Knuth’s Generalization of Takeuchi’s Tarai Function: Preliminary Report

Tom Bailey John Cowles
{tbailey, cowles}@uwyo.edu
Department of Computer Science
University of Wyoming
Laramie, WY 82071.

Abstract
Donald E. Knuth of Stanford University raises, in [2] and [3, chapter 22], intriguing open questions about his generalization of the tarai function and proposes an interesting candidate for machine verification. We answer some of the open questions and explore the use of ACL2 to meet Knuth’s challenge.

1 Takeuchi’s Tarai Function

Ikuo Takeuchi devised the following recursive function for benchmarking LISP systems. The recursion can take a long time to terminate without generating large intermediate numerical values. Knuth comments [3, chapter 22]: “Takeuchi called his function tarai, from the word ‘taraimawashi,’ which connotes passing an unpleasant object from one person to another.”

For integer inputs, \(x, y, z \),

\[
t(x, y, z) \overset{\Delta}{=} \begin{cases} y & \text{if } x \leq y \\ t(t(x - 1, y, z), t(y - 1, z, x), t(z - 1, x, y)) & \text{else} \end{cases}
\] (1)

John McCarthy proved that this recursion terminates and that \(t \) can be computed without any recursion,

\[
t(x, y, z) = \begin{cases} y & \text{if } x \leq y \\ t(y - 1, z, x) & \text{else if } y \leq z \\ x & \text{else} \end{cases}
\] (2)

1
J. Moore [5] discovered a simpler measure than the one used by McCarthy and used the early Boyer-Moore theorem prover, THM, to verify termination and that t satisfies the simpler nonrecursive equation.

2 Knuth’s Generalization

Knuth generalizes the tarai function to higher dimensions: For integer inputs, x_1, x_2, \ldots, x_m,

$$t(x_1, x_2, \ldots, x_m) \overset{df}{=} \begin{cases} \text{if } x_1 \leq x_2 \text{ then } x_2 \\ \text{else } t(t(x_1 - 1, x_2, \ldots, x_m), \\
& t(x_2 - 1, x_3, \ldots, x_m, x_1), \\
& \vdots \\
& t(x_m - 1, x_1, \ldots, x_{m-1}) \end{cases}$$

Knuth raises two questions about this recursive definition.

1. Are there total functions on the integers that satisfy the recursive equations based on the definition? That is, are there total functions $f(x_1, x_2, \ldots, x_m)$ on the integers that satisfy the equation

$$f(x_1, x_2, \ldots, x_m) = \begin{cases} \text{if } x_1 \leq x_2 \text{ then } x_2 \\ \text{else } f(f(x_1 - 1, x_2, \ldots, x_m), \\
& f(x_2 - 1, x_3, \ldots, x_m, x_1), \\
& \vdots \\
& f(x_m - 1, x_1, \ldots, x_{m-1}) \end{cases}$$

2. Does the recursion terminate for all integer inputs?

If the answer to the second question is yes, then the answer to the first question must also be yes. But, Knuth points out, [2] and [3, chapter 22], “...we have not demonstrated that termination will occur, and there is no obvious ordering on the integer m-tuples (x_1, \ldots, x_m) that will yield such a proof.”
Question 1: Can the recursive equation be satisfied?

Knuth notes that when $m = 4$, the function

$$
t(x_1, x_2, x_3, x_4) \defeq \begin{cases} x_2 & \text{if } x_1 \leq x_2 \\
 & \text{else if } x_2 \leq x_3 \\
 & \text{else if } x_3 \leq x_4 \\
 & \text{else } x_1.
\end{cases}
$$

satisfies the equation

$$
t(x_1, x_2, x_3, x_4) = \begin{cases} x_2 & \text{if } x_1 \leq x_2 \\
 & \text{else } t(t(x_1 - 1, x_2, x_3, x_4), \\
 & \text{else } t(t(x_2 - 1, x_3, x_4, x_1), \\
 & \text{else } t(t(x_3 - 1, x_4, x_1, x_2), \\
 & \text{else } t(t(x_4 - 1, x_1, x_2, x_3)).
\end{cases}
$$

This, together with similar results for $m = 3$ discussed earlier [see (1) and (2)], makes it natural to conjecture that the m-dimensional equation (3) is satisfied by

$$
f(x_1, x_2, \ldots, x_m) \defeq \begin{cases} x_{k+1} & \text{if } (\exists k < m)(x_1 > x_2 > \cdots > x_k \leq x_{k+1}) \\
 & \text{else } x_1.
\end{cases}
$$

Things are not quite so simple, as shown by the following counterexample, due to Knuth, for $m = 5$. For the f just defined, with inputs $5, 3, 2, 0, 1$, the left side of equation (3) clearly yields $f(5, 3, 2, 0, 1) = 1$, while the right side, after some computation, produces 2.

Knuth modifies the definition of f in the following way.

$$
f(x_1, x_2, \ldots, x_m) \defeq \begin{cases} (\exists k < m)(x_1 > x_2 > \cdots > x_k \leq x_{k+1}) & \text{if } (\exists k < m)(x_1 > x_2 > \cdots > x_k \leq x_{k+1}) \\
 & \text{then } g(x_1, x_2, \ldots, x_{k+1}) \\
 & \text{else } x_1.
\end{cases}
$$

Here g is a “function” that takes a variable number (at least two) of integer inputs.

$$
g(x_1, x_2, \ldots, x_j) \defeq \begin{cases} x_2 & \text{if } j = 2 \\
 & \text{else if } x_1 = x_2 + 1 \\
 & \text{else if } x_2 = x_3 + 1 \\
 & \text{else } x_j.
\end{cases}
$$
An Open Problem raised in [2] is to: Prove the following theorem by computer. Knuth writes in [3, chapter 22], “Indeed, I have checked the proof by hand twice, and I believe it is correct, but I do not want to have to check it again!”

Theorem 1 The function f defined by (4) satisfies the m-dimensional tarai recurrence (3).

In February 2000, Tom Bailey found a counterexample with $m = 6$: $f(8, 6, 4, 3, 1, 2) = 2$ while expanding the right side of (3) finds it equal to $f(3, 2, 3, 2, 2, 8) = 3$. Knuth’s reaction [4] to the counterexample: “This is certainly a great way to make me believe in mechanical verification.” Knuth further writes in [3, chapter 22] that the theorem “…is apparently correct when $m = 5$, although mechanical verification is still pending (and now imperative!). The behavior of the tarai recurrence in six or more dimensions remains unknown.”

We have a proof that has been checked by hand many times for the following (but mechanical verification is not yet complete).

Conjecture 1 The function f, defined by modifying (4) by replacing the call to $g(x_1, x_2, \ldots, x_{k+1})$ with a call to $g_6(x_1, x_2, \ldots, x_{k+1})$, satisfies the m-dimensional tarai recurrence (3).

Here g_6, like g, takes a variable number of integer inputs.

$$g_6(x_1, x_2, \ldots, x_j) \triangleq \begin{cases}
 x_j & \text{if } j \leq 3 \\
 g_6(x_1, x_2, \ldots, x_j) & \text{else if } x_1 = x_2 + 1 \text{ or } x_2 > x_3 + 1 \\
 \max(x_3, x_j) & \text{else}
\end{cases}$$

Question 2: Does the recursion terminate?

Knuth points out, [2] and [3, chapter 22], that the answer to this question may very well depend on which recursive calls we insist on fully evaluating: “…a call-by-need technique will always terminate when applied to the recursive equation for $t(x_1, \ldots, x_m)$. If $x_1 > x_2 > \cdots > x_k \leq x_{k+1}$, the values $y_i = t(x_i - 1, x_{i+1}, \ldots, x_{i-1})$ need be expanded only for $1 \leq i \leq k + 1$, and this will be sufficient to determine the value of $t(y_1, \ldots, y_m) = t(x_1, \ldots, x_m)$ in a finite number of steps.” Knuth’s argument for this depends on the faulty proof given for Theorem 1.

Mechanical verification for the following is not yet complete.
Conjecture 2 The recursion for computing \(t(x_1, \ldots, x_m) \) always terminates using the following version of Knuth’s call-by-need. If \(x_1 > x_2 > \cdots > x_k \leq x_{k+1} \), it is sufficient to expand the values \(y_i = t(x_i-1, x_{i+1}, \ldots, x_{i-1}) \) only for \(1 \leq i \leq k \) (note the change from \(k+1 \) to \(k \) in this range for \(i \)), to determine the value of \(t(y_1, \ldots, y_m) = t(x_1, \ldots, x_m) \).

Knuth continues, [2] and [3, chapter 22]: “Therefore we come to a final question, which will perhaps prove to be the most interesting aspect of the present investigation, particularly if it has a negative answer. ... If so, the tarai recurrence would be an extremely interesting example to include in all textbooks about recursion.”

Open Problem. “Does the \(m \)-dimensional tarai recursive equation define a total function, for all \(m \geq 3 \), if it is expanded fully (without call-by-need)?”

The answer to this open problem was shown, by Tom Bailey, Jim Caldwell, and John Cowles, in January 2000, to be, “no.” For \(m = 4 \), \(t(3, 2, 1, 5) = \cdots = t(2, 1, 5, 4) = \cdots = t(1, 5, 4, t(3, 2, 1, 5)) \).

3 Progress Using ACL2

Applying ACL2, in an inelegant way with brute force, verifies the following:

1. For \(2 \leq m \leq 7 \), the function \(f \) of Conjecture 1 (with Knuth’s \(g \) replaced with \(g_b \)) satisfies the \(m \)-dimensional tarai recurrence (3). Thus ACL2 verifies Conjecture 1 for \(2 \leq m \leq 7 \).

2. For \(2 \leq m \leq 5 \), Knuth’s version of \(f \), defined by (4), computes the same values as the version of \(f \) given in Conjecture 1 (with \(g \) replaced with \(g_b \)). Together with item 1, this finishes the mechanical verification that Knuth’s \(f \) satisfies the recursive equation (3), for \(m = 5 \) (as well as for \(2 \leq m \leq 4 \)).

3. For \(2 \leq m \leq 7 \), the function \(f \) of Conjecture 1 (with Knuth’s \(g \) replaced with \(g_b \)) is the unique total function on the integers that satisfies the \(m \)-dimensional tarai recurrence (3).

4. For \(2 \leq m \leq 7 \), the function \(f \) of Conjecture 1 (with Knuth’s \(g \) replaced with \(g_b \)) satisfies the \(m \)-dimensional restricted tarai recurrence:
\[f(x_1, x_2, \ldots, x_m) = \begin{cases} x_2 & \text{if } x_1 \leq x_2 \\ f(f(x_1 - 1, x_2, \ldots, x_m), \\ f(x_2 - 1, x_3, \ldots, x_m, x_1), \\ \vdots \\ f(x_k - 1, x_{k'}, \ldots, x_{k-1}) & \text{else} \end{cases} \] (5)

Note the \(k \) and \(k' \) in the last line of this equation. Here \(k' \) stands for \((k + 1) \text{ mod } m \) (where \(i \text{ mod } m \) is the unique \(j \in \{1, \ldots, m\} \) such that \(i \equiv j \text{ mod } m \)) and \(k \) is the integer such that \(1 \leq k \leq m \) and \(x_1 > x_2 > \cdots > x_k \leq x_{k'} \). This definition requires that \(f \), like \(g \) and \(g_b \), be a “function” that takes a variable number (at least two) of integer inputs.

5. For \(2 \leq m \leq 7 \), the function \(f \) of Conjecture 1 (with Knuth’s \(g \) replaced with \(g_b \)) is the unique total function on the integers that satisfies the \(m \)-dimensional restricted tarai recurrence (5).

6. For \(2 \leq m \leq 7 \), the recursive calls on the right side of equation (5), defining the \(m \)-dimensional restricted tarai recurrence, always terminate. Thus ACL2 verifies Conjecture 2 for \(2 \leq m \leq 7 \).

Coping with a variable number of inputs

Lisp provides an obvious way of dealing with functions, like \(g \), \(g_b \), and the restricted tarai recurrence, that take a variable number of inputs: Form the inputs into a list and use that list as the single input to the function.

The ACL2 versions of the functions \(f \) and \(g_b \) mentioned in Conjecture 1 are now straightforward:

\[
\text{(defun } \text{Fb } (\text{lst}) \\
\text{ "The input lst is intended to be a nonempty list of integers."} \\
\text{ (declare (xargs :guard (and (integer-listp lst) \\
\text{ \quad (consp lst)))))} \\
\text{ (if (decreasing-p lst) \ldots)"
\)
(first lst)
(Gb (first-non-decrease lst)))

(defun
Gb (lst)
"The input lst is intended to be a nonempty
list of integers."
(declare (xargs :guard (and (integer-listp lst)
(consp lst))))
(cond
((consp (nthcdr 3 lst)) ;; (len lst) > 3
 (if (or (equal (first lst)
 (+ (second lst) 1))
 (> (second lst)
 (+ (third lst) 1)))
 (Gb (rest lst))
 (max (third lst)
 (last-el lst))))
(t (last-el lst))) ;; (len lst) <= 3

Here
(decreasing-p (x₁,x₂,...,xₘ)) returns true if and only if x₁ > x₂ > ⋯ > xₘ,

(first-non-decrease (x₁,x₂,...,xₘ)) returns (x₁,x₂,...,xₖ, xₖ₊₁) where
k is the index such that x₁ > x₂ > ⋯ > xₖ ≤ xₖ₊₁,

(last-el lst) returns the last element in the list lst.

The tarai recurrences are both satisfiable

The following functions provide one way of formally stating in ACL2 that Fb satisfies both the tarai (3) and restricted tarai (5) recurrences.

(Fb-1st lst) returns the list obtained by applying Fb to each element of
lst (which should be a list of lists),

(dec-front-len (x₁,x₂,...,xₘ)) returns the k such that x₁ > x₂ > ⋯ > xₖ ≤ xₖ'. Here k' equals (k + 1) mod' m.
(lst-rotates-with-minus-1 n \((x_1, x_2, \ldots, x_m)\)) returns the list of the first
\(n + 1\) elements in this list of lists:

\[
(x_1 - 1, x_2, \ldots, x_m),
(x_2 - 1, x_3, \ldots, x_m, x_1),
\vdots
(x_m - 1, x_1, \ldots, x_{m-1}),
(x_1 - 1, x_2, \ldots, x_m),
\vdots
\]

The following theorems are proved by exhaustive consideration of cases. The
\(m = 7\), using a machine with a 600 MHz pentium processor, requires
time, as reported by ACL2, of over 3.85 hours to complete. The first theorem
formally states that for \(2 \leq m \leq 7\), \(F_b\) satisfies the tarai (3) recurrence and
the second says that \(F_b\) also satisfies the restricted tarai (5) recurrence.

(defthm
 Fb-sat-tarai-def
 (implies (and (integer-listp lst)
 (consp (rest lst)) ; (len lst) > 1
 (not (consp (nthcdr 7 lst)))
) ; (len lst) <= 7
 (equal (Fb lst)
 (if (<= (first lst)
 (second lst))
 (second lst)
 (Fb (Fb-lst (lst-rotates-with-minus-1
 (- (LEN lst) 1)
 lst)))))))
...

(defthm
 Fb-sat-tarai-def-a
 (implies (and (integer-listp lst)
 (consp (rest lst)) ; (len lst) > 1
 (not (consp (nthcdr 7 lst)))
) ; (len lst) <= 7
 (equal (Fb lst)
...
(if (<= (first lst)
 (second lst))
 (second lst)
 (Fb (Fb-lst (1st-rotates-with-minus-1
 (- (DEC-FRONT-LEN lst) 1)
 lst))))))

...

The tarai recurrences are both \textit{uniquely} satisfiable

Encapsulate, using Fb as the witness, is used to consistently axiomatize four functions \texttt{tarai}, \texttt{tarai-lst}, \texttt{rTarai}, and \texttt{rTarai-lst} so that

- \texttt{tarai} is a total function that satisfies the axiom obtained by replacing Fb, in the theorem, \texttt{Fb-sat-tarai-def}, of the previous section, with \texttt{tarai}.

- \texttt{tarai} returns an integer whenever the input is a list of integers of length 2 or more.

- \texttt{rTarai} is a total function that satisfies the axiom obtained by replacing Fb, in the theorem, \texttt{Fb-sat-tarai-def-a}, of the previous section, with \texttt{rTarai}.

Thus the axioms specifically restrict their validity to input lists of lengths 2–7.

The following theorems are proved by cases, one case for each list length from 2–7. Induction is used to prove each case.

(defthm tarai=Fb
 (implies (and (integer-listp lst)
 (consp (rest lst)) ;; (len lst) > 1
 (not (consp (nthcdr 7 lst)))
) ;; (len lst) <= 7
 (equal (tarai lst)(Fb lst))))

(implies (and (integer-listp lst)
 (consp (rest lst)) ;; (len lst) > 1
 (not (consp (nthcdr 7 lst)))
) ;; (len lst) <= 7
 (equal (tarai lst)(Fb lst))))

...

(defthm rTarai=Fb-7
(implies (and (integer-listp lst)
 (consp (nthcdr 1 lst)) ;; (len lst) > 1
 (not
 (consp (nthcdr 7 lst))))); (len lst) <= 7
 (equal (rTarai lst)(Fb lst)))

...)

The measure of lists of integers \(x_1, x_2, \ldots, x_m\), used for the induction, is based on the lexicographical ordering on pairs \((k, \text{nfix}(x_1 - x_2))\), where \(k\) is the integer such that \(x_1 > x_2 > \cdots > x_k \leq x_{k'}\) \((k' \text{ equals } (k + 1 \text{ mod } m)\).

For example, here is the induction scheme used to prove tarai=Fb when \(\text{lst}\) is the 4 element list (LIST FIRST SECOND THIRD FOURTH).

(AND (IMPLIES (NOT (INTEGER-LISTP (LIST FIRST SECOND
 THIRD FOURTH)))
 (:P FIRST SECOND THIRD FOURTH))
 (IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND
 THIRD FOURTH))
 (:P FIRST SECOND THIRD FOURTH))
 (<= FIRST SECOND))
 (IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND
 THIRD FOURTH))
 (:P FIRST SECOND THIRD FOURTH))
 (< SECOND FIRST)
 (< SECOND THIRD)
 (< SECOND FOURTH)
 (:P (+ -1 FIRST) SECOND THIRD FOURTH)
 (:P (+ -1 SECOND) THIRD FOURTH FIRST)
 (:P (+ -1 THIRD) FOURTH FIRST SECOND)
 (:P (+ -1 FOURTH) FIRST SECOND THIRD)
 (:P (Fb (LIST (+ -1 FIRST) SECOND
 THIRD FOURTH))
 (Fb (LIST (+ -1 SECOND) THIRD
 FOURTH FIRST))
 (Fb (LIST (+ -1 THIRD) FOURTH
 FIRST SECOND))
 (Fb (LIST (+ -1 FOURTH) FIRST
 SECOND THIRD))))
 (:P FIRST SECOND THIRD FOURTH))
 (IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND
 THIRD FOURTH)))
 (<= FIRST SECOND))
 (IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND
 THIRD FOURTH)))
 (< SECOND FIRST)
 (< SECOND THIRD)
 (< SECOND FOURTH)
 (:P (+ -1 FIRST) SECOND THIRD FOURTH)
 (:P (+ -1 SECOND) THIRD FOURTH FIRST)
 (:P (+ -1 THIRD) FOURTH FIRST SECOND)
 (:P (+ -1 FOURTH) FIRST SECOND THIRD)
 (:P (Fb (LIST (+ -1 FIRST) SECOND
 THIRD FOURTH))
 (Fb (LIST (+ -1 SECOND) THIRD
 FOURTH FIRST))
 (Fb (LIST (+ -1 THIRD) FOURTH
 FIRST SECOND))
 (Fb (LIST (+ -1 FOURTH) FIRST
 SECOND THIRD))))

(AND (IMPLIES (NOT (INTEGER-LISTP (LIST FIRST SECOND
 THIRD FOURTH)))
 (:P FIRST SECOND THIRD FOURTH))
 (IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND
 THIRD FOURTH))
 (:P FIRST SECOND THIRD FOURTH))
 (<= FIRST SECOND))
 (IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND
 THIRD FOURTH))
 (:P FIRST SECOND THIRD FOURTH))
 (< SECOND FIRST)
 (< SECOND THREE...
THIRD FOURTH))
(<= SECOND FIRST)
(<= THIRD SECOND)
(<= THIRD FOURTH)
(:P (+ -1 FIRST) SECOND THIRD FOURTH)
(:P (+ -1 SECOND) THIRD FOURTH FIRST)
(:P (+ -1 THIRD) FOURTH FIRST SECOND)
(:P (FB (LIST (+ -1 FIRST) SECOND THIRD FOURTH)))
 (FB (LIST (+ -1 SECOND) THIRD FOURTH FIRST))
 (FB (LIST (+ -1 THIRD) FOURTH FIRST SECOND))
 (TARAI (LIST (+ -1 FOURTH) FIRST SECOND THIRD)))
(:P FIRST SECOND THIRD FOURTH))
(IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND THIRD FOURTH)))
(<= SECOND FIRST)
(<= SECOND THIRD)
(:P (+ -1 FIRST) SECOND THIRD FOURTH)
(:P (+ -1 SECOND) THIRD FOURTH FIRST)
(:P (FB (LIST (+ -1 FIRST) SECOND THIRD FOURTH)))
 (FB (LIST (+ -1 SECOND) THIRD FOURTH FIRST))
 (TARAI (LIST (+ -1 THIRD) FOURTH FIRST SECOND))
 (TARAI (LIST (+ -1 FOURTH) FIRST SECOND THIRD)))
(:P FIRST SECOND THIRD FOURTH))).

Knuth’s f matches Fb for $2 \leq m \leq 5$

Knuth’s version of f is straightforward to formalize.

(defun
 Fk (lst)
"Knuth's f.
The input lst is intended to be a nonempty list of integers."
(declare (xargs :guard (and (integer-listp lst)
 (consp lst)))))
(if (decreasing-p lst)
 (first lst)
 (Gk (first-non-decrease lst)))))

(defun Gk (lst)
"Knuth's g function.
The input lst is intended to be a nonempty list of integers."
(declare (xargs :guard (and (integer-listp lst)
 (consp lst)))))
(cond ((consp (nthcdr 2 lst)) ;; (len lst) > 2
 (cond ((equal (first lst)
 (+ (second lst) 1))
 (Gk (rest lst)))
 ((equal (second lst)
 (+ (third lst) 1))
 (max (third lst)
 (last-el lst)))
 (t (last-el lst))))
 (t (last-el lst)))))); (len lst) <= 2

The following theorem is proved by considering all the cases.

(deftm
 Fk=Fb-0-5
 (implies (and (integer-listp lst)
 (not (consp (nthcdr 5 lst))))
 ;; (len lst) <= 5
 (equal (Fk lst)(Fb lst)))
 ...
)

Direct computation verifies the example showing that Fk and Fb can return different results for \(m = 6. \)
(defthm Fk<>Fb-6-example
 (let ((lst '(8 6 4 3 1 2))
 (and (equal (Fk lst) 2)
 (equal (Fb lst) 3)
 (not (equal (Fk lst)(Fb lst))))))

The restricted tarai recursion halts

The measure mentioned earlier is used to demonstrate that the recursion terminates. The recursive calls in the definition of the restricted tarai function all occur within this call to rTarai

(rTarai (rTarai-lst (lst-rotates-with-minus-1
 (- (DEC-FRONT-LEN lst) 1)
 lst))).

In addition to the explicit call to rTarai shown above, several calls to rTarai are required to compute

(rTarai-lst (lst-rotates-with-minus-1
 (- (DEC-FRONT-LEN lst) 1)
 lst)).

The calls to rTarai required to compute the call to rTarai-lst all have input lists with smaller measure than the original input list, at least for lists of lengths 2–7.

(defthm e0-ord<=-measure-rotates
 (implies (and (integer-listp lst)
 (consp (nthcdr 1 lst)) ;; (len lst) > 1
 (not (consp (nthcdr 7 lst))) ;; (len lst) <= 7
 (> (first lst)(second lst))
 (member-equal rlst (lst-rotates-with-minus-1
 (- (DEC-FRONT-LEN lst) 1)
 lst)))
 (e0-ord<= (measure rlst)
 (measure lst)))
...

13
The input list to the explicit call to rTarai shown above also has smaller measure than the original input list.

\[\text{(defthm e0-ord-<measure-rTarai-lst)} \]
\[\text{(implies (and (integer-listp lst)) \)} \]
\[\text{(consp (nthcdr 1 lst)) ; (len lst) > 1} \]
\[\text{(not (consp (nthcdr 7 lst))) ; (len lst) \leq 7} \]
\[\text{(\textgreater{} (first lst)(second lst)))} \]
\[\text{(e0-ord-< (measure (rTarai-lst \)} \]
\[\text{(lst-rotates-with-minus-1 \)} \]
\[\text{(- (DEC-FRONT-LEN lst) 1)} \]
\[\text{1lst))) \]
\[\text{(measure lst)))} \]
\[\text{...})} \]

4 Current and Future Work

Use ACL2 to prove, in an elegant way, all items 1, 3–6 in section 3, for all integers \(m \geq 2 \).

A formal proof, using ACL2, of Conjecture 1, is currently under construction, but not yet complete. An informal proof, checked by hand, required consideration of many cases. To ensure that all possible input lists of size two or more had been considered, regular expressions from formal language theory were employed in the following way.

The proof depends not on the values of the individual components of the input \(x_1, \ldots, x_m \), but on the differences between adjacent pairs of input values. With each input list \(x_1, \ldots, x_m \) associate another list \(s_1, \ldots, s_{m-1} \), where \(s_i = x_{i+1} - x_i \). The \(s_i \) are called steps. For example, associated with the input list 4, 2, 3, 2, 2, 8 is the step list \(-2, 1, -1, 0, 6\).

Step lists are encoded as strings of the following symbols with the indicated meaning.
<table>
<thead>
<tr>
<th>symbol</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>$s_i \geq 0$ a Rising step</td>
</tr>
<tr>
<td>U</td>
<td>$s_i = -1$ a Unit step down</td>
</tr>
<tr>
<td>D</td>
<td>$s_i = -2$ a Double step down</td>
</tr>
<tr>
<td>T</td>
<td>$s_i \leq -3$ a Tremendous step down</td>
</tr>
<tr>
<td>$B(= D + T)$</td>
<td>$s_i \leq -2$ a Big step down</td>
</tr>
<tr>
<td>$A(= U + B)$</td>
<td>$s_i \leq -1$ Any step down</td>
</tr>
<tr>
<td>$C(= R + A)$</td>
<td>the Complete set of all possible steps</td>
</tr>
</tbody>
</table>

So the step list $-2, 1, -1, 0, 6$ can be encoded by several strings, two of which are $DRURR$ and $BRARR$.

Recall that a regular expression is a string of symbols representing a set of strings. The operations union, concatenation, and Kleene closure, on sets of strings, are represented, in expressions, respectively, by $+$, juxtaposition, and the superscript \ast.

With these definitions, the set of all possible input lists is represented by the regular expression $CC\ast$. Each case is a set of input lists represented by a regular expression such as $U\ast DUU\ast BBA\ast RC\ast$. This case includes all input lists of length four or more having zero or more Unit steps, followed by a Double step, followed by one or more Unit steps, followed by one or more Big steps, followed by a Rising step, followed by zero or more additional steps.

Our informal proof considers sixteen such cases. Using the algebra of regular expressions [1], it is possible to show that the sum of the sixteen regular expressions representing our cases equals $CC\ast$. This process revealed several flaws in earlier proofs, including three new cases that had been overlooked. The cases we considered are represented by

$$CC\ast = AA\ast + A\ast RC\ast$$

$$= UU\ast +$$

$$UU\ast BA\ast +$$

$$B +$$

$$BBA\ast +$$

$$BUU\ast +$$

$$BUU\ast BA\ast +$$

$$RC\ast +$$
\begin{align*}
UU^* RC^* + \\
U^* DRC^* + \\
U^* DUU^* RC^* + \\
U^* DUU^* BB^* RC^* + \\
U^* DUU^* BB^* U^* A^* RC^* + \\
U^* DBB^* RC^* + \\
U^* DBB^* U^* A^* RC^* + \\
U^* T^* B^* RC^* + \\
U^* T^* B^* U^* A^* RC^*
\end{align*}

5 Conclusion

Our attempt to use ACL2 to meet Knuth’s machine verification challenge about his generalization of Takeuchi’s tarai function led to a correction of the original formulation of his theorem. ACL2 has verified the corrected version of Knuth’s theorem for input lists of length \(m \), when \(2 \leq m \leq 7 \). ACL2 is currently being used to formally check the proof of the theorem for all \(m \geq 2 \).

References

