

 Availability is typically derived from reliability and maintainability measures

•
$$A(t) = \frac{MTBF}{MTBF + MTTR}$$

where MTBF = MTTF + MTTR

- MTBF = Mean time between failures (Reliability Metric)
- MTTF = Mean time to failure (Reliability Metric)
- MTTR = Mean time to repair (Maintainability Metric)

Outline

- Introduction
- Dependability Modeling Techniques
- 3 HOL Formalization
- 4 HOL/ACL2 Link
- Error Bound Property
- 6 Conclusions

Dependability Modeling Techniques

- User requires continuous supply of power for his Lab PC
 - The UPS can support the load during a switch from the main supply to the generator
- Wants to determine the reliability of power supply system

Step 1

Construct an RBD Model

Power Supply RBD

Step 1

Construct an RBD Model

Power Supply RBD

 $\texttt{pow_sys_rbd} = (\texttt{M} \cap \texttt{T}) \cup \texttt{G} \cup \texttt{U}$

Step 2

Identify the RBD type

Step 3

Assigning failure distribution to each system components, i.e., $e^{-\lambda t}$

Step 3

Use the corresponding mathematical expression to evaluate the overall reliability based on the sub-components reliability

$$\begin{split} \mathbb{P}((\mathtt{M} \cap \mathtt{T}) \cup \mathtt{G} \cup \mathtt{U}) &= 1 - (1 - \mathbb{P}(\mathtt{M}) * \mathbb{P}(\mathtt{T})) * (1 - \mathbb{P}(\mathtt{G})) * (1 - \mathbb{P}(\mathtt{U})) \\ &= 1 - (1 - e^{\mathtt{M} \mathtt{t}} * e^{-\mathtt{T} \mathtt{t}}) * (1 - e^{-\mathtt{G} \mathtt{t}}) * (1 - e^{-\mathtt{U} \mathtt{t}}) \end{split}$$

Reliability Block Diagrams

- Model the failure relationship of system components as a diagram of sub-blocks and connectors (RBD)
- Judge the failure characteristics of the overall system based on the failure rates of sub-blocks

Reliability Block Diagrams

- Model the failure relationship of system components as a diagram of sub-blocks and connectors (RBD)
- Judge the failure characteristics of the overall system based on the failure rates of sub-blocks

- The overall system failure happens if all the paths for successful execution fail
 - Add more parallelism to meet the dependability goals

Types of RBD

RBDs	Mathematical Expressions
RDDS	N N
l-1 N 0	$R_{\text{series}}(t) = Pr(\bigcap_{i=1}^{N} E_i(t)) = \prod_{i=1}^{N} R_i(t)$
	$R_{ extit{parallel}}(t) = Pr(igcup_{i=1}^M E_i) = 1 - \prod_{i=1}^M (1 - R_i(t))$
1 N O	$R_{parallel-series}(t) = Pr(\bigcup_{i=1}^{M} \bigcap_{j=1}^{N} E_{ij}(t)) = 1 - \prod_{i=1}^{M} (1 - \prod_{j=1}^{N} (R_{ij}(t)))$
I N N N N N N N N N N N N N N N N N N N	$R_{\textit{series-parallel}}(t) = Pr(\bigcap_{i=1}^{N} \bigcup_{j=1}^{M} E_{ij}(t)) = \prod_{i=1}^{N} (1 - \prod_{j=1}^{M} (1 - R_{ij}(t)))$

Dependability Analysis Techniques

Feature	Paper-and- pencil Proof	Simulation Tools	Model Checking	Higher- order-Logic Theorem Proving

Feature	Paper-and- pencil Proof	Simulation Tools	Model Checking	Higher- order-Logic Theorem Proving
Models	Paper (Ran- dom Vari- ables)			
Analysis	Analytically (probability distributions, Expressions for RBDs and FTs and MCs)			
Expressiveness	√ (?)			
Accuracy	√ (?)			
Automation				

Feature	Paper-and- pencil Proof	Simulation Tools	Model Checking	Higher- order-Logic Theorem Proving
Models	Paper (Random Variables)	Computer Program (Pseudo Random Numbers)		
Analysis	Analytically (probability distributions, Expressions for RBDs and FTs and MCs)	Numerical Methods		
Expressiveness	√ (?)	\checkmark		
Accuracy	√ (?)			
Automation		✓		

Feature	Paper-and- pencil Proof	Simulation Tools	Model Checking	Higher- order-Logic Theorem Proving
Models	Paper (Ran- dom Vari- ables)	Computer Program (Pseudo Random Numbers)	State Transition Graph (Markov Chains)	
Analysis	Analytically (probability distributions, Expressions for RBDs and FTs and MCs)	Numerical Methods	State Exploration	
Expressiveness	√ (?)	\checkmark		
Accuracy	√ (?)		✓	
Automation		✓	✓	

Feature	Paper-and- pencil Proof	Simulation Tools	Model Checking	Higher- order-Logic Theorem Proving
Models	Paper (Ran- dom Vari- ables)	Computer Program (Pseudo Random Numbers)	State Transition Graph (Markov Chains)	Logical Function
Analysis	Analytically (probability distributions, Expressions for RBDs and FTs and MCs)	Numerical Methods	State Exploration	Formal Reasoning
Expressiveness	√ (?)	✓		✓
Accuracy	√ (?)		✓	√
Automation		√	√	

Higher-order-Logic Theorem Proving

HOL4 Theorem Prover

- Developed at University of Cambridge
- Language: Standard ML
- Logic: Higher-order Logic
- 5 axioms and 8 interference rules

Outline

- Introduction
- 2 Dependability Modeling Techniques
- 3 HOL Formalization
- 4 HOL/ACL2 Link
- Error Bound Property
- 6 Conclusions

Defined new datatype in HOL to model RBDs

Datatype for RBD

Defined new datatype in HOL to model RBDs

Datatype for RBD

Definition

Defined new datatype in HOL to model RBDs

Datatype for RBD

Definition

Defined new datatype in HOL to model RBDs

Datatype for RBD

Definition

Series RBD

All components should be functional for the system to be functional


```
\vdash \forall p L. prob_space p \land (\forallx'. MEM x' L \Rightarrow x' \in events p) \land \neg NULL L \land mutual_indep p L \Rightarrow (prob p (rbd_struct p (series (rbd_list L))) = list_prod (list_prob p L))
```

Parallel RBD

At least one components should be functional


```
\vdash \forall p L. prob_space p \land (\forallx'. MEM x' L \Rightarrow x' \in events p) \land \neg NULL L \land mutual_indep p L \Rightarrow (prob p (rbd_struct p (parallel (rbd_list L))) = 1 - list_prod (one_minus_list (list_prob p L)))
```

Series-Parallel RBD

$$egin{aligned} R_{series-parallel}(t) &= Pr(\bigcap_{i=1}^{N} \bigcup_{j=1}^{M} E_{ij}(t)) \ &= \prod_{i=1}^{N} (1 - \prod_{j=1}^{M} (1 - R_{ij}(t))) \end{aligned}$$

Series-Parallel RBD

$$egin{aligned} R_{series-parallel}(t) &= Pr(\bigcap_{i=1}^N \bigcup_{j=1}^N E_{ij}(t)) \ &= \prod_{i=1}^N (1 - \prod_{j=1}^M (1 - R_{ij}(t))) \end{aligned}$$

Nested Series-Parallel RBD

$$R(t) = Pr(\bigcap_{i=1}^{N} \bigcup_{j=1}^{M} (\bigcap_{k=1}^{N} \bigcup_{l=1}^{M} A_{ijkl}(t)))$$

$$= \prod_{i=1}^{N} (1 - \prod_{i=1}^{M} (1 - (\prod_{k=1}^{N} (1 - \prod_{l=1}^{M} (1 - R_{ijkl}(t)))))$$

HOL Formalization

```
\vdash \forall p L. prob_space p \land (\forall z. MEM z (FLAT (FLAT L)) \Rightarrow ¬NULL z) \land
```

(\forall x'. MEM x' (FLAT (FLAT L))) \Rightarrow x' \in events p) \land mutual_indep p (FLAT (FLAT (FLAT L))) \Rightarrow

(list_prod of (λ a. 1 - list_prod (one_minus_list a)) of (λ a. list_prod a) of

(λa . 1 - list_prod (one_minus_list (list_prob p a)))) L)

Nested Series-Parallel RBD

$$R(t) = Pr(\bigcap_{i=1}^{N} \bigcup_{j=1}^{M} (\bigcap_{k=1}^{N} \bigcup_{l=1}^{M} A_{ijkl}(t)))$$

$$= \prod_{i=1}^{N} (1 - \prod_{i=1}^{M} (1 - (\prod_{k=1}^{N} (1 - \prod_{l=1}^{M} (1 - R_{ijkl}(t)))))$$

HOL Formalization

```
\vdash ∀ p L. prob_space p \land (∀ z. MEM z (FLAT (FLAT L)) \Rightarrow
\negNULL z) \land
(∀ x'. MEM x' (FLAT (FLAT (FLAT L))) \Rightarrow x' ∈ events p) \land
mutual_indep p (FLAT (FLAT (FLAT L))) \Rightarrow
(prob p (rbd_struct p ((series of parallel of series of (\lambdaa. parallel (rbd_list a))) L)) =
(list_prod of (\lambdaa. 1 - list_prod (one_minus_list a)) of (\lambdaa. list_prod a) of
```

(λa. 1 - list_prod (one_minus_list (list_prob p a)))) L)

Application: Virtual Data Center

Cloud Server

$$R_{Server} = (\exp^{-(\lambda_{VMM} + \lambda_{HW})t})[1 - \prod_{i=1}^{n} (1 - \exp^{-\lambda_{VM_i}t})]$$

HOL Formalization

Cloud Server

$$R_{Server} = (\exp^{-(\lambda_{VMM} + \lambda_{HW})t})[1 - \prod_{i=1}^{n} (1 - \exp^{-\lambda_{VM_i}t})]$$

HOL Formalization

VDC RBD

$$R_{VDC_{nm}} = \prod_{i=1}^{n} [1 - \prod_{j=1}^{m} (1 - R_{Server_{ij}}) * exp^{-\lambda_{C_i} t}]$$

Reliability of Virtual Data Center

```
Theorem 8: ⊢ ∀ X_VM X_VMM X_HW X_C C_VM C_VMM C_HW C m n p t.
[A1]: 0 < t \( \tau \) prob_space p \( \Lambda \)</pre>
[A2]: ¬NULL (cloud_server_rv_list [X_VM] m n) \land ¬NULL X_VM \land
       ¬NULL (cloud_server_fail_rate_list [C_VM] m n) ∧ ¬NULL C_VM ∧
[A3]: not null list
        (FLAT (FLAT (cloud_server_rv_list [X_VM] m n))) \( \)
      ¬NULL (rel_event_list p X_C t) ∧
[A4]: (LENGTH C = LENGTH X_C) \( (LENGTH X_VM = LENGTH C_VM) \( \)
[A5]: in_events p (FLAT (FLAT (FLAT (four_dim_rel_event_list p
         (cloud_server_rv_list [X_VM] m n) t)))) \( \)
[A6]: rel_event p X_VMM t ∈ events p ∧
       rel_event p X_VM t ∈ events p ∧
       rel_event p X_HW t ∈ events p ∧
       in_events p (rel_event_list p X_C t) A
[A7]: exp_dist_list p X_C C ∧
       four_dim_exp_dist_list p
         (cloud_server_rv_list [[X_VMM];[X_HW];X_VM] m n)
         (cloud_server_fail_rate_list [[C_VMM];[C_HW];C_VM] m n) ∧
[A8]: mutual_indep p (rel_event_list p X_C t ++
        FLAT (FLAT (FLAT (four_dim_rel_event_list p
         (cloud_server_rv_list [[X_VMM];[X_HW];X_VM] m n) t)))) ⇒
  (prob p (rbd_VDC_cloud p X_C X_VMM X_HW X_VM m n t) =
   list_prod (exp_func_list C t) *
     (list_prod of (λa. 1 - list_prod (one_minus_list a)) of
      (λa. list_prod a) of
       (λa. 1 - list_prod (one_minus_list (exp_func_list a t))))
         (cloud_server_fail_rate_list [[C_VMM];[C_HW];C_VM] m n))
    W. Ahmed (UT Austin)
                                      Formal Dependability Analysis
                                                                               January 20, 2017
                                                                                                 27 / 44
```

Dependability Computation

Amazon Data Centers	# of Server Racks	# of Servers
US East (Virginia)	5,030	321,920
US West (Oregon)	41	2,624
US West (N. California)	630	40,320
EU West (Ireland)	814	52,096
SA East (Sao Paulo)	25	1600

- Translate HOL exponential expression to ML
 - Slower
- HOL4/ACL2 Link
 - Fast Lisp
 - Highly automatic features for reasoning

Outline

- Introduction
- 2 Dependability Modeling Techniques
- HOL Formalization
- 4 HOL/ACL2 Link
- Error Bound Property
- 6 Conclusions

History

- 1991 Proof Manager Tool by Fink et. al
 - Translates HOL input to first order assertions for Boyer-Moor prover
- 1999 ACL2PII by Mark Staples
 - Linking HOL to ACL2 at ML level
 - No reasoning capabilities
- 2005 HOL4/ACL2 link
 - Formal model of ACL2s (sexp Theory) intended universe in HOL
 - Deductive Reasoning
 - Ability to port functions either way
 - HOL4 -> ACL2
 - ACL2 -> HOL4

Flow Between HOL and ACL2

Porting HOL Exponential Function

HOL Definition

```
⊢ ∀ n a.
    exp_ratr a n =
    if n = 0 then 1
    else if 0 < n then
        a * exp_ratr a (n - 1)
    else rat_minv a * exp_ratr a (n + 1)</pre>
```

SEXP Definition

```
H acl2_expt a n =
if zip n = nil then
  ite (equal (fix a) (int 0)) (int 0)
   (if less (int 0) n = nil then
        mult (reciprocal a) (acl2_expt a (add n (int 1)))
    else mult a (acl2_expt a (add n (unary_minus (int 1))))
else int 1
```

Proving Equivalence

Theorem

```
\vdash \forallb a. a \neq 0 \Rightarrow (rat (exp_ratr a b) = acl2_expt (rat a) (int b))
```

Translating to ACL2 Syntax

Automatic translator available in the existing Link

```
fun pr_sexp t = pr_mlsexp(term_to_mlsexp t)
pr_sexp '' mult ((acl2_expt (cpx 10 27 0 1) (int (-&2))))
(add (add (acl2_expt (cpx 10 27 0 1) (int (-&3)))
          (acl2_expt (cpx 10 27 0 1) (int (-&7))))
     (acl2_expt (cpx 10 27 0 1) (int (-&5))))'';
(ACL2::BINARY-* (ACL2::EXPT 10/27 -2/1)
(ACL2::BINARY-+ (ACL2::BINARY-+ (ACL2::EXPT 10/27 -3/1)
                                 (ACL2::EXPT 10/27 -7/1))
                (ACL2::EXPT 10/27 -5/1)))
```

ACL2 Output

8815121875287/1000000000

Maclaurin Series

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 \cdots$$

- Represents a function as sum of terms
- Better approximation depends upon of number of terms in a series
- Negative exponential produces alternating series

$$e^{-x} = \sum_{m=0}^{n} (-1)^m \frac{x^{(m+1)}}{(m+1)!}$$

Outline

- Introduction
- 2 Dependability Modeling Techniques
- HOL Formalization
- 4 HOL/ACL2 Link
- 6 Error Bound Property
- 6 Conclusions

Error Bound Property

$$|S(0, n) - S(0, m)| \le a_{(m+1)+1}$$

where $S(m, n) = \sum_{m=0}^{n} (-1)^m a_m$

- Series must be convergent
- Each term should be positive
- Proof Approach: Split into two cases
 - $|S(0,2n) S(0,m)| \le a_{(m+1)+1}$
 - $|S(0,2n+1) S(0,m)| \le a_{(m+1)+1}$

ACL2 Proof Approach

Use constraint function

```
(encapsulate
(((n-term *) => *)); (n-term n) is the |nth term| in our series
(local (defun n-term (n)
   (/(+1n)))
(defthm positive-rationalp-n-term
  (implies (natp n)
   (and (rationalp (n-term n))
         (< 0 (n-term n)))
:rule-classes :type-prescription)
(defthm n-term-decreases
 (implies (and (natp n)
                (<= 0 n))
           (< (n-term (+ n 1))
              (n-term n))
:rule-classes :linear))
```

Even and Odd Terms

(n-term (+ (+ m 1) 1))))

$$|S(0,2n) - S(0,m)| <= a_{(m+1)+1}$$

$$(\text{defthm abs-n-term-sum-odd-le-n-term} \\ (\text{implies (and (natp m)} \\ (\text{natp n})) \\ (<= (\text{abs(- (n-term-sum 0 (+ m 1 (* 2 n) 1))} \\ (\text{n-term-sum 0 m}))) \\ (\text{n-term (+ (+ m 1) 1))})$$

Alternating Series Error Bound Property

$$|S(0,n) - S(0,m)| \le a_{(m+1)+1}$$

(defthm abs-n-term-sum-le-n-term (implies (and (natp m) (natp n)) (<= (abs(- (n-term-sum 0 (+ m 1 n)) (n-term-sum 0 m))) (n-term (+ (+ m 1) 1))))

Error Bound Property

$$|exp(0,n) - exp(0,m)| \le \frac{x^{(m+1)+1}}{((m+1)+1)!}$$

Using Functional instantiation

ACL2 Formalization

Outline

- Introduction
- 2 Dependability Modeling Techniques
- 3 HOL Formalization
- 4 HOL/ACL2 Link
- Error Bound Property
- 6 Conclusions

Conclusion

- Dependability
 - Reliability
 - Availability
 - Maintainability

Conclusion

- Dependability
 - Reliability
 - Availability
 - Maintainability
- Dependability Modeling Techniques
 - Reliability Block Diagram
 - Fault Tree
 - Markov Chains
- Formal Dependability Analysis Techniques
 - Model Checking
 - Interactive Theorem Proving

Conclusion

- Dependability
 - Reliability
 - Availability
 - Maintainability
- Dependability Modeling Techniques
 - Reliability Block Diagram
 - Fault Tree
 - Markov Chains
- Formal Dependability Analysis Techniques
 - Model Checking
 - Interactive Theorem Proving
- Benefits
 - Reason about key dependability properties of the system
 - Computational capabilities using HOL4/ACL2 Link

Thanks!

save.seecs.nust.edu.pk

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ