An Introduction to Agda

Curtis Dunham
February 1, 2019
Agenda

• History
• Agda
 – What it is
 – Why it’s interesting
 – Some basic definitions and proofs
• Demo
 – Emacs interaction
 – Typed holes
 – Short proofs
Intuitionistic Type Theory: The Forefathers

Brouwer
Intuitionism

Russell
Types
Intuitionism

- Briefly: mathematics **without**
 The Law of the Excluded Middle (LEM)

- LEM: All propositions are either true or false;
 \(\forall P, P \lor \neg P. \)
- Demands construction of witnesses:
 \(\exists x : P(x) \) can only be proven by constructing an object \(x \) such that \(P(x) \).
Russell’s Types

• Russell’s Paradox: “the set of all sets that do not contain themselves”

• Self-reference is problematic

• Types enforce a hierarchy in which self-reference is impossible
BHK Interpretation

• The Brouwer–Heyting–Kolmogorov Interpretation: interpretation of the logical operators in intuitionistic logic

• $A \land B$ requires a proof of A and a proof of B
• $A \lor B$ requires a proof of A or a proof of B

...
BHK Interpretation

- A → B requires a construction that transforms any proof of A into a proof of B
 - i.e. evidence a : A transformed by function f such that f(a) : B
- ⊥ (absurdity) has no proof
- ¬A means A → ⊥
Curry–Howard Correspondence

- and \leftrightarrow pairing
- or \leftrightarrow tagged union
- implication \leftrightarrow function application
- false/absurdity \leftrightarrow type with no members
Intuitionistic Type Theory

• Per Martin-Löf: Martin-Löf Type Theory (MLTT) (1972)

Some key contributions towards Agda:
• Calculus of Constructions, Coquand
• Calculus of Inductive Constructions, Paulin-Mohring
• UTT, Luo
• Agda 2, Ulf Norell
What is Agda?

From the website [1]:
• A dependently-typed functional programming language
• A proof assistant

A product of Sweden – Chalmers, Gothenburg University

Similar Systems

• Coq (CIC), Ocaml
• Matita (CIC), Ocaml
• Lean (CIC), C++
• Idris, Haskell
Agda and Haskell

Agda is...
- Written in Haskell
- Compiles to Haskell
- Liberally borrows Haskell syntax

Haskell influence brings:
- Fancy lambda calculus with pattern matching
- Significant indentation
Normal dependently typed features

• Types and terms share hierarchy of universes
 – Terms in types, types in terms – “full lambda cube”
 – Type functions
• “Propositions as Types”, “Proofs are Programs”
 • A theorem is the type of its proofs
 • A proof “proves” the theorem by inhabiting/having the type
• Dependent product (Π), dependent sum (Σ)
 – Constructive “for all” and “there exists” quantifiers
• Type inference: arguments can often be inferred
Programming Language or Prover?

Recall: Agda is both

• A dependently-typed functional programming language
• A proof assistant

In this logical system, type checking = proof checking

When using Agda as a prover, programs are not “compiled”; type checking is sufficient.
Distinct features

• Interactive editing of typed holes in Emacs
• Unicode

• Proof terms – deBruijn criterion ✓
 – Unlike tactic-oriented provers (e.g. Coq, HOL), in Agda the proof terms are written **directly**
 – A brief aside for the next few slides: This attribute receives undeserved negative prejudice
Proof Terms

• Back in 2010, Ben Delaware gave a Coq introduction to this audience
• He suggested that writing proof terms (as in Agda) is unpleasant

e.g. proof of associativity of list append:

Definition app_assoc :=
 list_ind
 (fun ao : list A => forall b c : list A, ao ++ b ++ c = (ao ++ b) ++ c)
 (fun b c : list A => refl_equal (b ++ c))
 (fun (a0 : A) (a1 : list A) (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)
 (b c : list A) =>
 let H :=
 eq_ind_r (fun l : list A => ao :: (a1 ++ b) ++ c = ao :: l)
 (refl_equal (ao :: (a1 ++ b) ++ c)) (IHa b c) in
 eq_ind_r (fun l : list A => ao :: a1 ++ b ++ c = l)
 (eq_ind_r (fun l : list A => ao :: l = ao :: l)
 (refl_equal (ao :: (a1 ++ b) ++ c)) (IHa b c)) H) a
Proof Tactics

• But that proofs by tactics was more pleasant
c.e.g. proof script for associativity of list append:

Lemma app_assoc : forall A (a b c : list A), a ++ (b ++ c) = (a ++ b) ++ c.
 induction a; simpl; intros.
 reflexivity.
 cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)).
 intros; rewrite H; rewrite IHa; reflexivity.
 rewrite IHa; reflexivity.
Qed.
Counterpoint

• This distinction is true of Coq
 – Avoid writing Gallina proof terms directly
 – Ltac (tactic language) is dirty, but expedient

• But in Agda ...
 – Writing proofs as Agda functions isn’t so bad...
 – Typed holes provide equivalent interactivity!
Associativity of \texttt{append} in Agda

From the Agda standard library (agda-stdlib):

```agda
module _ {a} {A : Set a} where

++-assoc : Associative {A = List A} _≡_ ++ _
++-assoc [] ys zs = refl
++-assoc (x :: xs) ys zs = cong (x :: _) (++-assoc xs ys zs)
```

19
Some Definitional Backchaining...

```agda
module Algebra.FunctionProperties
  {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where
Associative : Op₂ A → Set __
Associative __•__ = ∀ x y z → ((x • y) • z) ≈ (x • (y • z))
```

```agda
-- Algebra/FunctionProperties/Core.agda
Op₂ : ∀ {ℓ} → Set ℓ → Set ℓ
Op₂ A = A → A → A
```
Definition of ++ (list concatenation)

```
-- Data/List/Base.agda
infixr 5 _++_

_++_ : ∀ {a} {A : Set a} → List A → List A → List A
[]     ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
```
Definition of \(\equiv \) (equality)

```agda
infix 4 _≡_

data _≡_ {a} {A : Set a} (x : A) : A → Set a where
  instance refl : x ≡ x
```
Associativity of `append`, again

```haskell
++-assoc : Associative \{A = List A\} \equiv \_++_
++-assoc [] ys zs = refl
++-assoc (x :: xs) ys zs = cong (x ::\_\_) (++--assoc xs ys zs)
```

After applying Associative, the type signature is roughly

$$\lambda (x \ y \ z : \text{List } __) \rightarrow (x ++ y) ++ z \equiv x ++ (y ++ z)$$
Associativity of \textit{append}, again

\begin{align*}
++-\text{assoc} & : \text{Associative } \{A = \text{List } A\} \equiv ___++\
++-\text{assoc} \[] \ys \zs & = \text{refl} \\
++-\text{assoc} \(x :: xs\) \ys \zs & = \text{cong } (x :: __) (++-\text{assoc} xs \ys \zs)
\end{align*}

Proof proceeds by case analysis on the first argument.
Associativity of append, again

\[++\text{-assoc} : \text{Associative} \{ A = \text{List} A \} \equiv __++_
\]

\[++\text{-assoc} [] \quad \text{ys zs} = \text{refl} \]

\[++\text{-assoc} (x :: xs) \quad \text{ys zs} = \text{cong} (x :: _) (++\text{-assoc} xs \quad \text{ys zs}) \]

Base case is trivial (‘refl’ means proof by reflexivity):
Recall that (by definition of ++), \[[] ++ \quad \text{ys} \equiv \text{ys} \]. So
\[([] ++ y) ++ z \equiv [] ++ (y ++ z) \]
\[y ++ z \equiv y ++ z \]
\[\text{refl} (y ++ z) \]
Associativity of \texttt{append}, again

\begin{verbatim}
++-assoc : Associative \{A = List A\} _\equiv__++_
++-assoc [] ys zs = refl
++-assoc (x :: xs) ys zs = cong (x ::_) (++-assoc xs ys zs)
\end{verbatim}

When using proof by induction, \textit{the proof is recursive!}
\[(xs ++ ys) ++ zs \equiv xs ++ (ys ++ zs)\]
\[x :: ((xs ++ ys) ++ zs) \equiv x :: (xs ++ (ys ++ zs))\]
Agenda

• Agda
 – What it is
 – Why it’s interesting
 – Some basic definitions and proofs

• Demo
 – Emacs interaction
 – Typed holes
 – Short proofs
Agda Strengths

• Interactivity

• Brevity: Unicode, mixfix

• Proof terms
 – Powerful formalism, direct Curry–Howard

• Active community and developers
Agda Weaknesses

• Large body of background knowledge
• Poor error messages
• Proof automation functionality is minimal
 – Counterpoint: mature Reflection API allows self service
• Incomplete documentation
• Slow
“Agda-Curious”?

- Programming Language Foundations in Agda
 - https://plfa.github.io/
 - Port of Software Foundations (Coq) by Pierce, *et al.*
An Introduction to Agda

Curtis Dunham
University of Texas at Austin
and
Arm Research

Thank you!

What questions do you have?
Backup / Slide Graveyard