Verifying filesystems in ACL2

Towards verifying file recovery tools

Mihir Mehta

Department of Computer Science
University of Texas at Austin

mihir@cs.utexas.edu

09 March, 2017



Overview

1. Why we need a verified filesystem
2. Our approach

3. Progress so far
4

. Future work



Why we need a verified filesystem

> Filesystems are everywhere.

» Yet they're poorly understood - especially by people who
should.

» Modern filesystems have become increasingly complex, and so
have the tools to analyse and recover data from them.

> It might be nice, it might be nice to verify that the filesystems
and the tools actually provide the guarantees they claim to
provide.



What we need

> Our filesystem should offer a set of operations that are
sufficient for running a workload.

> However, as theorem proving researchers, we are loath to
construct more operations than necessary - so what's the
minimal set?

» We could attempt to emulate the VFS and replicate the
operations for inodes, dentries, and files.

» That would mean 19 inode operations, 6 dentry operations
and 22 file operations.



Minimal set of operations?

» There might be a better way, based on the Google file system.
» Here, we have a minimal set of operations:
» create
» delete
> open
» close
> read
> write
» Further, we could leave open and close for the time when we
want to deal with multiprogramming and concurrency.
» Thus, we have a minimal set of filesystem operations which

we can model.



Modelling a filesystem

» What should the filesystem look like?

» We're used to thinking of the filesystem as a tree... how
about that?

» Thinking along the lines of recursive datatypes, an alist
containing only strings or similar alists in its strip-cdrs
could do the job.

» The strip-cars would contain the file/directory names.

» Next, we'll look at a running example where we see what it
looks like to add/delete files from such a model.



Model 1




Model 1




Model 1




Model 1




Model 2

» Model 1 can hold unbounded text files and nested directory
structures.

» However, there's no metadata, either to provide additional
information or to validate the contents of the file.

» With an extra field for length, we can create a simple version

of fsck that checks file contents for consistency, and verify
that create, delete etc preserve this notion of consistency.



Model 2




Model 2




Model 2




Model 2




Model 3

> As the next step, we would like to begin externalising the
storage of file contents.

» It would also be good to break up file contents into " blocks”
of a finite length.

» Note: this would mean storing file length is no longer optional.



Model 3

Cmiiniz (05 (3D Eme)

fcketh (12) (0D

Table: Disk
\0\0\0
Sun 19:0
0 o =




Model 3

Table: Disk

\0\0\0
Sun 19:0
0

Tue 21:0
0




Model 3

Cmiiniz (05 (3D Eme)

feketd G5 D

Table: Disk
\0\0\0
Sun 19:0
0 o =




Model 3

A
gz =000 13, @\f

toei25' 29

Table: Disk
\0\0\0
Sun 19:0
0

Tue 21:0
0

Wed 01:0
0




Proof approaches and techniques

» In the fourth model, we implement garbage collection in the
form of an allocation vector.

» What guarantees do we need to show that a filesystem of this
kind is consistent?



Model 4

Cmiiniz (05 (3D Eme)

fcketh (12) (0D

Table: Disk
\0\0\0
Sun 19:0
0 o =




Model 4

Table: Disk

\0\0\0
Sun 19:0
0

Tue 21:0
0




Model 4

Cmiiniz (05 (3D Eme)

feketd G5 D

Table: Disk
\0\0\0
Sun 19:0
0 o =




Model 4

Cmiiniz (05 (3D Eme)

feketd (12 (0D

Table: Disk

\0\0\0
Wed 01:0
0




Proof approaches and techniques

» There are many properties that could be considered for
correctness, but the read-over-write theorems from the
first-order theory of arrays seem like a good place to start.

1. Reading from a location after writing to the same location
should yield the data that was written.

2. Reading from a location after writing to a different location
should yield the same result as reading before writing.

» For each of the models 1, 2 and 3, we have proofs of

correctness of the two read-after-write properties, based on the
proofs of equivalence between each model and its successor.



Proof approaches and techniques

1. For model 4, The disk and the allocation vector must be in
harmony initially and updated in lockstep.

2. Every block referred to in the filesystem must be marked
"used” in the allocation vector.
What about the complementary problem - making sure
unused blocks are unmarked?

3. If n blocks are available in the allocation vector, the allocation
algorithm must provide n blocks when requested.

4. No matter how many blocks are returned by the allocation
algorithm, they must be unique and disjoint with the blocks
allocated to other files.



Future work

> Finish finitising the length of the disk and garbage collecting
disk blocks that are left unused after a write or a delete
operation.

» Possibly, add the system call open and close with the
introduction of file descriptors.
This would be a step towards the study of concurrent FS
operations.

> Linearise the tree, leaving only the disk.

» Eventually emulate the CP/M filesystem as a convincing proof
of concept, and move on to fsck and file recovery tools.



Related work

> In Haogang Chen's 2016 dissertation, the author uses Coq to
build a filesystem (named FSCQ) which is proven safe against
crashes.

» His implementation was exported into Haskell, and showed
comparable performance to ext4 when run on FUSE.

» Our work is different - we're building verified models of actual
filesystems with binary compatibility as the aim.



