
Modeling HexNet in ACL2
Developing a formal specification for HexNet

Presentation by Ebele Esimai

Outline

• Overview of HexNet and its features

• Current Model in ACL2

• Desired theorems

• Future work

• Some ACL2 functions

HexNet Layout
• Hexagonal layout of the network (proposed by Ivan

Sutherland 2013)

• Each node in the network is a called a JUNCTION

‣ arbitration

‣ packet routing

‣ packet update

• Each edge is a link, storage element for packets

• Branching and Merging in the network is two-way

Junctions

• Junctions can be of two types

‣ Terminal : This is the point of packet entry
or exit from the network.

‣ Repeaters : This accepts packets and
forwards it to another junction.

Terminals

Repeater

Features of HexNet
Arbitration

• Correct decision behavior of the network when
packets arrive on two input links at nearly the
same time.

• A mechanism for fairness is necessary. The
model stores the preference from the arbitration
decision at the previous cycle.

• Arbitration is based on the output direction.

• One of the packets is chosen to proceed while
the second waits.

• In the following cycle, the packet waiting gets to
proceed.

W

S

E

pkt1

pkt2

Features of HexNet
Arbitration

• Correct decision behavior of the network when
packets arrive on two input links at nearly the
same time.

• A mechanism for fairness is necessary. The
model stores the preference from the arbitration
decision at the previous cycle.

• Arbitration is based on the output direction.

• One of the packets is chosen to proceed while
the second waits.

• In the following cycle, the packet waiting gets to
proceed.

W

S

E

pkt1

pkt2

Features of HexNet
Arbitration

• Correct decision behavior of the network when
packets arrive on two input links at nearly the
same time.

• A mechanism for fairness is necessary. The
model stores the preference from the arbitration
decision at the previous cycle.

• Arbitration is based on the output direction.

• One of the packets is chosen to proceed while
the second waits.

• In the following cycle, the packet waiting gets to
proceed.

W

S

E

pkt3

pkt2

Features of HexNet
Arbitration

• Correct decision behavior of the network when
packets arrive on two input links at nearly the
same time.

• A mechanism for fairness is necessary. The
model stores the preference from the arbitration
decision at the previous cycle.

• Arbitration is based on the output direction.

• One of the packets is chosen to proceed while
the second waits.

• In the following cycle, the packet waiting gets to
proceed.

W

S

E

pkt3 pkt2

Features of HexNet
Packet Routing

• The network uses Advanced Address Decoding

• This means that the routing function calculates the next
direction, i.e. turn-signal, a step in advance. This means before it
actually takes a turn.

• The routing function decides the packet direction by comparing
the final destination of the packet and the address of next
junction.

• Let the current turn_signal of pkt1 be East, thus, the packet would
continue to junction C.

Turn_signal (pkt1) = East

• But before leaving junction B, it calculates the value of the next
turn_signal, that is, the direction it should take when it leaves
junction C.

(compare_addresses junctC final_destination) => East or South

E

B C DA

pkt1

Packet Routing
Routing Algorithm

• Get the next possible junctions from current
junction.

• Check if either junction is the final destination
address

• If not, check if either junction is a terminal. If one is
a terminal, return the direction of the repeater.

• If either junction is a repeater, compare the current
junction address with the final destination address.

‣ return the direction of repeater which is closest
to the final destination

‣ vertical movement is preferred

E

B C DA

pkt1

• Next possible junctions from C are D and E

Current Model in ACL2

• The network is modeled as a graph.

• Addressing is based on a cartesian
grid, as such, each junction is list of
its x coordinate and its y coordinate

• Packet movement in the network is
bidirectional.

• Packet entry and exit from the
network is through the terminals

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

Packets

• A packet is modeled as a list that contains

‣ A turn signal :- the next direction the packet
should take

‣ Final terminal :- the address of final
destination of the packet

‣ Source terminal :- the address of the origin of
the packet

‣ The information to be passed along

Pkt1
‘(E (8 7) (0 2) ‘data)

• The packets are stored on the links.

• A link-table shows the current state of all the links
in the network at a given time.

• A link can either be empty or full.

• In the link-table, each link is depicted as either
empty or with the packet stored on it.

(defconst *linktable*

 '((S2 (E (12 2) (0 2) data1))

 (S1)

 (S4)

 (S3)

 …

 (T19 (E (12 2) (6 8) data2))

 …))

Packet Movement
• A packet can move along its path to its final

destination as long as

‣ the packet is well-formed

‣ the receiving link is empty

‣ if in a tie with another packet, the packet is
picked by the arbiter

‣ the routing function gives a valid direction

• Here, the system checks if the receiving link is
empty. If full, no update is made.

• Otherwise, if the packet is valid and it is picked
by the arbiter, then it calculates it next
turn_signal with the routing function and
repacks the packet with the new turn_signal.

• Then it updates the receiving link with the new
packet and removes the old packet from the
sending link.

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt1

pkt2

Packet Movement
• A packet can move along its path to its final

destination as long as

‣ the packet is well-formed

‣ the receiving link is empty

‣ if in a tie with another packet, the packet is
picked by the arbiter

‣ the routing function gives a valid direction

• Here, the system checks if the receiving link is
empty. If full, no update is made.

• Otherwise, if the packet is valid and it is picked
by the arbiter, then it calculates it next
turn_signal with the routing function and
repacks the packet with the new turn_signal.

• Then it updates the receiving link with the new
packet and removes the old packet from the
sending link.

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt1

pkt2

Adding new packets to the network
• A stream of inputs with some packet information -

a final destination address, a source address and
information to be passed along

• Calculate the first direction of the packet using
the routing algorithm.

• Get the link name, where the packet will stored
upon entry into the network

• If the link is not full, fill the link

• For example,

input stream = (list (list '((8 7) (3 4) data)

 ‘((6 8) (11 4) data)))

• The new link table would be

((S4 (E (12 2) (0 2) DATA)) <= pkt1

 (S15 (N (8 7) (3 4) DATA)) <= pkt3

 (S17 (N (6 8) (11 4) DATA)) <= pkt4

 (S26 (E (12 2) (6 8) DATA))…) <= pkt 2

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt2

pkt1

Adding new packets to the network
• A stream of inputs with some packet information -

a final destination address, a source address and
information to be passed along

• Calculate the first direction of the packet using
the routing algorithm.

• Get the link name, where the packet will stored
upon entry into the network

• If the link is not full, fill the link

• For example,

input stream = (list (list '((8 7) (3 4) data)

 ‘((6 8) (11 4) data)))

• The new link table would be

((S4 (E (12 2) (0 2) DATA)) <= pkt1

 (S15 (N (8 7) (3 4) DATA)) <= pkt3

 (S17 (N (6 8) (11 4) DATA)) <= pkt4

 (S26 (E (12 2) (6 8) DATA))…) <= pkt 2

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt3

pkt2

pkt1

pkt4

Packets leaving the network
• Maintain a global history for delivered packets

• Walk through the link table before each cycle of the
system

• Check if packet present on the link has the final
destination address as the current destination of link

• If so, update the global history and empty the link

• For example, if the current link table is

(((S12 (DONE (12 2) (0 2) DATA)) <= pkt1

 (T9 (E (12 2) (6 8) DATA)) <= pkt2

 (S26 (N (8 7) (3 4) DATA)) <= pkt3

 (T20 (DONE (6 8) (11 4) DATA))) …) <= pkt4

• Since some packets have arrived at the destination,
they leave the network and are updated in the global
history

Link table => ((S12 (DONE (12 2) (6 8) DATA)) <= pkt2

 (T22 (DONE (8 7) (3 4) DATA))…) <= pkt3

global history => ((DONE (6 8) (11 4) DATA) <= pkt4

 (DONE (12 2) (0 2) DATA)) <= pkt1

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt3

pkt2

pkt1

pkt4

Packets leaving the network
• Maintain a global history for delivered packets

• Walk through the link table before each cycle of the
system

• Check if packet present on the link has the final
destination address as the current destination of link

• If so, update the global history and empty the link

• For example, if the current link table is

(((S12 (DONE (12 2) (0 2) DATA)) <= pkt1

 (T9 (E (12 2) (6 8) DATA)) <= pkt2

 (S26 (N (8 7) (3 4) DATA)) <= pkt3

 (T20 (DONE (6 8) (11 4) DATA))) …) <= pkt4

• Since some packets have arrived at the destination,
they leave the network and are updated in the global
history

Link table => ((S12 (DONE (12 2) (6 8) DATA)) <= pkt2

 (T22 (DONE (8 7) (3 4) DATA))…) <= pkt3

global history => ((DONE (6 8) (11 4) DATA) <= pkt4

 (DONE (12 2) (0 2) DATA)) <= pkt1

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt3

pkt2

Example

• Link table before execution

(((S2 (E (12 2) (0 2) DATA)) <= pkt1
 (T19 (E (12 2) (6 8) DATA)) <= pkt2
 …))

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt1

pkt2

Example

• Link table after 1 step and introduction of
two packets

(((S4 (E (12 2) (0 2) DATA)) <=pkt1
 (S15 (N (8 7) (3 4) DATA)) <= pkt3

 (S17 (N (6 8) (11 4) DATA)) <= pkt4
 (S26 (E (12 2) (6 8) DATA)) <= pkt2

 …))

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt1

pkt2

pkt3 pkt4

Example

• Link table after 2 steps

(((S6 (E (12 2) (0 2) DATA)) <=pkt1
 (T14 (E (8 7) (3 4) DATA)) <= pkt3
 (S28 (S (12 2) (6 8) DATA)) <= pkt2
 (T16 (W (6 8) (11 4) DATA)) <= pkt4

 …))

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt1

pkt2

pkt3 pkt4

Example

• Link table after 3 steps

(((S8 (E (12 2) (0 2) DATA)) <=pkt1
 (S22 (E (8 7) (3 4) DATA)) <= pkt3

 (S27 (W (6 8) (11 4) DATA)) <= pkt4
 (T15 (S (12 2) (6 8) DATA)) <= pkt2

 …))

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt1

pkt2

pkt3

pkt4

Example

• Link table after 4 steps

(((S10 (E (12 2) (0 2) DATA)) <=pkt1

 (T9 (E (12 2) (6 8) DATA)) <= pkt2
 (S24 (E (8 7) (3 4) DATA)) <= pkt3

 (S25 (N (6 8) (11 4) DATA)) <= pkt4

 …))

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt1

pkt2

pkt3

pkt4

Example

• At this point, the arbiter picks between the
competing packets, pkt1 and pkt2

• Link table after 5 steps and arbitration

(((S12 (Done (12 2) (0 2) DATA)) <=pkt1

 (T9 (E (12 2) (6 8) DATA)) <= pkt2
 (S26 (N (8 7) (3 4) DATA)) <= pkt3

 (T20 (Done (6 8) (11 4) DATA)) <= pkt4
 …))

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt1

pkt2

pkt3
pkt4

Example

• Since some packets have reached their final
destination, they are added to global history

• Link table after 6 steps

(((S12 (Done (12 2) (6 8) DATA)) <= pkt2

 (T22 (Done (8 7) (3 4) DATA)) <= pkt3

 …))

• Global history

(((6 8) (11 4) DATA)
 (12 2) (0 2) DATA))))

(0 6) (4 6)

(6 8)

(8 7)

(2 6) (6 6)

(4 7)

(12 6)(10 6)(8 6)

(12 2)(10 2)(8 2)(6 2)(4 2)(2 2)(0 2)

(4 3) (8 3)

(0 2)

(11 4)(10 4)(2 4) (3 4)

pkt2

pkt3

Some Desired Properties
• Reachability

• Progress

• Packets are delivered

Reachability
• Every source can send a packet to any destination in the network

• By statically determining a path between any two junctions in the network, we can prove that
packets can move between any two points in the network.

• Using the function, “find-path”, we can build the path that the packet will take between two
junctions junctA and junctB.

(defthm reachability
(implies (and (graphp g)
 (junctp junctA g)
 (junctp junctB g))
 (let ((p (find-path junctA junctB g)))
 (and (pathp p g)
 (equal (car p) junctA)
 (equal (car (last p)) junctB)))))

Progress
• However, we can reason about progress better by using the reachability property

• By checking if a packet is making progress along its path, we can prove that there is packet
movement

(defthm one-packet-progress
 (implies
 (and (Single-step-guard input-list lt st g MS)
 (packet-can-move pkt1 lt g))
 (< (len (get-packet-path pkt1 (Single-step input-list lt st g MS)))
 (len (get-packet-path pkt1 lt))))

• The function, (packet-can-move pkt1 lt g)), means that the output link is empty and the packet is
not waiting on an arbitration decision

Packets are delivered
Lemma: Without the introduction of new
packets into the system and enough
empty-inputs k, all the packets in the link
table will reach its destination.

A possibility of such K could be,

(len K) = (product of all packet path-lengths

 in the link table)

(defun-sk exists-k (output-stream lt inverse-map st g MS)
 (exists k
 (and (valid-input-stream k)
 (< 0 (len k))
 (destination-property
 (car (multi-step k output-stream lt
 inverse-map st g MS)))
 g))))
(defthm packet-destination-thm
 (implies (and (graphp g)
 (linktable-validp lt g)
 (statemap-validp st g)
 (inverse-map-p inverse-map g)
 (valid-output-stream output-stream g)
 (bitp MS))
 (exists-k output-stream lt inverse-map st g))
 :hints (("Goal" :use ((:instance exists-k-suff)))))

Future Work
• Work on proving all the above properties

• Continue to enhance model to depict other functionalities of HexNet

(defun arbiter (outlink inputs st g)
 "Makes decision about ties, by accessing the decision made at previous steps."
 (if (endp inputs)
 (mv nil st)
 (if (endp (cdr inputs))
 (mv (car inputs) st)
 (let* ((entry (assoc-equal outlink st))
 (pref (cdr entry)))
 (if (and pref (member-equal pref inputs))
 (let* ((new-pref (car (remove1-equal pref inputs)))
 (new-st (update-alist outlink new-pref st)))
 (mv pref new-st))
 (let* ((new-pref (cadr inputs))
 (new-st (update-alist outlink new-pref st)))
 (mv (car inputs) new-st)))))))

(defun Routing (past curr final g)
 "Calculates direction, one step in advance."
 (let ((dests (remove-equal past (sources curr g))))
 (cond
 ((atom dests) (if (equal curr final) ;; Case 1: If there is no junction in the list Dests, then the packet is at its destination or there is an error
 ‘Done
 (cw "Bad route")))
 ((atom (cdr dests)) (get-direction curr (car dests) g)) ;; Case 2: If there is 1 junction in the list Dests, then return the direction to the junction
 ((atom (cddr dests)) ;; Case 3: If there are 2 junctions, determine which will take the packet closest to the final destination
address
 (let* ((dest1 (car dests)) (dest2 (cadr dests))
 (dest1-x (car dest1)) (dest1-y (cadr dest1))
 (dest2-x (car dest2)) (dest2-y (cadr dest2))
 (dir1 (get-direction curr dest1 g))
 (dir2 (get-direction curr dest2 g))
 (curr-x (car curr)) (curr-y (cadr curr))
 (final-x (car final)) (final-y (cadr final)))
 (if (isTerminal dest1 g)
 (if (equal dest1 final)
 dir1
 (if (isTerminal dest2 g)
 (if (equal dest2 final) dir2 (cw "Bad route"))
 dir2))
 (if (isTerminal dest2 g)
 (if (equal dest2 final) dir2 dir1)
 (cond ((< curr-y final-y) (if (= dest1-y dest2-y)
 (if (< (abs (- dest1-x final-x)) (abs (- dest2-x final-x))) dir1 dir2)
 (if (< dest1-y dest2-y) dir2 dir1)))
 ((> curr-y final-y) (if (= dest1-y dest2-y)
 (if (< (abs (- dest1-x final-x)) (abs (- dest2-x final-x))) dir1 dir2)
 (if (< dest1-y dest2-y) dir1 dir2)))
 ((< curr-x final-x) (if (< dest1-x dest2-x) dir2 dir1))
 ((> curr-x final-x) (if (< dest1-x dest2-x) dir1 dir2))))))))))

(defun update-link (junct dest lt st g MS)
 "Moves the packet on an input link to an output link"

 (if MS ;; MS is the model state. This indicates if there is an error in the current state

 (mv MS lt st)
 (let* ((outlink (get-output-link junct dest g)))
 (if (get-packet outlink lt g) ;; The receiving link is full
 (mv MS lt st)
 (let* ((stack (remove-equal dest (sources junct g)))
 (inputs (current-inputs junct dest stack lt g))) ;; Check any packets on the input (sending) links of the junction

 (if (endp inputs)
 (mv MS lt st)
 (let* ((result (mv-list 2 (arbiter outlink inputs st g))) ;; Run inputs through the arbiter to choose one and store decision

 (input (car result))
 (new-st (cadr result)))
 (if (get-packet input lt g) ;; Check that the packet on the link is valid
 (let* ((pkt (get-packet input lt g))
 (final (cadr pkt))
 (turn_signal (routing junct dest final g))) ;; Run routing function to get the next turn signal

 (if (turn_signalp turn_signal)
 (let* ((new-pkt (list turn_signal final caddr pkt)) ;; repack packet with new turn_signal

 (new-link-state (update-alist outlink (list new-pkt) lt)) ;; update the receiving link with new packet
 (new-lt (update-alist input nil new-link-state))) ;; remove old packet from the sending link

 (mv MS new-lt new-st))
 (mv “Bad Route” lt new-st))) ;; Error message from the routing function, It can not return a valid turn signal

 (mv "Invalid packet" lt st))))))))) ;; Error message while reading the packet, the packet is not well-formed

(defun process-junct (junct neighbors lt st g MS)
 "Updates the links with packets connected to a junction"
 (declare (xargs :guard (and (graphp g)
 (linktable-validp lt g)
 (junctp junct g)
 (statemap-validp st g)
 (true-listp neighbors)
 (subsetp-equal neighbors (sources junct g))))
 (if MS
 (mv MS lt st)
 (if (endp neighbors)
 (mv MS lt st)
 (let* ((dest (car neighbors))
 (result (mv-list 3 (update-link junct dest lt st g MS)))
 (new-MS (car result))
 (new-lt (cadr result))
 (new-st (caddr result)))
 (process-junct junct (cdr neighbors) new-lt new-st g new-MS)))))

(defun Single-step (junct-list lt st g MS)
 "Run the interpreter once"
 (declare (xargs :guard (and (graphp g)
 (linktable-validp lt g)
 (statemap-validp st g)
 (true-listp junct-list)
 (subsetp-equal junct-list (all-juncts g))))
 (if MS
 (mv MS lt st)
 (if (endp junct-list)
 (mv MS lt st)
 (let* ((junct (car junct-list))
 (neighbors (sources junct g))
 (result (mv-list 3 (process-junct junct neighbors lt st g MS)))
 (new-MS (car result))
 (new-lt (cadr result))
 (new-st (caddr result)))
 (Single-step (cdr junct-list) new-lt new-st g new-MS)))))

(defun add-new-packets (input lt g)
 (declare (xargs :guard (and (graphp g)
 (linktable-validp lt g)
 (valid-input input g)))
 (if (endp input)
 lt
 (let* ((entry (car input))
 (final (car entry))
 (source (cadr entry))
 (data (caddr entry)))
 (if (isTerminal source g)
 (let* ((junctB (car (sources source g)))
 (turn_signal (routing source junctB final g)))
 (if (turn_signalp turn_signal)
 (let* ((pkt (list turn_signal final source data))
 (outlink (get-output-link source junctB g))
 (new-lt (update-alist outlink (list pkt) lt)))
 (add-new-packets (cdr input) new-lt g))
 (add-new-packets (cdr input) lt g)))
 lt))))

(defun remove-finished-packets (output-stream lnk-lst lt g)
 (declare (xargs :guard (and (graphp g)
 (linktable-validp lt g)
 (valid-output-stream output-stream g)))
 (if (atom lnk-lst)
 (mv lt output-stream)
 (if (get-packet (car lnk-lst) lt g)
 (let* ((pkt (get-packet (car lnk-lst) lt g))
 (turn_signal (car pkt)))
 (if (equal turn_signal 'Done)
 (let ((new-output-stream (cons (get-packet (car lnk-lst) lt g)
 output-stream))
 (new-lt (update-alist (car lnk-lst) nil lt)))
 (remove-finished-packets new-output-stream (cdr lnk-lst) new-lt g))
 (remove-finished-packets output-stream (cdr lnk-lst) lt g)))
 (remove-finished-packets output-stream (cdr lnk-lst) lt g))))

(defun multi-step (input-stream output-stream lt inverse-map st g MS)
 "Run the system multiple times"
 (declare (xargs :guard (and (graphp g)
 (linktable-validp lt g)
 (statemap-validp st g)
 (inverse-map-p inverse-map g)
 (valid-input-stream input-stream g)
 (valid-output-stream output-stream g)))
 (if MS
 (mv MS nil)
 (if (endp input-stream)
 (mv lt output-stream)
 (let* ((result1 (mv-list 2 (remove-finished-packets output-stream (strip-cars lt) lt g)))
 (trans1 (car result1))
 (new-output-stream (cadr result1))
 (junct-list (get-junct-list trans1 inverse-map g))
 (result (mv-list 3 (Single-step junct-list trans1 st g MS)))
 (new-MS (car result))
 (trans2 (cadr result))
 (new-linktable (add-new-packets (car input-stream) trans2 g))
 (new-statemap (caddr result)))
 (multi-step (cdr input-stream)
 new-output-stream
 new-linktable
 inverse-map
 new-statemap
 g
 new-MS)))))

