
Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

ACL2:
Implementation of a Computational Logic

Matt Kaufmann
The University of Texas at Austin

Dept. of Computer Science
matthew.j.kaufmann@gmail.com

Joint work with Bob Boyer, J Moore,
and the ACL2 community

May 28, 2019 (Draft of April 1, 2019)

Presented at JAF 2019

1/41

mailto:matthew.j.kaufmann@gmail.com
https://jaf2019nyc.com

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

It’s a bit odd to be giving a talk about a software system to
mathematical logicians.

Once upon a time I was one of you....

Now I maintain a computer program, ACL2, that proves
theorems.

QUESTION: What can I say today that might interest you?

MY ANSWER: Discuss the foundations of ACL2 as a practical
application of mathematical logic.

Please feel free to ask questions (in person or via email; I’ll put
contact info and a link to the slides on the last slide).

2/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

ACL2 Introduction

Logical Foundations for ACL2

Conclusion

3/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

ACL2 Introduction

Logical Foundations for ACL2

Conclusion

4/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OVERVIEW AND CONTEXT

The ACL2 home page has many useful links, and begins with
the following summary.

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

But before we talk about ACL2, let’s put it in context.

5/41

http://www.cs.utexas.edu/users/moore/acl2/

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

FORMAL VERIFICATION (1)

Formal verification (FV) of hardware and software systems is the
use of tools that check correctness using mathematical
methods, notably proof.

FV tools include equivalence checkers, model checkers, various
static checkers, and (occasionally) interactive theorem provers
(ITPs) such as Coq, Isabelle, HOL4, PVS, Agda — and ACL2.

As far as I know, ACL2 is the only ITP that has been used not
only at universities and the U.S. Government, but also at
several companies:

I AMD, ARM, ArterisIP, Battelle, Centaur, GE, IBM, Intel,
NXP, Kestrel, Oracle, Rockwell Collins

6/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

FORMAL VERIFICATION (2)

Two recent examples of ACL2 formalizations at UT Austin:

I x86 interpreter: models state transitions for x86
instructions

I Testing validates faithfulness of this model to actual Intel
x86 chips when running x86 machine code (approximately
3.3 million instructions per second).

I Some x86 machine code programs have been proved
correct.

I It is under continued development at Centaur and Kestrel.

I an efficient checker for Boolean satisfiability (SAT) proofs
I Used in recent international SAT competitions

7/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

INTERACTIVE THEOREM PROVING

I Yearly ITP conference
I Many ITP systems (e.g., ACL2) can send sub-problems to

automatic proof tools, e.g., SAT solvers for Boolean
problems.

I ITP is typically more scalable than automatic theorem
proving, but requires some human assistance.

I In ACL2, one proves lemmas that may be used
automatically to simplify terms in later proofs.

Some particular strengths of ACL2 among ITPs:

I Proof automation
I Proof debugging utilities
I Fast execution of programs
I Documentation (about 120,000 lines for just the system;

many more for the libraries)

8/41

https://itp19.cecs.pdx.edu
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

ACL2 Introduction

Logical Foundations for ACL2

Conclusion

9/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

ACL2 Introduction

Logical Foundations for ACL2

Conclusion

10/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

ACL2 INTRODUCTION
I Freely available, including libraries of certifiable books
I Let’s look at the ACL2 home page.
I ACL2 is written mostly in itself (!).

I About 11 MB of source code (including comments but not
including documentation)

I The ACL2 system and its libraries (community books) are
available from the ACL2 home page and from Github.

I More than 500,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshops: Latest (#15) was at UT Austin, Nov. 5-6, 2018.
I History

I Bob Boyer and J Moore started ACL2 in 1989. I joined in
1993 and Bob dropped out in 1995. J and I continue its
development.

I Boyer-Moore Theorem Provers go back to their collaboration
starting in 1971.

11/41

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2018

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

USING ACL2
I ACL2 programming and evaluation

[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I During a proof, each goal is replaced by a list of subgoals
(possible empty) such that if they are all provable, then that
goal is provable.

I Interfaces include Emacs, ACL2 Sedan (Eclipse-based),
none.

12/41

http://www.cs.utexas.edu/users/moore/acl2/seminar/2019.04.05-kaufmann/demo-1.lsp
http://www.cs.utexas.edu/users/moore/acl2/seminar/2019.04.05-kaufmann/demo-1-log.txt
http://www.cs.utexas.edu/users/moore/acl2/seminar/2019.04.05-kaufmann/demo-2.lsp
http://www.cs.utexas.edu/users/moore/acl2/seminar/2019.04.05-kaufmann/demo-2-log.txt
http://acl2s.ccs.neu.edu/acl2s/

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

USING ACL2 (2)

A longer talk on ACL2, oriented towards CS graduate students
and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz

13/41

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

PARTIAL TIMELINE

Boyer and Moore meet

insertion sort

binary adder

expression compiler

prime factorization

BDX930 abandoned

RSA

unsolvability of halting problem

FM8501

Gödel

FM8502

KIT OS kernel

Piton

micro Gypsy compiler

Unity
Gauss

FM9001

Byzantine Generals

clock sync

biphase mark

Motorola 68020

Nqthm compiler

DEC alpha
Motorola CAP

Paris-Harrington Ramsey

AMD K5 floating-point division
µcode

real-time model

Rockwell JEM1

initial ACL2 workshop

Logic formalization (Spain),
ongoing

IBM floating point algorithms

Kalman filters

FM9801

UCLID integration prototype
AAMP7G MIL cert.

Y86

Dijkstra shortest path

sixth ACL2 workshop

Rockwell Greenhills OS

Galois/Rockwell SHADE
AMD floating-point rtl, ongoing

ACM Software System Award

Buyer/seller

x86 ring model/proof

fast consensus analysis

Y86 with STOBJ
X86 ISA

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

14/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

ACL2 Introduction

Logical Foundations for ACL2

Conclusion

15/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

ACL2 Introduction

Logical Foundations for ACL2

Conclusion

16/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

LOGICAL FOUNDATIONS (1)

The ACL2 logic is a first-order logic with induction up to ε0.

I suspect that weaker induction would usually suffice in
practice;
maybe only ωω;
maybe only to each of ω, ωω, ωωω

, etc., iterated through only
standard natural numbers . . .

I . . . but it hasn’t been a priority to work this out, let alone
consider effects on the implementation.

17/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

LOGICAL FOUNDATIONS (2)
Restriction: All ACL2 theories extend a given ground-zero
theory, which is essentially Peano Arithmetic with
ε0-induction, extended with data types for:

I numbers (complex rationals),
I characters,
I strings,
I symbols, and
I closure under a pairing operation (cons).

This gives us lists, where the symbol nil represents the empty
list. For example:

ACL2 !>(cons 1 (cons 2 (cons 3 nil)))
(1 2 3)
ACL2 !>

18/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

LOGICAL FOUNDATIONS (3)

ACL2 extensions are generally conservative (no new theorems in
the existing language).

I . . . This holds even for recursive definitions, since
“termination” must be provable.

I M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

I So, one may introduce new concepts locally when carrying
out proofs.

19/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

EXTENSION PRINCIPLE: DEFINITIONS
A definition extends the current theory with the axiom equating
the call with the body.Example:

(defun rev (x)
(if (consp x)

(append (rev (rest x))
(cons (first x) nil))

nil))

The axiom added is (the universal closure of):

(rev x) =
(if (consp x)

(append (rev (rest x))
(cons (first x) nil))

nil)

The definition may be recursive if some measure into ε0 is
proved to decrease on each recursive call.

20/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

EXTENSION PRINCIPLE: CHOICE (AND ∃)
Quantification is implemented using a choice operator. When
asked to define
P(~x) = ∃~yA(~x,~y)
then ACL2 generates the following.
Conservatively introduce a Skolem (witness) function w(~x)
and a predicate P(~x):
w(~x) = ε~yA(~x,~y)
P(~x) = A(~x,w(~x))

(defun-sk fermat-counterex (n)
(exists (i j k)
(and (posp i) (posp j) (posp k)

(equal (+ (expt i n) (expt j n))
(expt k n))))

(defthm fermat
(implies (and (integerp n) (< 2 n))

(not (fermat-counterex n))))

21/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

EXTENSION PRINCIPLE: CHOICE (AND ∃) (2)

This sort of thing is clearly conservative (assuming the Axiom
of Choice or at least well-orderable models). . .

. . . IF we ignore induction!

Conservativity with induction follows from a model-theoretic
forcing argument.

22/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONSERVATIVITY-OF-DEFCHOOSE

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

EXTENSION PRINCIPLE: CONSTRAINTS

It is also legal to introduce constrained functions, using axioms
that are proved about local witnesses.
Example:

(encapsulate (((fn * *) => *))
(local (defun fn (x y)

(+ x y)))
(defthm fn-commutative
(equal (fn x y) (fn y x))))

A derived inference rule, functional instantiation, is often useful
with constrained functions. The next slide shows an example.

23/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

(defun map2-fn (lst1 lst2)
(if (consp lst1)

(cons (fn (first lst1) (first lst2))
(map2-fn (rest lst1) (rest lst2)))

nil))
(defthm map2-fn-rev

(implies (equal (len lst1) (len lst2))
(equal (map2-fn (rev lst1) (rev lst2))

(rev (map2-fn lst1 lst2)))))
(defun map2-* (lst1 lst2)

(if (consp lst1)
(cons (* (first lst1) (first lst2))

(map2-* (rest lst1) (rest lst2)))
nil))

(defthm map2-*-rev
(implies (equal (len lst1) (len lst2))

(equal (map2-* (rev lst1) (rev lst2))
(rev (map2-* lst1 lst2))))

:hints (("Goal" :by (:functional-instance
map2-fn-rev
(fn *) (map2-fn map2-*)))))

24/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

CONSERVATIVITY AND LOCAL

Fun example in ACL2(r), a variant of ACL2 that supports the
real numbers, due to Ruben Gamboa:
The Overspill Principle of non-standard analysis.
Informally:
If internal predicate P(n, x) holds for all standard natural
numbers n, then P(n, x) holds for some non-standard natural
number n.

I overspill.lisp: Clean formalization (which I’ll flash
on the next slide)
25 lines

I overspill-proof.lisp: Ugly proof, but LOCAL to the
main proof, by conservativity
256 lines

25/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=COMMON-LISP____REAL
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill-proof.lisp

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

Key parts of the book overspill.lisp:
(local (include-book "overspill-proof"))
(set-enforce-redundancy t)
(defstub overspill-p (n x) t)

(defun overspill-p* (n x)
(if (zp n)

(overspill-p 0 x)
(and (overspill-p n x)

(overspill-p* (1- n) x))))

(defchoose overspill-p-witness (n) (x)
(or (and (natp n) (standardp n)

(not (overspill-p n x)))
(and (natp n) (i-large n)

(overspill-p* n x))))

(defthm overspill-p-overspill
(let ((n (overspill-p-witness x)))
(or (and (natp n) (standardp n)

(not (overspill-p n x)))
(and (natp n) (i-large n)

(implies (and (natp m)
(<= m n))

(overspill-p m x)))))
:rule-classes nil) 26/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

META-THEORETIC REASONING (1)

In ACL2, you can:

I code a simplifier,
I prove that it is sound, and
I direct its use during later proofs.

Efficient execution can be important for meta-theoretic
reasoning!
We can return to this on an extra slide, if there is time and
interest.

27/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OTHER LOGICAL CHALLENGES

Here are some other challenges in the foundations of ACL2.

I Packages provide namespaces — e.g., PKG1::F and
PKG2::F are distinct. But packages introduce axioms such
as symbol-package-name(PKG1::F) = "PKG1". So
package introduction is not conservative and hence must be
recorded.

I One can specify a measure in order to admit a recursive
definition. But what if the measure is defined in terms of a
function whose definition is LOCAL?

I Congruence-based reasoning allows replacing one subterm
by another that is equivalent but not necessarily equal.

28/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDDEN-DEFPKG

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

DEFATTACH (1)
Defattach allows extensions that are not conservative.
Example:

I Constraint for a “specification” function, spec:
x ∈ Z =⇒ spec(x) ∈ Z

I Define function f: f(x, y) = spec(x + y)
I Define an “implementation” function, impl:
impl(x) = 10 ∗ x

I Attach impl to spec:
(defattach spec impl)

Result not provable from axioms for f and spec:

ACL2 !>(f 3 4) ; = spec(7)
70
ACL2 !>

29/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

DEFATTACH (2)
Issues to consider:

I Is (local (defattach ...)) supported?
YES, local is supported.

I Then how do we deal with conservativity?
Two theories: The current theory for reasoning and a
stronger evaluation theory, extended using defattach:

spec(x) = impl(x)

I Ah, but what about this?
(thm (equal (f 3 4) 70))

The proof fails! (Good!)
I Why is the evaluation theory consistent?

A key requirement is that the attachment relation is
suitably acyclic.

For details, including issues pertaining to evaluation, see the
Essay on Defattach comment in the ACL2 sources.

30/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

“HIGHER-ORDER” Apply$ (1)
One application of defattach is a mechanism for applying
function symbols. Example:

(include-book "projects/apply/top" :dir :system)
(defun$ norm^2 (x)
(+ (* (car x) (car x)) (* (cdr x) (cdr x))))

(assert-event
(equal (norm^2 (cons 3 4)) 25))

(thm (equal (norm^2 (cons 3 4)) 25))
(assert-event
(equal (apply$ 'norm^2 (list (cons 3 4)))

25))

But this fails!

(thm (equal (apply$ 'norm^2
(list (cons 3 4)))

25))

31/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

“HIGHER-ORDER” Apply$ (2)

However, the proof succeeds for the thm below, where the
warrant hypothesis, (warrant norm^2), asserts:
(∀ x) (equal (apply$ 'norm^2 (list x))

(norm^2 x)).

(thm (implies (warrant norm^2)
(equal (apply$ 'norm^2

(list (cons 3 4)))
25)))

Warrant hypotheses are not vacuous!
We show there is a natural evaluation theory where every
warrant is attached to the constant “true” function.

32/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

ITERATION
A key application of apply$: iteration, which is useful for
programming, and has reasoning support in ACL2. Example:

ACL2 !>(loop$ for i from 1 to 4 sum (* i i))
30
ACL2 !>

ACL2 treats this essentially as follows

(SUM$ '(LAMBDA (I) (* I I))
(FROM-TO-BY 1 4 1))

where sum$ is defined essentially as follows.

(defun sum$ (fn lst)
(if (endp lst)

0
(+ (apply$ fn (list (car lst)))

(sum$ fn (cdr lst)))))

33/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

ACL2 Introduction

Logical Foundations for ACL2

Conclusion

34/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

OUTLINE

Overview and Context

ACL2 Introduction

Logical Foundations for ACL2

Conclusion

35/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

CONCLUSION

I ACL2 has a 29 (or 48) year history and is used in industry.
I People are actually paid to prove theorems with ACL2.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I As an ITP system, it relies on user guidance for large
problems but enjoys scalability.

I Mechanizing a logic, for efficient and flexible evaluation
and proof, can present challenges.

I For more information, see the ACL2 home page, in
particular links to The Tours and Publications, which links
to introductory material.

36/41

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____The_02Tours
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/index.html

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

THANK YOU!

Matt Kaufmann
matthew.j.kaufmann@gmail.com

Slides for this talk are available via links from my home page:
http://www.cs.utexas.edu/users/kaufmann

37/41

mailto:matthew.j.kaufmann@gmail.com
http://www.cs.utexas.edu/users/kaufmann

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

EXTRA SLIDES

We can go on, time permitting....

38/41

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

Some ACL2 features not discussed further today:

I Prover algorithms
I Waterfall, linear arithmetic, Boolean reasoning, . . .
I Rewriting: Conditional, congruence-based, rewrite cache,

syntaxp, bind-free, . . .

I Using the prover effectively
I The-method and introduction-to-the-theorem-prover
I Theories, hints, rule-classes, . . .
I Accumulated-persistence, brr, proof-checker, dmr, . . .

I Programming support, including (just a few):
I Guards
I Hash-cons and function memoization
I Packages
I Mutable State, stobjs, arrays, applicative hash tables, . . .

I System-level: Emacs support, books and certification,
abbreviated printing, parallelism (ACL2(p)), . . .

39/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HINTS-AND-THE-WATERFALL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LINEAR-ARITHMETIC
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BOOLEAN-REASONING
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REWRITE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONGRUENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-RW-CACHE-STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BIND-FREE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INTRODUCTION-TO-THE-THEOREM-PROVER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THEORIES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HINTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____RULE-CLASSES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ACCUMULATED-PERSISTENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BRR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-CHECKER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DMR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HONS-AND-MEMOIZATION
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PACKAGES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ARRAYS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EMACS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BOOKS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CERTIFY-BOOK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-EVISC-TUPLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PARALLELISM

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

META-THEORETIC REASONING (2)
ACL2 supports a notion of “eval”, together with this sort of
meta theorem, directing the use of fn to transform terms that
are calls of nth or of foo.
(defthm fn-correct-1
(equal (evl x a)

(evl (fn x) a))
:rule-classes ((:meta :trigger-fns (nth foo))))

More complex forms are supported, including:
I extended-metafunctions that take STATE and contextual

inputs;
I transformations at the goal level; and
I hypotheses that extract known information from the

logical world.
For details, including issues pertaining to evaluation, see the
Essay on Correctness of Meta Reasoning comment in the ACL2
sources. Attachments provide a challenge.

40/41

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORLD

Overview and Context ACL2 Introduction Logical Foundations for ACL2 Conclusion

ON EFFICIENT EXECUTION

Efficient execution is a key design goal.

I ACL2 definitions are actually programs in the Common
Lisp programming language.

I Guards specify intended domains of functions and support
sound, efficient Common Lisp evaluation.

I Several features support efficient computation by reusing
storage, yet with a first-order logic foundation.

I Single-threaded objects including state
I Arrays
I Function memoization (reuse of saved results)
I Fast alists (applicative hash tables)

41/41

	Overview and Context
	ACL2 Introduction
	Logical Foundations for ACL2
	Conclusion

